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Simple Summary: This study adopts a dynamic methodology to explore challenges to the practical
application of the adjusted binary classification (ABC) approach, which are related to the unmodifiable
characteristics of data used in its development, such as intrasexual variation (sexual dimorphism) of
variables and methodological factors such as the selected classification algorithm and sample size.
The adequacy of a training dataset’s size was judged relative to the classification performance in
an independent test set. Finding an optimal classifier was also addressed in this study, wherein the
results demonstrate that both statistical modeling and machine learning techniques perform almost
equally in the univariate models; however, differences are evident in the multivariate model due to
the different number of variables included via the feature selection process, as well as the effect of
inadequate training sample size relative to the test set. This approach is particularly useful when
quick classification/prediction is required for making real-time forensic decisions.

Abstract: The adjusted binary classification (ABC) approach was proposed to assure that the binary
classification model reaches a particular accuracy level. The present study evaluated the ABC for
osteometric sex classification using multiple machine learning (ML) techniques: linear discriminant
analysis (LDA), boosted generalized linear model (GLMB), support vector machine (SVM), and
logistic regression (LR). We used 13 femoral measurements of 300 individuals from a modern Turkish
population sample and split data into two sets: training (n = 240) and testing (n = 60). Then, the five
best-performing measurements were selected for training univariate models, while pools of these
variables were used for the multivariable models. ML classifier type did not affect the performance of
unadjusted models. The accuracy of univariate models was 82–87%, while that of multivariate models
was 89–90%. After applying ABC to the crossvalidation set, the accuracy and the positive and negative
predictive values for uni- and multivariate models were ≥95%. Sex could be estimated for 28–75%
of individuals using univariate models but with an obvious sexing bias, likely caused by different
degrees of sexual dimorphism and between-group overlap. However, using multivariate models, we
minimized the bias and properly classified 81–87% of individuals. A similar performance was also
noted in the testing sample (except for FEB), with accuracies of 96–100%, and a proportion of classified
individuals between 30% and 82% in univariate models, and between 90% and 91% in multivariate
models. When considering different training sample sizes, we demonstrated that LR was the most
sensitive with limited sample sizes (n < 150), while GLMB was the most stable classifier.
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1. Introduction

The reconstruction of a skeletal biological profile of unidentified human remains en-
compasses four main parameters: sex, age at death, stature, and population affinity [1,2].
Usually, one of the first steps in that process is osteological identification of sex, as it re-
markably reduces the number of possible matches and enables the application of other
biological profiling methods that are sex-specific [3]. Sex-related markers in the human
skeleton broadly reflect size sexual dimorphism (SSD), general robusticity of bones, and
entheseal changes due to muscular bulk attachment and activity [4], but they can also
be prominent in shape differences that mainly result from biological adaptations [2,4].
Therefore, two methodological approaches are commonly used for sex diagnosis: morpho-
scopic and osteometric approaches [2]. The osteometric and morphoscopic features can be
successfully analyzed on pelvic and cranial bones [5–9], whereas osteometric methods are
commonly most productive using long bones [10–17]. One or multiple skeletal elements
or combinations of features enable the forensic deduction of sex depending on the degree
of fragmentation and presence of a skeletal element [4,16–21]. Undamaged pelvic bones
are by far the most accurate bones available for sexing [5]. When the pelvic bones are
missing, long bones are considered to have the most important role in sex estimation [22].
Femora were the focus of attention in a multitude of studies owing to their articulation
with the pelvis, higher probability of preservation, and function in relation to bipedal
motion [10–14].

Recent advances in biological sex identification techniques include the genetic determi-
nation of sex using DNA extracted from skeletal remains [1]. Although molecular methods
are more accurate, this approach is not free of technical limitations, as it is time-consuming
and requires expensive equipment. Moreover, the efficiency of high-quality DNA retrieval
from such methods may be affected by environmental contamination or the taphonomic
status of bones [1,2].

Osteological-based sex estimation methods have been scrutinized to achieve standard-
ization of methodologies and provide high levels of certainty when evaluating biological
sex for legal decision making [20–24]. In addition to the repeatability, greater objectivity,
and lower cognitive bias afforded by osteometric analysis of specimens, the most important
factor inherent to this method’s validity is the classification accuracy. In some jurisdic-
tions, the Daubert standard provides a set of criteria regarding the admissibility of expert
witness testimony that includes the general acceptance of a method and demonstration
of an estimable error rate [1,2,22]. In practice, methods of sex estimation are developing,
and practitioners use the most accurate methodology available depending on the analyzed
specimen and status of preservation [1,18–21].

Many studies recommend that the development of sex estimation methods should
be based upon (1) a collection of a representative population dataset for model training
and validation, (2) availability of biologically dimorphic skeletal traits, (3) satisfying the
prerequisite statistical assumptions of the classification algorithms, and (4) presenting the
probability of the concluded sex to reflect the uncertainty of diagnosis [3,4,9,10,17,18]. From
a probabilistic standpoint, qualitative and quantitative sexing methods never reach the
desirable 100% accuracy level [3,21,22]. When these markers are used in a binary decision
system, each individual with a posterior probability (pp) greater than 0.5 of belonging to a
specific group (in our case, sex) is classified in that group. Such sharp distinctions are not
supported in the human skeleton, because skeletal measurements for each sex can have
any figure in a spectrum of data [2]. This results in fluctuations in the rate of classification
errors, as well as in the degree of SSD among the variables and skeletal elements other
than the pelvis. Moreover, the level of activity and the population affinity are recognizable
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factors that influence the expression and pattern of sexual dimorphism [4]. Individuals on
the extreme ends of phenotypic expression exhibit—on average—variable overall body size,
producing an even larger amount of overlap between sexes [4], leading to a lower frequency
of correctly classified individuals around the traditional dichotomizing point [10,16].

Several researchers investigated the pelvic and extra pelvic bones and tried to increase
their accuracy by moving the posterior probability threshold for sex diagnosis up to 0.95,
which resembles a magnitude of certitude that the given individual belongs to the given
class [3,9,12,15–18]. For results based on good statistical evidence, they identified an
indeterminate sex interval in which the posterior probability for male and female diagnosis
overlaps. Applying such strict fixed criteria in practice does not guarantee that all models
will reach this particular level of accuracy [11] due to the unavailability of analyzable
skeletal specimens recognized for their high performance, i.e., pelvis. Consequently, some
classification models may be significantly constrained due to their insufficient accuracy
levels and/or the limited number of features in the classified specimens [3,9,12,13,15–18].

The selection of a posterior probability threshold slightly lower than 0.95 may be
beneficial as proposed by several authors. Different studies have proposed that it must
not be below 0.75 [8] or 0.80 [7,10,16,19]. The authors of these studies concluded that
the threshold value to allocate sex should be cautiously tuned considering the posterior
probability distributions and misclassification rates at each probability threshold. If the
estimated posterior probabilities of individuals fall below these limits (i.e., <0.8 pp to
>0.5), the threshold should be higher than this interval to maintain reasonable allocation
accuracy [7]. In the case of higher posterior probabilities, the threshold might be lowered
to increase the proportion of classified individuals without reducing the overall accuracy
rate, albeit with unspecified error rates [7,8,25].

Jerković et al. [11,25] proposed the adjusted binary classification (ABC) method to
investigate the individual posterior probability using any quantitative skeletal traits at
which a particular (in presented cases 95%) level of global accuracy of sex estimates is
achieved. This was accomplished by an algorithm written in the programming language R
that excludes those individuals whose measurement values and/or prediction scores would
classify them incorrectly (as the opposite sex). The results of their study also implied that the
interval of undetermined individuals could be adjusted, such that the model could estimate
the sex of a larger proportion of given specimens than a priori raising posterior probability
levels to a fixed threshold while minimizing fluctuations in the model’s performance [11].

In this work, we are motivated by three related goals considered in the evaluation
of statistical modeling and machine learning (ML) algorithms using the ABC approach:
(1) comparing the predictive performance of different yet commonly used models at the
traditional decision threshold and ABC-selected thresholds, (2) investigating the possibility
of increasing their classification performance through the selection of the optimal sexing
model and detection of the stability of performance after applying the ABC method on the
holdout sample, and (3) identifying the ML algorithm that is best-suited for small training
datasets. The outcomes of interest used to evaluate the possibilities and restrictions of
the algorithms were the proportion of classified individuals (number of cases legible to
classification) and each one’s overall accuracy, as well as cross-validated training data and
test samples for each group.

2. Materials and Methods
2.1. Dataset

The data for the study comprised previously collected linear femoral measurements
of a modern Turkish population [26], originating from 300 individuals (150 males and
150 females) with a mean age of 51 (58.01 ± 14.89 for males and 59.97 ± 13.85 for females).
The measurements from the dataset were obtained from medical computed tomography
(CT) scans of patients. Femora from images were reconstructed using the 3D Volume Ren-
dering Technique (3D VRT) in OsiriX (v.5.6., Pixmeo, Geneva, Switzerland), and 13 femoral
measurements were taken. The dataset [26] consisted of the following measurements:
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femur maximum length (FML) [23], femur bicondylar length (FBL) [24], femur trochanteric
length (FTL) [24], vertical head diameter (VHD) [24], medio-lateral (transverse) midshaft
diameter (MTD) [24], femur vertical diameter of neck (FVDN) [27], femur proximal breadth
(FBP) [24], medio-lateral (transverse) subtrochanteric diameter (MLD) [24], epicondylar
breadth (EB) [24], femoral bicondylar breadth (FBCB) [28], antero-posterior diameter of lat-
eral condyle (APDLC) [24], and antero-posterior diameter of medial condyle (APDMC) [24].
The dataset did not specify the analyzed side.

2.2. Data Splitting

The initial sample (n = 300) was randomly split into a training and a testing subset
with an equal proportion of male and female individuals. Accordingly, 80% of these data
(n = 240) were assigned to the training set (120 males and 120 females), while the other 20%
(n = 60) were assigned to the testing set (30 males and 30 females).

2.3. Validation Method

The discriminatory power of each variable and multivariable model was evaluated
by cross-validation tests. We used the leave-group-out or Monte Carlo cross-validation
algorithm (LGOCV or MCOCV). In this procedure, the initial training sample is randomly
split into n calibration and validation subsamples. The calibration set is used for model
development, while the validation sample is used to test the model’s performance on data
that were not used to develop the model [29]. We used 70% of the data for the calibration set,
while 30% were used for validation. This procedure was iterated 50 times for each model,
and classification performance metrics were calculated as the average of all iterations. This
cross-validation technique was selected because it tends to produce estimates of the error
rate with smaller variance than the leave-one-out methodology [30].

2.4. Statistical Analysis, Modeling, and Visualization

Statistical analyses, modeling, and visualization were performed in R statistical soft-
ware version 3.6.2 and RStudio version 1.2.1335 [31,32] with packages caret, dplyr, ggpubr,
lattice, MachineShop, mlbench, overlapping, patchwork, and tidyverse [31–40]. All statisti-
cal analyses were conducted with the significance level set at p ≤ 0.05.

2.4.1. Sexual Dimorphism

We calculated basic descriptive statistical parameters for all variables for males and fe-
males, including the mean, standard deviation, and range. To examine sexual dimorphism,
we used an independent-sample t-test. In the last step, we estimated the overlap between
male and female measurements through the overlap in their kernel density estimates.
The overlap was expressed using an index that indicates the percentage overlap between
estimated kernel densities [38].

2.4.2. Feature Selection
Univariate Feature Selection

From 13 variables, we selected the five best variables by ranking the features according
to their importance using the varImp function on a cross-validated dataset. The variable
importance was assessed by a receiver operating characteristic (ROC) curve analysis that
was conducted for each predictor. In this procedure, different cutoffs were used to classify
specimens into a group using the selected variable. In the next step, the algorithm estimates
the sensitivity and specificity for each cutoff and computes the area under the ROC curve
using the trapezoidal rule [31,41].

Multivariate Feature Selection

We selected the optimal set of features for the multivariate models on cross-validated
data using the recursive feature elimination (RFE) algorithm from the mlbench package [37].
The RFE algorithm recursively removes the predictors and constructs classification mod-
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els using the remaining variables. By considering classification accuracy, the algorithm
estimates the optimal number of variables and the set of variables that most contribute
to the classification [40,41]. In the present study, RFE was conducted for each classifier,
considering all 13 variables and their combinations.

2.4.3. Fitting the Classification Models

We developed univariate sex classification models for five variables that showed the
greatest importance according to ROC curve analysis and one multivariate model that
included variables selected by the RFE algorithm. To develop models, we employed the
train function inside the caret package and selected the methods from a list of available
models. LGOCV was incorporated with the trainControl function [31]. We generated
posterior probabilities of class membership for each model, for both cross-validated and
test datasets. In the present study, we used four linear classification techniques: logistic
regression (LR), linear discriminant analysis (LDA), boosted generalized linear model
(GLMB), and support vector machine with a linear kernel (SVM). LR and LDA were selected
as they are the most common algorithms for sex/ancestry classification in biological and
forensic anthropology [4,8,9], while SVM was chosen due to it being a broadly used ML
model that also proved to be efficient in osteometric sex classification [42,43]. GLMB
was employed as an adopted technique for increasing the accuracy of standard linear
models [44].

Logistic Regression

Logistic regression examines the relationship of predictive variables with a binary
outcome. It develops a linear model that predicts a transformation of the outcome variable—
the logit function. The logit function, which is the natural log of the odds that a specimen
belongs to one of the classes, is then used to calculate the posterior probability that the
specimen belongs to the first or second class. Classification is usually conducted by assigning
a specimen to a group with the highest probability [9,45]. We used the glm method (family
= binomial) with no tuning parameters to develop the LR model.

Linear Discriminant Analysis

Linear discriminant analysis explores a linear combination of variables and creates a
discriminant function that can discriminate mutually exclusive groups [46,47]. Although the
LDA is today mainly considered a dimensionality reduction technique, it works efficiently
as a linear classifier [47]. In the latter case, LDA uses a discriminant function score and
classifies specimens into the group whose centroid is the closest to the score [46,47]. Posterior
probabilities are calculated by the Bayes theorem. We used the LDA method for classification
from package MASS (with no tuning parameters) to develop the LDA model [48].

Boosted Generalized Linear Model

The boosted generalized linear model is an adapted standard linear model designed
to reduce bias using a boosting algorithm. This modeling technique trains data using the
best turning parameter (mstop) in the validation sample and conducts variable selection.
If early stopping is used, the effects can be shrunken toward zero. For each boosting
iteration, the algorithm fits linear models for each column of the design matrix to the
negative gradient vector utilizing the only best-fitting model in the update step [49–51]. To
develop the GLMB model, we used the glmboost method for classification or regression
using packages plyr and mboost with tuning parameters (number of boosting iterations
and pruning). Class posterior probabilities were calculated by minimizing the negative
binomial log-likelihood [51]. We used default settings for tuning, with no pruning, and the
number of boosting iterations (mstop) was set at 50, 100, and 150.
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Support Vector Machine with Linear Kernel

Support vector machine is also a method from the family generalized linear models
for prediction and classification using a linear combination of variables [52]. In the case
of classification, this algorithm searches for a hyperplane that best separates two classes
by considering the “sum of the distances from the hyperplane to the closest positive
and negative correctly classified samples” [46]. If the hyperplane can be located in the
original data instead of higher-dimensional space, we implement an SVM with a linear
kernel [52]. To develop the SVM model, we used the method svmLinear that performs
classification or regression using package kernlab with tuning parameters (cost, C). The
posterior probabilities were obtained using the modified Platt’s method [9,53,54]. We used
default settings for tuning, with parameter “C” held constant at a value of 1.

2.4.4. Classification Performance Metrics

In binary classification, there are only two classes, which are usually referred to as
positive and negative [2,6,14]. This allows for two cases of misclassification: false negative
(predicting negative when the actual class is positive) and false positive (predicting positive
when the actual class is negative), and both are of equal importance when dealing with
forensic contexts [2,13,14]. To evaluate classification models, we constructed confusion
matrices and calculated the number of true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN). The male sex was marked as positive (P), while the female
sex was labeled as a negative class (N). Using these parameters, we calculated the basic
evaluation metrics in a cross-validated and testing set: accuracy, sensitivity, specificity,
positive predicted value (PPV), and negative predicted value (NPV).

Additionally, we calculated the concordance index or c-index, which measures the
discriminatory power of the model [55]. This score shows whether the model will provide a
higher probability for the actual group in which a specimen belongs, among the randomly
chosen pair of specimens, one belonging to the first and one to the second group. The
values of the c-index range from 0.5 to 1, where a lower value indicates a model with no
discriminatory ability, and the highest value shows perfect discrimination [15,16]. For each
classification model, we also calculated the overlap degree between posterior probabilities
of male and female specimens, with the same approach described in Section 2.4.1.

2.4.5. Adjusted Binary Classification (ABC) Algorithm

The adjusted binary classification algorithm was conducted to find posterior proba-
bility cutoffs that exclude specimens in the overlapping area and provide a classification
accuracy, PPV, and NPV of at least 95% [25]. Using the R-code based on the algorithm
from the study by Jerković et al. (2021), we calculated posterior probability thresholds for
each classification model in the cross-validated dataset and computed the proportion of
the specimens that the model could classify [25]. We used developed thresholds to classify
the sex of specimens in the testing dataset, and we calculated the proportion of classifiable
specimens and the classification metrics.

2.5. Assessing the Sample Size Effect

To examine the influence of the training set size on the classification performance in
the independent (test) sample, we randomly generated different sample sizes and used
them to develop classification models. The sample size conditions specified in this study
included 19 samples, ranging from 10% (n = 24) to 100% (n = 240) of the original training
sample, with an increment of 5%. For each sample size and classifier, we used the RFE
algorithm to obtain the optimal number and combination of variables.

3. Results
3.1. Sexual Dimorphism

Table 1 presents the descriptive statistics for each metric variable, overlap index, and
t-test results in the training dataset (n = 240). Statistically significant differences were
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found between males and females in all variables (p < 0.001). The overlap index was
highest for the diaphyseal width measurements MTD and MLD, moderate for the length
measurements FML, FBL, and FTL, and low for the epiphyseal measurements. The most
sexually dimorphic variable was FEB, followed by VHD, FVDN, and FNAL.

Table 1. Descriptive statistics with t-test results and overlapping percentages in the training sample.

Variables
Males (n = 120) Females (n = 120) t-Test Overlapping

Mean ± SD (mm) Range (mm) Mean ± SD (mm) Range (mm) t p (%)

FML 443.78 ± 25.59 384.70–502.30 406.51 ± 21.20 359.24–453.13 12.289 <0.001 * 27.34
FBL 441.23 ± 25.76 382.12–501.03 404.73 ± 21.92 358.61–453.17 11.821 <0.001 * 28.52
FTL 425.65± 23.77 371.24–477.58 391.19 ± 21.05 342.70–439.45 11.890 <0.001 * 26.55

MTD 29.33 ± 2.20 22–34.14 28.09 ± 2.37 21.88–37.10 4.205 <0.001 * 63.39
VHD 49.19 ± 3.02 38.89–55.77 43.19 ± 2.89 36.48–50.84 15.715 <0.001 * 19.57

FVDN 36.75 ± 2.69 27.85–43.25 31.98 ± 2.24 25.77–37.47 14.916 <0.001 * 17.56
FNAL 102.20 ± 6.27 87.23–122.38 91.14 ± 5.36 79.92–103.27 14.682 <0.001 * 22.51

FBP 91.28 ± 5.88 71.49–108.42 81.61 ± 5.08 72.06–94.30 17.908 <0.001 * 23.00
MLD 32.95 ± 2.44 26.32–39.51 31.07 ± 2.24 26.16–37.41 6.231 <0.001 * 45.78
FBCB 74.71 ± 4.31 65.10–89.03 66.61 ± 4.19 58.78–76.38 14.777 <0.001 * 23.70
FEB 85.72 ± 4.42 76.46–98.06 76.70 ± 3.58 67.86–89.58 17.908 <0.001 * 17.15

APDLC 64.23 ± 3.67 53.58–73.84 58.32 ± 3.22 51.38–67.91 13.267 <0.001 * 23.82
APDMC 63.54 ± 3.70 53.97–73.21 57.79 ± 3.54 49.84–67.40 12.304 <0.001 * 28.69

* p < 0.05 was considered significant.

3.2. Classification Performances for Traditional pp Cutoff (0.5) in LGOCV Sample

Table 2 depicts the average values of the overall accuracies, sensitivity, specificity, PPV,
and NPV derived from the cross-validation analysis (LGOCV) for the LR, LDA, GLMB,
and SVM models using the 0.5 posterior probability cutoff. The performance of the four
modeling techniques was consistently comparable with differences in the overall accuracy
rate by the decimal points. For the univariate models, FVND yielded the highest overall
accuracies between 86.33% and 86.50%. FEB and VHD achieved accuracies between 84.36%
and 84.89%, FBCB achieved accuracies between 83% and 83.94%, and FNAL achieved
accuracies between 82.19% and 82.25%. The multivariate models yielded the highest
accuracies (89.17–90.08%).

None of the models reached 95% global accuracy or 95% PPV and NPV. According to
the C-index, the discriminant power of the classifiers was perfect (greater than 0.90) for
all the variables and classifiers. The variables selected as the best predictors for the four
classification methods are presented in the footnote of Table 2.

3.3. Application of the ABC Approach in the Training Sample

Table 3 shows the posterior probability cutoff values for males and females computed
with the ABC algorithm to classify sex with the PPV/NPV ≥95% criteria. In univariate
models, these values ranged from 0.625 to 0.930 (for the FEB and FBCB) in males and from
0.806 to 0.999 (for FBCB and FVND) in females, allowing us to overall classify between
28% and 87% of individuals. In the multivariate models, pp thresholds were remarkably
lower and ranged from 0.639 to 0.734 (for the GLMB and LR) in males and from 0.778 to
0.867 (for LR and LDA) in females. The proportion of classifiable individuals increased to
81.94–85.58% with a small sexing bias between 0.7% for LR and 7.9% for GLMB.

The accuracy was above 95% independent of the considered variables and ML algo-
rithm, but the female classification accuracy (specificity) showed more variability across
the different femoral measurements and algorithms (Table 3). In contrast to univariate
models, all multivariate models achieved stable classification results (around 95%) for PPV
and NPV, as well as for sensitivity and specificity. Close-to-perfect c-index values (ranging
between 0.975 to 0.985) were observed for all models across all studied variables in the
simple and multiple variable equations, except for the VHD and FVND.
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Table 2. LGOCV classification results without employing the ABC approach in the training sample.

Variables Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) c-Index

Logistic regression
FEB 84.44 85.89 83 83.48 85.47 0.944

VHD 84.36 85.06 83.67 83.89 84.85 0.920
FVDN 86.33 85.44 87.22 86.99 85.70 0.914
FBCB 83 81.22 84.78 84.22 81.87 0.904
FNAL 82.25 83.17 81.33 81.67 82.85 0.903
LR1 90.08 87.67 92.50 92.12 88.24 0.968

Discriminant analysis
FEB 84.89 85.28 84.50 84.62 85.16 0.944

VHD 84.72 86.44 83 83.57 85.96 0.920
FVDN 86.42 85.44 87.39 87.14 85.72 0.915
FBCB 83.06 81 85.11 84.47 81.75 0.905
FNAL 82.19 81.78 82.61 82.46 81.93 0.904
DF1 89.58 86.22 92.94 82.44 87.09 0.959

Boosted glm
FEB 84.89 85.28 84.50 84.62 85.16 0.945

VHD 84.69 86.64 82.94 83.52 85.95 0.920
FVDN 86.42 85.44 87.39 87.14 85.72 0.914
FBCB 83.94 82.89 85 84.68 83.24 0.906
FNAL 82.19 81.78 82.61 82.46 81.93 0.904

GLMB1 89.17 86 92.33 91.81 86.83 0.961
SVM linear

FEB 84.50 85.83 83.17 83.60 85.45 0.944
VHD 84.42 85.28 83.56 83.83 85.02 0.919

FVDN 86.50 85.61 87.39 87.16 85.86 0.914
FBCB 83.06 81.33 84.78 84.23 81.95 0.904
FNAL 82.22 83.17 81.28 81.62 82.84 0.904
SVM1 89.78 88 91.56 91.24 88.41 0.958

Multivariate feature selection: LR: FVDN + FEB + FNAL + MLD; LDA: FEB + VHD + FVDN + FBCB + FNAL;
boosted GLM: FEB + FVDN + VHD + MLD + MTD + FNAL + FBCB + APDLC + FML + FBP + APDMC; SVM:
FEB + VHD + FVDN + FBCB + FNAL.

Table 3. LGOCV classification results with ABC adjustment in the training sample.

Variables

Posterior
Probability Cutoff % of Classified Cases

Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) c-Index
Males Females Males Females Overall

Logistic regression
FEB 0.691 0.883 82.05 65.94 71.94 95.08 96.14 93.77 95.05 95.13 0.978

VHD 0.741 0.994 68.28 9.50 38.89 95.21 99.76 62.57 95.04 97.27 0.898
FVDN 0.837 0.999 55.83 3 28 95.09 100 3.70 95 100 0.872
FBCB 0.930 0.854 33.78 51.56 42.58 95.17 92.40 96.98 95.23 95.14 0.984
FNAL 0.832 0.866 48.50 53.44 50.97 95.03 94.50 95.52 95.05 95.02 0.981
LR1 0.734 0.778 86.94 86.22 86.58 95.03 95.08 94.97 95.02 95.04 0.980

Discriminant analysis
FEB 0.669 0.899 82.5 67.89 75.18 95.05 96.03 93.86 95.00 95.11 0.977

VHD 0.794 0.991 68.61 11.78 40.19 95.09 99.43 69.81 95.05 95.48 0.920
FVDN 0.838 0.999 56.28 3 29.64 95.13 100 3.70 95.11 100 0.894
FBCB 0.928 0.854 34.17 52.22 43.19 95.31 92.36 97.23 95.62 95.11 0.984
FNAL 0.880 0.870 48.72 53.89 51.31 95.13 94.53 95.67 95.18 95.08 0.981
DF1 0.726 0.867 84.39 79.94 82.17 95.03 95.33 94.72 95.01 95.05 0.977

Boosted glm
FEB 0.625 0.830 82.39 67.83 75.11 95.04 95.95 93.93 95.06 95.02 0.978

VHD 0.705 0.975 68.67 12.67 40.67 95.22 99.51 71.93 95.05 96.47 0.926
FVDN 0.794 0.993 56.5 4.11 30.31 95.14 100 28.38 95.05 100 0.918
FBCB 0.885 0.806 39.11 53.50 46.31 95.20 93.32 96.57 95.22 95.19 0.985
FNAL 0.848 0.839 48.44 52.44 50.44 95.15 94.84 95.44 95.06 95.24 0.982

BGLM1 0.639 0.815 85.89 78 81.94 95.05 95.54 94.52 95.05 95.06 0.979
SVM linear

FEB 0.672 0.864 81.89 66.06 73.97 95.08 96.07 93.86 95.10 95.06 0.977
VHD 0.723 0.990 68.22 10.06 39.14 95.03 99.51 64.64 95.02 95.12 0.908

FVDN 0.830 0.998 54.33 2.94 28.64 95.34 100 9 95.32 100 0.903
FBCB 0.915 0.839 34.22 52.17 43.19 95.11 92.37 96.91 95.15 95.09 0.983
FNAL 0.871 0.849 48.78 52.39 50.58 95.17 94.76 95.55 95.19 95.14 0.981
SVM1 0.719 0.783 82.55 78.78 80.67 95.04 95.29 94.78 95.03 95.05 0.975

The classifiers produced different subsets of best predictors in terms of the number
and type, but three features were common to all the selected attribute sets (FVDN, FEB,
and FNAL). LR led to accurate results with much fewer variables than the other three
models with greater group separation, i.e., more individuals were classified closer to 0
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and 1 probabilities. Both LDA and SVM produced the same subset of features. The GLMB
algorithm showed the highest discriminatory performance in the training data for the
univariate models after applying the ABC approach. More detailed performance indicators
analyzed by the posterior probabilities are shown in Supplementary Figure S1.

3.4. Model Performance in the Testing Sample

Table 4 reveals that all models produced stable comparable results in the test sample.
All the algorithms demonstrated outstanding performance for this dataset using the c-index.
For the multivariate model, LDA and SVM had the highest values with near-perfect c-index
values of 0.990 and 0.991, respectively.

Table 4. Classification results in the testing sample with ABC adjustment (n = 60).

Variables
% of Classified Cases

Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) c-Index
Males Females Overall

Logistic regression
FEB 80 83.33 81.67 91.84 95.83 88.00 88.46 95.65 0.987

VHD 63.33 13.33 38.33 100 100 100 100 100 1
FVDN 60 0 30 100 100 / / / /
FBCB 40 53.33 46.67 96.43 91.67 100 100 94.12 0.953
FNAL 36.66 66.67 53 100 100 100 100 100 1
LR1 90 90 90 98.15 96.30 100 100 96.43 0.989

Discriminant analysis
FEB 80 83.33 81.67 91.84 95.83 88.00 88.46 95.65 0.987

VHD 66.33 13.33 38.33 100 100 100 100 100 1
FVDN 60 0 30 100 100 / / / /
FBCB 40 53.33 46.67 96.43 91.67 100 100 94.12 0.953
FNAL 40 66.67 53.33 100 100 100 100 100 1
DF1 86.67 93.33 90 98.15 96.15 100 100 96.55 0.990

Boosted glm
FEB 80 83.33 81.67 91.84 95.83 88 88.46 95.65 0.987

VHD 63.33 13.33 38.33 100 100 100 100 100 1
FVDN 63.33 0 31.67 100 100 / / / /
FBCB 40 60 50 96.67 91.67 100 100 94.74 0.951
FNAL 40 66.67 53.33 100 100 100 100 100 1

BGLM1 90 90 90 98.15 96.30 100 100 96.43 0.989
SVM Linear

FEB 80 83.33 81.67 91.84 95.83 88 88.46 95.65 0.987
VHD 63.33 13.33 38.33 100 100 100 100 100 1

FVDN 60 0 30 100 100 / / / /
FBCB 40 53.33 46.67 96.43 91.67 100 100 94.12 0.953
FNAL 43.33 66.67 55 96.67 92.31 100 100 95.24 1
SVM1 90 93.33 91.67 98.18 96.30 100 100 96.55 0.991

The PPVs and NPVs peaked above 95% in almost all models, but the FBCB was
just below this level. The number of individuals classified by all the univariate models
was identical in all variables except for VHD in LDA, FVND in GLMB, and FNAL in
LR and SVM. The proportion of classified individuals ranged from 36.66% to 90% in
males and 0% to 93.33% in females. The highest proportion of classified individuals in
both sexes was obtained using the multivariate function. In terms of model performance
judged from the proportion of classified individuals, GLMB and SVM ranked the highest
amongst the classifiers tested. The differences added by SVM were trivial in comparison
to GLMB with regard to the other performance metrics. For example, SVM increased the
proportion of classified males using the FNAL model by only 3.33%, corresponding to
the only misclassified male as female, but this reduced the sensitivity and NPV to 92.3%
and 95.24%, respectively. On the basis of the performance parameters mentioned above,
the best classifier was GLMB, and the best single variable was FNAL (proximal end of
the femur) followed by FBCB (distal end of the femur), as well as the multivariate model,
which included a different set of variables according to the type of classifier. Case-wise
classification results are visible in Supplementary Figure S2.
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3.5. Sample Size Effect

Figure 1 demonstrates a moderate to high correlation (0.489 to 0.708) of the endpoint
parameters (the pp level and the number of classifiable individuals) with the sample size.
A negative correlation between the pp thresholds and the sample size was observed only in
LR, meaning that increasing the sample size was associated with lowering the pp thresholds
and increasing the number of classifiable individuals. Selecting a pp threshold was not
shown to be dependent upon the sample size for LDA and SVM, but increasing the sample
size was positively correlated with the number of classifiable individuals in the female
group and, subsequently, the overall sample. GLMB was the only classier that showed
stability in the number of classifiable females regardless of the sample size.
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Figure 1. Correlation plot between the sample size and its effect on pp cutoff values and the
percentage of classified males and females, as well as the overall classified individuals. Correlation
coefficients are shown for statically significant values only at p < 0.05.

Figure 2 presents the proportion of classified individuals in the test sample when
models were constructed using different training sample sizes. The impact of going from
small to larger sample sizes was the greatest on LR for both sex groups. For other classifiers,
the male group was the most affected, particularly with sample sizes of 96 and 84. Under a
small sample size (n < 100), LR performed worse than LDA at 20% to 30% of the training
sample (i.e., n = 48, 60, and 72, respectively). SVM and GLMB had comparable results
for the classifiable proportions (males, females, and overall), but SVM performed slightly
worse when the sample size was >100. Even though the LR performed worse than the
other algorithms with small datasets, as the number of cases increased to >150, LR showed
a substantial performance improvement.
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Figure 2. Influence of the training sample size on the proportion of classified specimens in the testing
sample. Several sample sizes of the training dataset are plotted against the proportion of classified
individuals (overall and sex specific rates) in the test dataset (n = 60) using different ML models; each
algorithm has its own panel.

In Figure 3, we can observe a fluctuation in the average performance parameters of
the various models as a function of sample size, particularly the LR model. The impact of
sample size was consistent across the LDA and SVM models. The overall classification error
was 10% to 100% for models with fewer than 100 specimens. It decreased to ~2% and 5%
as the sample size increased to or above 150, with a sharp rise in the total and sex-specific
number of classified individuals and stabilized performance measures (above 95%). The
negligible differences were observed between the models when the sample size increased
above 150. A sample size between 100 and 150 data points or more was convenient to reach
the required level of PPV and NPV for the tested models.

While the proportion of classified individuals increased, PPVs and NPVs showed more
considerable variations, but all above the 95% cutoff limit. The exception occurred for SVM
in 80% and 90% of the training sample (n = 192 and 216), where the accuracy, sensitivity, and
NPV were <95%, although SVM achieved the highest rate of classifiable individuals at 80%
of the training size. PPVs and NPVs for SVM reached 95% at a sample size of 10% to 15%,
i.e., below 50 data points; however, beyond this threshold, PPV again decreased to 92%. A
decrease in both NPV and total accuracy was evident in SVM due to the lowest sensitivity
rates obtained with these sample sizes. Both GLMB and LDA provided similar accuracy
rates under varying sample sizes. GLMB slightly outperformed LDA overall, notably in
examples with sample sizes <100 (Figure 3). GLMB was superior to other algorithms for
any volume of training data. Its accuracy started at 95% for 10% of the data and peaked
at above 98% when the training data increased to the whole training dataset. None of
the learning models other than GLMB could achieve acceptable results when using 35%
of the dataset (n = 84), and they could not classify any of the males in the test sample.
Supplementary Material, Spreadsheet demonstrates the performance indicators at each
sample size of the training data using the different classification techniques.
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4. Discussion

The presented results showed that the ABC approach is a reliable procedure to estimate
sex using femoral measurements in the analyzed population sample with a very high
accuracy level, PPV, and NPV (>95%). The overall classification models’ performance
was generally not dependent on the type of the ML algorithm applied when the full
training sample size was employed. Sex bias was noted in the proportion of classified
specimens, as well as in the classification performances in univariate models. When we
applied multivariate models, the named bias was minimized, and sex could be estimated
in more than 80% of individuals in cross-validation and 90% in the testing sample, with
accuracy greater than 95%. The results demonstrate that performance using different
machine learning methods within the ABC framework can be differently affected by the
size of the training sample, which should be considered when developing osteometric sex
classification standards. Forensic anthropologists could, therefore, apply the ABC method
to construct sex estimation standards when the level of accuracy obtained by traditional
thresholding is not sufficiently high for classification in forensic settings.

4.1. Sex Estimation Using the Default Cutoff Threshold of 0.5

All 13 femoral variables showed pronounced and statistically significant sexual di-
morphism with more marked expression in joint surfaces than the shaft measurements,
which is also a common observation in similar studies [10–12,14,15]. From these initial set
of 13 variables selected, only five features were included in the univariate trait analysis due
to their consistently high sexual dimorphism indicators, as demonstrated by the ROC curve.
These variables showed a degree of accuracy in the CV sample of 82.3–87.4% for univariate
and 91.6–92.9% for multivariate models. None of them met the accuracy criteria set by
the present study (95%), which was the case in the most previous studies that achieved
accuracies between 60% to 87.5% in the univariate models and from 84% to 92.5% in the
multivariate models [10–14,26], even after employing ML methods [13,14].

The current study detected almost no or only slight differences (from 0.06% to 0.94%)
between the ML classifiers (LR, LDA, GLMB, and SVM) when the total training sample with
an equal sex ratio was analyzed at the 0.5 decision threshold. Similar findings were also
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noted previously by several studies [14,42,43]. For example, Curate et al. [14] did not detect
significant differences in accuracy when estimating sex using femora with four classifiers LR,
LDA, SVM, and reduced error pruning tree. Toneva et al. [43] showed a similar performance
in sex estimation on cranial measurements when using LR and SVM, while Nikita and
Nikitas [42] also confirmed that both LDA and SVM linear algorithms could be considered
efficient when dealing with sex/ancestry classification using continuous variables.

4.2. Sex Estimation Using ABC Approach

We used the posterior probability scale with two different classification rules—one
for each sex that accounts for the “zone of uncertainty” in each variable. From the initial
accuracy rates that did not exceed 87% for univariate and 90% for multivariate models,
we managed to raise accuracies to 95% or higher by applying the ABC algorithm. Such
accuracy was achieved by all models in the CV sample, while only one univariate model
(FEB) failed to meet that level. Losses in terms of the overall proportion of specimens
left “indeterminate” ranges for univariate models between 24.8% and 72% in CV and
18.3% and 70% in testing sample. They were remarkably lower in the multivariate models
and ranged from 13.4% and 19.3% in CV and 8.3% and 10% in the testing dataset. The
variations in applied ML classifiers in the training and test samples were also minor, in
terms of both the classification performance and the proportion of classified specimens. The
overall results concurred with the original proposal of the ABC method, whereby, using
LDA to classify sex from handprint measurements, the authors obtained a proportion of
unclassified specimens of 23–71% for univariate and 12–13% for multivariate models with
accuracies above 95% [25]. In contrast to the examined ABC approach, other studies that
raised the pp thresholds (0.80, 0.90, and 0.95) to embrace the concept of the trichotomic
approach left a large number of individuals unclassified [3,9,12,15,18,25].

The unclassified individuals in test samples of univariate and multivariate models
ranged between 53.5–85.7% and 39.1–50.9% for the humerus [15], between 60.3–83.3%
and 37.3–66.7% for the femur [12], and between 70% and 93% for the multivariate cranial
models [9] at pp > 0.95 depending on the available skeletal element, the type and number
of variables in the models, and the population sample under study.

4.3. The Training Sample Size Effect on the Performance of Multivariable Models

The number of observations in the training set and the classification rates were corre-
lated, agreeing with the understanding that the models’ generalizability improves with the
feeding of more data points [56,57]. Unlike the almost equal performance of different ML
classifiers in the full training sample size, remarkable differences were observed when we
simulated different sample sizes of the training datasets to generate multivariate models.
The most robust model for limited metric data was GLMB, followed by LDA and then
SVM, while the least robust model was LR. In cases of a small training sample size, the
calculated pp for both males and females was very high, approximately 1.0 (Supplemental
Materials, Spreadsheet of the performance indicators at each sample size of the training
data using the different classification techniques).

Our findings suggest that LR may not be the best method for developing sex classifica-
tion standards with limited sample sizes, and that LDA could be a more robust classifier
with small samples, in agreement with the findings of previous studies [58,59]. The perfor-
mance of LR can be explained by its parameters calculated using the iterative maximum
likelihood estimation (MLE), which requires a large sample size to obtain estimates. The
performance instability of the LR with small sample sizes can be attributed to the absence
of MLE of one or more coefficients of the explanatory variables which take values of plus or
minus infinity, because of the “separation effect” associated with sampling artefacts, as well
as the severely unequal rates of classifiable cases after applying the ABC approach [60].

Therefore, the study did not find elements to support the suggestions of Bartholdy
et al. [16] who recommended the use of LR over LDA due to less stringent model assump-
tions and the potential to provide probabilities instead of dichotomous results. Moreover,
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LR and LDA methods only differ in the way they estimate the coefficients, but the same
formula can be used to derive the pp for both LR and LDA models when the values of
α (constant) and β (coefficient) are known [18,59]. With regard to the other ML methods,
the complexity underlying their computation hinder the application of this formula [42].
The core design of the current study differed from that presented by Bartholdy et al. [16]
in several experimental factors such as (1) the stratification of sample size from the small
to the moderately large sample, (2) the higher number of features analyzed, and (3) the
proportion of classified individuals recorded and compared at different cutoffs on the
probability scale. Although their results indicated that both classifiers produced consistent
accuracies, they concluded that LR is better than LDA and supported their conclusions
with studies based on different data types (i.e., nonmetric morphological data with ordinal
scores) which often violate the normal distribution assumption.

Among nonstandard algorithms, GLMB showed the most stable performance, almost
independently of the sample size and when there were more variables than observations.
This observation was also described by Tutz and Binder [44]. Considering GLMB’s sim-
plicity and performance, the traditional LDA does not rank much lower than GLMB and
SVM [42]. SVM could be a practical ML alternative to LDA when an adequate sample size
is available because the SVM method requires tuning of a single hyperparameter [13,42].
These results imply that the ABC approach could also be applicable with a relatively
small sample size training set, which could be helpful not only in forensics, but also in
bioarcheological contexts.

4.4. Study Limitations and Future Directions

Although the ABC approach showed overall excellent performance in the presented
osteometric sex estimation case, we consider several shortfalls. When there are substantial
differences between the posterior probability distributions in the training and testing
datasets, the method’s performance can be hampered despite fulfilling the equal prior
assumptions in both datasets [21]. This can be illustrated with the case of SVM at the
sample size (n = 192), where we achieved the highest number of classifiable individuals at
their calculated pp thresholds, but with accuracy, sensitivity, and NPV below 95% (see also
Supplementary Materials, Spreadsheet of the performance indicators at each sample size of
the training data using the different classification techniques).

Comparison of the magnitude of sexual dimorphism among skeletal traits or world-
wide populations has to consider possible differences in degrees of closeness to the opposite
sex distribution, either because of different distances between mean values or, even in
the case of equal distances, because of different extents to and densities of the intrasexual
variability [61]. The overall performance of classifiers on the unseen data depends on
the extent to which a test dataset represents the original distribution rather than its size
because the ML model is constructed to best describe the distribution and structure pattern
in the training data [57]. Differences in the probability distribution (covariate shift) [13,62]
between the training and test samples should also be considered because it may lead to de-
terioration of the model performance on the independent population sample as the model
is not pretrained on the degree of overlap between distributions of males and females in
the new test sample [13].

One of the potential drawbacks is that the ABC adjustment of pp thresholds for males
and females can be imbalanced in univariate models, leading to considerably different
rates of classifiable individuals per sex (low or high). If the classified groups are extremely
unequal in size, the misclassification rate for the smaller ones will be very high regardless
of the classification method. The PPVs and NPVs were, thus, lower in models with lower
classifiable instances rates and could increase more rapidly with increasing specificity
than with increasing sensitivity. A greater overlap between groups results in a larger
disparity in the pp thresholds with unequal rates of classifiable individuals, and a lower
PPV and NPV can be expected [9,18,63,64]. However, the most important finding is that
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those “imbalances” in the number of classifiable individuals can be almost ruled out by
considering multiple predictors [25].

We also consider that we employed the default tuning parameters because controversy
still prevails regarding the effects of different conditions of hyperparameter tuning on
classifier performance, as well as the different methods of variable selection [42]. The
“statistical opportunism” effect can lead to overfitting, which is problematic because the
same variables may not be selected uniformly by each classification technique and/or
sample size, even those with the strongest sexual dimorphism [9]. Previous studies with
different skeletal elements datasets (cranial and/or postcranial bones) did not agree on
the classifier that ranked best in all the classification applications such as sex and ancestry
estimation, e.g., the studies by Nikita and Nikitas [42] and Santos et al. [9]. Future research
should focus on the difference between the ML techniques in calculating the posterior
probabilities of data when there is an extreme subclass imbalance with different priors for
forensic and archeological applications.

Lastly, it should be emphasized that the application of the ML methods to CT images
by considering the manually taken linear measurements does not take full advantage of
available computation methods. For example, modern approaches employ deep learning
techniques and convolutional neural networks that can be adjusted to directly estimate sex
from images without taking measurements or placing landmarks [64,65]. Thus, principles
contained in the ABC approach can also be tested in more advanced contexts to additionally
improve classification accuracy when required.

5. Conclusions

Compared to the traditional classification approach using fixed pp thresholds, i.e., 0.5
and 0.95, the ABC achieves remarkably higher accuracy in a relatively large proportion
of classifiable individuals while adjusting the precision of the classification at a 95% level.
The ABC approach is an “uncertainty-aware framework”, allowing customized posterior
probability computations to find an acceptable classification performance across different
sample sizes while controlling for PPV and NPV, but not the sensitivity and specificity rates.

The results presented here reveal that, in sex classification, dataset size is not neces-
sarily an obstacle to compute a high-performing model since the average performance of
classifiers reached 100% on some small datasets and the generalizability of the model on
test data depended on accurate estimates of the moments of the training sample distri-
bution. We also studied the pp distribution of each variable, showing their effect on the
performance of different traits regardless of the model used.

The efficiency and reliability of the ABC approach for estimating sex were most
apparent when (1) the sample size was large enough with n > 100 (>150 for LR only),
(2) the variables were sexually dimorphic with minimal overlap between male and female
distributions, (3) the posterior probability cutoffs for each sex were approximately balanced,
and (4) the multivariate models were used to overcome the imbalances in the classifiable
proportions of individuals.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/biology11060917/s1: Spreadsheet of the performance indicators
at each sample size of the training data using the different classification techniques. Figure S1,
Comparison between the estimated posterior classification probability densities of the two sex groups
in the training set; Figure S2, Plot of the posterior probabilities (pp) values as a histogram in terms of
individual frequencies.
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11. Jerković, I.; Bašić, Ž.; And̄elinović, Š.; Kružić, I. Adjusting posterior probabilities to meet predefined accuracy criteria: A proposal
for a novel approach to osteometric sex estimation. Forensic Sci. Int. 2020, 311, 110273. [CrossRef]

12. Hussein, M.H.A.; Abulnoor, B.A.E.-S. Sex estimation of femur using simulated metapopulation database: A preliminary
investigation. Forensic Sci. Int. Rep. 2019, 1, 100009. [CrossRef]

13. Attia, M.H.; Attia, M.H.; Farghaly, Y.T.; Abulnoor, B.A.E.-S.; Curate, F. Performance of the supervised learning algorithms in sex
estimation of the proximal femur: A comparative study in contemporary Egyptian and Turkish samples. Sci. Justice 2022, 62, 288–309.
[CrossRef]

14. Curate, F.; Umbelino, C.; Perinha, A.; Nogueira, C.; Silva, A.M.; Cunha, E. Sex determination from the femur in Portuguese
populations with classical and machine-learning classifiers. J. Forensic Leg. Med. 2017, 52, 75–81. [CrossRef] [PubMed]

15. Attia, M.H.; Aboulnoor, B.A.E. Tailored logistic regression models for sex estimation of unknown individuals using the published
population data of the humeral epiphyses. Leg. Med. 2020, 45, 101708. [CrossRef] [PubMed]

16. Bartholdy, B.P.; Sandoval, E.; Hoogland, M.L.P.; Schrader, S.A. Getting Rid of Dichotomous Sex Estimations: Why Logistic
Regression Should be Preferred Over Discriminant Function Analysis. J. Forensic Sci. 2020, 65, 1685–1691. [CrossRef] [PubMed]

17. Papaioannou, V.A.; Kranioti, E.F.; Joveneaux, P.; Nathena, D.; Michalodimitrakis, M. Sexual dimorphism of the scapula and the
clavicle in a contemporary Greek population: Applications in forensic identification. Forensic Sci. Int. 2012, 217, 231.e1–231.e7.
[CrossRef] [PubMed]

18. Hora, M.; Sládek, V. Population specificity of sex estimation from vertebrae. Forensic Sci. Int. 2018, 291, 279.e1–279.e12. [CrossRef]
19. Navega, D.; Vicente, R.; Vieira, D.N.; Ross, A.H.; Cunha, E. Sex estimation from the tarsal bones in a Portuguese sample:

A machine learning approach. Int. J. Leg. Med. 2015, 129, 651–659. [CrossRef]
20. Konigsberg, L.W.; Frankenberg, S.R. Multivariate ordinal probit analysis in the skeletal assessment of sex. Am. J. Phys. Anthropol.

2019, 169, 385–387. [CrossRef]
21. Konigsberg, L.W.; Algee-Hewitt, B.F.; Steadman, D.W. Estimation and evidence in forensic anthropology: Sex and race. Am. J.

Phys. Anthropol. 2009, 139, 77–90. [CrossRef]

https://dspace.lib.cranfield.ac.uk/bitstream/handle/1826/12272/O%20Gulhan%20PhD.pdf?sequence=1
https://dspace.lib.cranfield.ac.uk/bitstream/handle/1826/12272/O%20Gulhan%20PhD.pdf?sequence=1
http://doi.org/10.1002/ajpa.23282
http://doi.org/10.1016/j.forsciint.2019.109873
http://www.ncbi.nlm.nih.gov/pubmed/31382223
http://doi.org/10.1002/(SICI)1099-1212(199901/02)9:1&lt;39::AID-OA458&gt;3.0.CO;2-V
http://doi.org/10.1111/1556-4029.14947
http://doi.org/10.1016/j.forsciint.2014.10.010
http://doi.org/10.1111/j.1556-4029.2011.01953.x
http://doi.org/10.1016/j.forsciint.2020.110273
http://doi.org/10.1016/j.fsir.2019.100009
http://doi.org/10.1016/j.scijus.2022.03.003
http://doi.org/10.1016/j.jflm.2017.08.011
http://www.ncbi.nlm.nih.gov/pubmed/28866285
http://doi.org/10.1016/j.legalmed.2020.101708
http://www.ncbi.nlm.nih.gov/pubmed/32334366
http://doi.org/10.1111/1556-4029.14482
http://www.ncbi.nlm.nih.gov/pubmed/32521059
http://doi.org/10.1016/j.forsciint.2011.11.010
http://www.ncbi.nlm.nih.gov/pubmed/22138028
http://doi.org/10.1016/j.forsciint.2018.08.015
http://doi.org/10.1007/s00414-014-1070-5
http://doi.org/10.1002/ajpa.23832
http://doi.org/10.1002/ajpa.20934


Biology 2022, 11, 917 17 of 18

22. Jantz, R.L.; Ousley, S.D. Sexual dimorphism variation in Fordisc samples. In Sex Estimation of the Human Skeleton; Klales, A.R., Ed.;
Elsevier: Amsterdam, The Netherlands, 2020; pp. 185–200.

23. Buikstra, J.E. Standards for Data Collection from Human Skeletal Remains: Proceedings of a Seminar at the Field Museum of Natural
History; Arkansas Archeological Survey: Fayetteville, AR, USA, 1994; p. 206.

24. Moore-Jansen, P.H.; Jantz, R.L. Data Collection Procedures for Forensic Skeletal Material; Forensic Anthropology Center, Department
of Anthropology, University of Tennessee: Knoxville, TN, USA, 1994.
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