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Abstract: There has been an escalation in reports over the last decade examining the efficacy of bone
marrow derived mesenchymal stem/stromal cells (BMSC) in bone tissue engineering and regenerative
medicine-based applications. The multipotent differentiation potential, myelosupportive capacity,
anti-inflammatory and immune-modulatory properties of BMSC underpins their versatile nature
as therapeutic agents. This review addresses the current limitations and challenges of exogenous
autologous and allogeneic BMSC based regenerative skeletal therapies in combination with bioactive
molecules, cellular derivatives, genetic manipulation, biocompatible hydrogels, solid and composite
scaffolds. The review highlights the current approaches and recent developments in utilizing
endogenous BMSC activation or exogenous BMSC for the repair of long bone and vertebrae fractures
due to osteoporosis or trauma. Current advances employing BMSC based therapies for bone
regeneration of craniofacial defects is also discussed. Moreover, this review discusses the latest
developments utilizing BMSC therapies in the preclinical and clinical settings, including the treatment
of bone related diseases such as Osteogenesis Imperfecta.

Keywords: bone marrow mesenchymal stem cells; bone marrow microenvironment; skeletal tissue
regeneration; tissue engineering; scaffolds; biomaterials

1. Therapeutic Potential of Bone Marrow Mesenchymal Stem Cells

Bone mineral is composed of inorganic (hydroxyapatite crystals) and organic components
(predominantly a collagen type 1 dependent extracellular matrix). The microenvironment within the
bone is also complex, consisting of multiple cell types. These include the stromal lineage, of osteogenic
(osteogenic progenitors, osteoblasts, bone lining cells and osteocytes), adipogenic and chondrogenic
derivatives, and the hematopoietic lineage of the erythroid, myeloid and lymphoid derivatives.
The microenvironment also consists of endothelial, perivascular, and neural populations that collectively
maintain skeletal integrity and assist in skeletal repair following injury. These cell types interact with
bone marrow mesenchymal stem/stromal cells (BMSC) to maintain mechanical strength and skeletal
integrity by continuously remodeling the skeleton throughout life [1–6]. The physiological process of
primary bone healing, where no callus is formed, consists of the initial inflammatory phase, followed
by the infiltration of monocytic derived pre-osteoclasts to the injury site. The pre-osteoclasts mature
forming multinucleated osteoclasts resorbing the bone matrix. This process is followed by the reversal
phase where BMSC and osteoprogenitors are sequestered, localize, integrate and undergo osteogenic
differentiation, synthesizing bone matrix (osteoid) which is subsequently mineralized [7]. Secondary
bone healing following fracture requires distinct highly coordinated yet overlapping physiological
process. The repair begins with the inflammatory phase, where necrotic tissue is removed and
angiogenesis is initiated. This is followed by the infiltration of mesenchymal stem cells (MSC)/progenitors
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that facilitate endochondral ossification, stabilizing the fracture site through the formation of a calcified
cartilage matrix. This soft callus is subsequently resorbed by chondroclasts, allowing for the formation
of a hard callus; a woven mineralized matrix synthesized by osteoblasts. The subsequent remodeling
phase utilizes osteoclasts to resorb the immature woven bone slowly replacing it with osteoblasts
derived lamellar bone [8–10]. These processes of bone healing are spatially and temporally regulated
and rely on numerous cellular and molecular interaction [10,11].

In particular circumstances this bone healing process is impaired and requires assistance,
this includes but is not limited to non-union fractures or critical sized bone defects, infection,
musculoskeletal diseases such as osteoporosis; osteosarcomas, osteomyelitis, congenital disorders
such as osteopetrosis, osteogenesis imperfecta, cleft lip or palate, in addition to rheumatoid arthritis
and osteoarthritis. The clear medical need to assist in this skeletal repair has underpinned the
development of novel approaches and refinement of existing approaches to improve musculoskeletal
tissue engineering strategies.

BMSC display many favorable characteristics for regenerative therapy, which have been wildly
described including their multipotency, anti-inflammatory and immune-modulatory properties [12,13].
This stem cell population also has the ability to support hematopoiesis and stimulate angiogenesis.
Furthermore, the release of paracrine factors by BMSC influences the surrounding microenvironment,
which is a characteristic of particular interest for organ repair [14]. It has been shown that while BMSC
may not engraft with high efficiency following transplantation, they can support the survival of the
surrounding tissue through the release of these paracrine factors [15,16]. Due to these therapeutically
desirable properties, BMSC have been utilized and investigated in the treatment of a range of diseases
including cardiac, lung, neural, hematopoietic, graft-versus-host disease, in addition to tendon,
ligament and musculoskeletal tissue repair [17].

In 2006 The International Society for Cellular Therapy defined human derived BMSC to consist of
the following criteria (1) isolated cells are plastic adherent in culture, (2) these cells express cluster of
differentiation (CD) 73 CD73, CD90, and CD105 in greater than 95% of the cell population, (3) greater
than 95% of the cells lack the expression of CD14 or CD11b, CD79a or CD19, CD34, CD45, and Human
leukocyte antigen (HLA)-DR, and (4) the cultured BMSC have the ability to differentiate into osteoblasts,
adipocytes and chondroblasts [18]. These criteria, while important are limited and lack indices for
stemness. A number of additional cell surface markers have since been identified which isolate clonogenic
BMSC that are able to self-renew, support hematopoiesis and possess multi-lineage differentiation
potential. These include STRO-1, CD146, CD106, platelet-derived growth factor receptor (PDGF-R),
epidermal growth factor receptor (EGF-R), insulin-like growth factor receptor (IGF-R), CD49a/CD29,
nerve growth factor receptor (NGF-R), CD271, CD44, [19–27]. In addition to their capacity to form bone,
cartilage and adipose tissue, BMSC have been shown to differentiate into tendon, myogenic and neural
cells in vitro and in some circumstances in vivo in response to the surrounding environmental factors [14].
While BMSC were initially isolated from the bone marrow, MSC-like populations have subsequently been
identified in other tissues including adipose tissue, dental pulp, referred to as dental pulp stem cells
(DPSC), periodontal ligament, perivasculature, umbilical cord, placenta, synovial membrane [21,25,28–32].
These MSC-like populations play an important role in tissue engineering and regenerative therapy,
however the present review will focus predominantly on BMSC unless otherwise stated.

2. Skeletal Tissue Regeneration—Advancements over the Last Decade

Over the past decade a greater understanding has emerged of the capabilities of BMSC in skeletal
regeneration with mainly pre-clinical studies and a handful of clinical studies underway, addressing the
potential of using BMSC therapy in conjunction with ceramic, biodegradable, synthetic and or matrix
scaffolds for the treatment of musculoskeletal tissue repair [3]). The ever expanding development of
BMSC based therapies, for the treatment and repair of musculoskeletal tissue is evidenced by numerous
human clinical studies addressing different bone regeneration applications (Tables 1 and 2), as well as
animal studies seeking to improve veterinary practice [33,34].
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Table 1. Clinical Trials in Fracture Repair. Search criteria in ClinicalTrails.gov: BMSC and bone fracture, scaffold and bone fracture, stem cells and scaffold and bone
fracture. Terminated, suspended and withdrawn trials and cartilage related trials have been removed from the table.

Year First Posted/Updated
Clinical Trial Number Brief Title Status Intervention Trial Type Citation

2017/NCT03325504 EudraCT
number 2015-000431-32

A Comparative Study of 2 Doses of BM Autologous
H-MSC + Biomaterial vs Iliac Crest AutoGraft for Bone

Healing in Non-Union (ORTHOUNION)
Ongoing Autologous BMSC + granulated

biomaterial MBCP+
Open-Label, Randomized,
Comparative Clinical Trial [35]

2019/2020 NCT03884790 Pre-market Study to Evaluate Safety and Performance
of GreenBone Implant (Long Bone Study) Ongoing Implantation of new generation bone graft

“GreenBone” within the long bone defect Open-labeled clinical trial

2016/2020 NCT02803177
EudraCT number

2015-001820-51

Cell Therapy by Autologous BMC for Large Bone
Defect Repair (BMC2012) Completed Implantation of BMMNC seeded onto β-TCP

and stable fixation
Single blind, randomized,

Phase II trial

2015/2020 NCT02566655
EudraCT number

2012-005814-20

Clinical Trial of Intravenous Infusion of Fucosylated
Bone Marrow Mesenchyme Cells in Patients With

Osteoporosis (CSM/OP/2011)
Complete Intravenous injection fucosylated BMSC Open-labelled Phase II trial

2014/2020 NCT02177565 Autologous Stem Cell Therapy for Fracture
Non-union Healing Complete Carrier combined with in vitro expanded

autologous BMSC
Randomized, double blind

Clinical trial

2007/2018 NCT00512434 Percutaneous Autologous Bone-marrow Grafting for
Open Tibial Shaft Fracture (IMOCA) Completed Percutaneous injection of autologous BMMNC Open-label, randomized,

clinical trial

2013/2017 NCT01842477
EudraCT number

2011-005441-13

Evaluation of Efficacy and Safety of Autologous MSCs
Combined to Biomaterials to Enhance Bone

Healing (OrthoCT1)
Completed

Implantation of cultured autologous BMSC
coupled with granulated biphasic

calcium phosphate
Open-label, Phase I/II trial [36]

2013/2017 NCT01813188
Clinical Trial Based on the Use of Mononuclear Cells

From Autologous Bone Marrow in Patients
With Pseudoarthrosis

Completed Transplantation of autologous BMMNC
combined with porous TCP and DBM

Open-label, randomized,
Phase II trial

2016/2016 NCT02910232 In Vivo Clinical Trial of Porous Starch - Hydroxyapatite
Composite Biomaterials for Bone Regeneration Completed Implantation of “bone void filler” comprised

of porous starch HA composite Observations clinical trial

2014/2016 NCT02153372
Cell Therapy by Bone Marrow-derived Mononuclear

Cells (BMC) for Large Bone Defect Repair: Phase-I
Clinical Trial (BMC2012)

Completed Implantation of BMMNC seeded onto β-TCP
and stable fixation Open-label, Phase I trial [37]

2015/2015 NCT02448849 Autologous BM-MSC Transplantation in Combination
With Platelet Lysate (PL) for Nonunion Treatment Unknown Precutanteous injection of autologous BMSC

combined with platelet lysate
Randomized, double blind

Phase II/III

2012/2015 NCT01581892 Use of Adult Bone Marrow Mononuclear Cells in
Patients With Long Bone Nonunion Completed Infusion of autologous BMMNC with an

“osteogenic matrix” within the fracture site

Open-label,
Non-randomized,

Phase I/II trial
[38]

2015/2015 NCT02609074 Pilot Clinical Trial of CPC/rhBMP-2 Microffolds as Bone
Substitute for Bone Regeneration Completed Implantation of CPC/rhBMP-2 micro-scaffold Open-label, randomized,

Phase IV trial [39]

ClinicalTrails.gov
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Table 1. Cont.

Year First Posted/Updated
Clinical Trial Number Brief Title Status Intervention Trial Type Citation

2014/2014 NCT02307435 Allogenic Mesenchymal Stem Cell for Bone Defect or
Non Union Fracture (AMSC) Unknown

Implantation of allogenic MSC derived from
either umbilical cord, bone marrow or adipose

directly or following cryopreservation.
Open label - Phase I trial

2013/2013 NCT01788059
The Efficacy of Mesenchymal Stem Cells for Stimulate

the Union in Treatment of Non-united Tibial and
Femoral Fractures in Shahid Kamyab Hospital

Completed Injection of BMSC Open-labelled Phase II trial

2013/2013 NCT01958502

Evaluation the Treatment of Nonunion of Long Bone
Fracture of Lower Extremities (Femur and Tibia) Using
Mononuclear Stem Cells From the Iliac Wing Within a

3-D Tissue Engineered Scaffold

Unknown Transplant of MSC with BMP2 in a
collagen scaffold Open-labelled Phase II trial

2011/2013 NCT01429012
Treatment of Atrophic Nonunion Fractures by

Autologous Mesenchymal Stem Cell
Percutaneous Grafting

Unknown Injection of autologous BMSC Randomized, quadruple
blind Phase II/III trial

2009/2012 NCT00916981 Treatment of Atrophic Nonunion by Preosteoblast Cells Completed Percutaneous implantation of autologous
cultured preosteoblasts Open-label, Phase I/II trial

2010/2011 NCT01206179 Treatment of Non Union of Long Bone Fractures by
Autologous Mesenchymal Stem Cell Complete Injection of BMSC with platelet lysate Open-label Phase I trial [40,41]

2005/2011 NCT00250302 Autologous Implantation of Mesenchymal Stem Cells
for the Treatment of Distal Tibial Fractures Complete Injection of autologous BMSC with PRP and

DBM within the fracture site.

Prospective randomized,
open-label controlled Phase

I trial.—27 patients
[42]

2011/2014 NCT01435434
Mononucleotide Autologous Stem Cells and

Demineralized Bone Matrix in the Treatment of Non
Union/Delayed Fractures

Unknown Injection of autologous bone marrow cells in
conjunction with ®ICS injectable scaffold Open-label, clinical trial

Legend: BM—Bone marrow, BMSC—Bone marrow stem cells, BMMNC—bone marrow mononuclear cells, MSC—mesenchymal stem cells, PRP—plasma rich plasma, DBM—demineralized
bone matrix, CPC—calcium phosphate cement, rhBMP—recombinant human bone morphogenetic protein, BMP2— bone morphogenetic protein 2, HA—hydroxyapatite, β-TCP—beta
tri-calcium phosphate.
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Table 2. Clinical Trials in Bone Regeneration. Search criteria in ClinicalTrails.gov: BMSC and bone regeneration, scaffold and bone regeneration, stem cells and
scaffold and bone regeneration. Terminated trials, fracture related trials and cartilage related trials removed from the table.

Year First Posted/Updated
Clinical Trial Number Brief Title Status Intervention Trial Type Citation

2020/2020 NCT04297813
EudraCT, 2018-001227-39

Efficacy in Alveolar Bone Regeneration With
Autologous MSCs and Biomaterial in Comparison to

Autologous Bone Grafting (Maxibone)
Ongoing

Augmentation of alveolar ridge with culture
expanded autologous MSC coupled with

biphasic calcium phosphate

Open-label, randomized,
Phase III trial

2018/2020 NCT03417375 Assessment of the Quality and Quantity of Bone
Regeneration Completed Augmentation of maxillary sinus with the

“Osteocel Plus” graft
Single blinded, randomized

clinical trial [43]

2016/2020 NCT02751125
EudraCT, 2012-003139-50

Reconstruction of Jaw Bone Using Mesenchymal
Stem Cells Completed

Augmentation of narrow alveolar ridge with
cultured autologous BMSC combined with bi

calcium phosphate
Open-label, Phase I trial [44,45]

2013/2020 NCT01878084 Bioactive Glass (Sol-gel) for Alveolar Bone Regeneration
After Surgical Extraction Completed

Implantation of bioactive glass scaffold
(Sol-gel) within the alveolar bone following

extracted mandibular and maxillary premolars
Open-label, Phase I/II trial [46]

2018/2019 NCT03706482
EudraCT, 2015-003699-60 Boost Brittle Bones Before Birth (BOOSTB4) Ongoing

Osteogenesis Imperfecta–Multi dose (x4)
intravenous administration allogenic

expanded fetal-MSC

Open-label,
non-randomized,

Phase I/II trial

2012/2017 NCT01603693 Bone Quality and Quantity Following Guided Bone
Regeneration Prior to Dental Implant Placement Completed

Assessment of guided bone regeneration
procedure comparing the use of a DBBM

“Bio-Oss” alone or coupled with bi-phasic
calcium sulphate (BONDBONE)

Open-label, randomized,
clinical trial

2011/2017 NCT01389661 Treatment Of Maxillary Bone Cysts With Autologous
Bone Mesenchymal Stem Cells (MSV-H) (BIOMAX) Complete

Transplantation of cultured autologous BMSC
with autologous plasma matrix serum

cross-linked scaffold (BioMAx) into cavity of
removed cyst in the maxillofacial region

Open-label, Phase I/II trial [47]

2011/2017 NCT01361321 Bone Quality and Quantity Following Guided
Bone Regeneration Completed Assessment of guided bone

regeneration procedure Observational study

1999/2017 NCT00001391 Bone Regeneration Using Bone Marrow Stromal Cells Completed No details provided Observational study

2015/2016 NCT02396056 Enhancing Guided Bone Regeneration by Modifying a
Resorbable Membrane Unknown Augmentation of alveolar ridge with modified

bovine perforated collagen membrane (MPM)
Single blind, randomized

clinical trial

2011/2016 NCT01323894 Osteogenic Effects in Human Mesenchymal Stem Cells
Enhanced by Wnt Signaling Completed

Comparison between non-viral and viral
administration of Wnt3a human MSC with

HA nanoparticles
Observational study

2014/2017 NCT02293031 Gene-activated Matrix for Bone Tissue Repair in
Maxillofacial Surgery Unknown

Implantation of gene-activated matric
“Nucleostem” within maxillofacial bone

defects or alveolar bone atrophy
Open-labeled clinical trial [48]

ClinicalTrails.gov
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Table 2. Cont.

Year First Posted/Updated
Clinical Trial Number Brief Title Status Intervention Trial Type Citation

2015/2015 NCT02523651 Periodontal Regeneration of Chronic Periodontal
Disease Patients Receiving Stem Cells Injection Therapy Unknown Local injection of allogenic DPSC into affected

periodontal tissue
Triple blind, randomized,

Phase I/II trial

2015/2015 NCT02639572 Evaluation of SilOss® in Periodontal Surgery Completed

Implantation of Siloss® bone graft (composed
of dicalcium phosphate anhydrous, HA,

amorphous silica and trace amounts of zinc)
within intrabony defect

Double-blind, randomized,
Phase II trial

2009/2015 NCT00980278 Bone Tissue Engineering Using Autologous Bone Repair
Cell (BRC) Therapy for Sinus Floor Bone Augmentation Completed

CD90+ autologous Stem cells and CD14+
monocytes with beta-tri calcium

phosphate scaffold
Randomized, Phase I/II trial [49]

2008/2015 NCT00755911 Treatment of Alveolar Bone Defects Using Aastrom
Biosciences Autologous Tissue Repair Cell Therapy Completed Bone Marrow derived CD90+ CD14+ stem

cells with absorbable gelatin sponge

Open-label, randomized,
Phase I/II, controlled

feasibility trial
[50]

2005/2015 NCT00187018 Marrow Mesenchymal Cell Therapy for Osteogenesis
Imperfecta: A Pilot Study Completed Allogeneic bone marrow transplant following

removal of CD3+ cells Open-label, clinical trial [51]

2010/2010 NCT01105026 A Clinical Investigation to Evaluate the Healing of
Tooth Extraction Sites Filled With BioRestoreTM Completed

Implantation of bioactive glass scaffold
(BioRestoreTM) within freshly extracted tooth

socket/alveolar bone
Open-label, Phase I trial [52,53]

2009/2009 NCT00836797 Radiographic Assessment of Bone Regeneration in
Alveolar Sockets With PLGA Scaffold Completed Administration of PLGA bioscaffold following

tooth extraction Case-control, Phase I trial

2005/2009 NCT00221130 Clinical Trials of Regeneration for Periodontal Tissue Completed Periodontitis-Autologous BMSCs-PRP/3D
woven-fabric composite scaffold

Open-label,
non-randomized,

Phase I/II trial
[54]

Legend: BMSC—Bone marrow stem cells, MSC—mesenchymal stem cells, DPSC—dental pulp stem cells, PLGA—Poly Lactic-co-Glycolic Acid, PRP—plasma rich plasma,
DBBM—deproteinized bovine bone mineral, HA—hydroxyapatite.
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Whilst there are challenges associated with the generation of diverse tissue engineering strategies,
considerable advances have been made to repair and regenerate skeletal tissue using numerous
approaches, which are continuing to be developed and improved with particular attention given to
elucidating the mechanisms by which regeneration is facilitated [35–38]. These include choosing the
right source of the stem cell, whether autologous or allogeneic; how these stem cells are localized to
the injury site directly or indirectly through migration; and whether endogenous BMSC are recruited
to participate in the regeneration process [39,40]. The timing of administrating exogenous BMSC is
also critical with respect to the hematoma and inflammatory response to achieve the greatest bone
repair [5,41]. Importantly, efforts are being made to determine how BMSC are subsequently integrated
to form the correct cell configuration and able to differentiate, repair and recapitulate the functional
skeletal tissue and how mechanical loading is exerted upon the MSC engineered bone [42]. Another
consideration is to improve/restore or modulate the diseased or disrupted microenvironment prior
to the commencement of the regenerative therapy, to ensure greater efficacy in skeletal repair [43].
Furthermore, a permissive vascular environment is imperative for bone formation, where vascular
supply assists in bone regeneration by mitigating hypoxic conditions and necrosis within the scaffold,
in addition to the strong coupling between angiogenesis and osteogenesis. The structure of the cortical
bone, the trabecular bone and the marrow space differ from one another, yet all need to be regenerated
following non-union fracture. Numerous cell types also need to be supported within these diverse
structures. For this to occur the distinctive and specific fabrication of biomaterials and delivery methods
are required to recruit endogenous BMSC or deliver exogenous BMSC.

Delivery Modes of Bioactive Signals and/or BMSC

The methods developed to recruit endogenous BMSC and deliver exogenous BMSC systemically
or locally (Figure 1) include cell-free strategies, magnetic cell labeling and tissue specific targeting,
aptamer-nanoparticles, small bioactive molecules, injectable agents, the use of platelet-rich plasma
(PRP) or bone marrow aspirates, BMSC secreted exosomes, and bio-engineered scaffold approaches,
including three dimensional (3D) bioprinting (bioinks) [43–58].

The importance of incorporating/utilizing bioactive signals for enhanced bone regeneration has
expanded considerably in recent times. These bioactive signals include growth factors, small molecules,
endocrines, antibiotics and nucleic acids. The strategies developed thus far to induce endogenous
BMSC infiltration and skeletal repair through the delivery of these bioactive signals include an array
of diverse approaches reviewed by Dang and colleagues [55]. These include surface presentation of
the bioactive signal, or preprogrammed controlled and sustained release of the bioactive signals via
responsive release, due to endogenous signals or external stimuli such as temperature, pH, ultrasound,
electric or magnetic field, light irradiation or biomolecules. Other developments involve gene delivery
strategies, facilitated through gene transduction or transfection utilizing viral or non-viral vectors,
respectively, to regulate molecular expression and cellular function, such as proliferation and osteogenic
differentiation, which promote skeletal repair.

Hydrogels and scaffolds use a range of natural and synthetic materials and biopolymers to
achieve bone regeneration [56,57]. Natural materials include proteins, such as collagen, gelatin,
laminin, keratin, elastin, fibroin, fibrin, heparin; or polysaccharides such as hyaluronan, chitosan
and alginate, while those with microbial activity including cellulose, gellan gum and dextran [58–63].
Synthetic biopolymers include poly(ethylene glycol) (PEG), polyacrylamide (PAM), plyvinyl alcohol
(PVA), poly lactic acid to name a few [57,58,64,65]. Furthermore, minerals such as calcium (Ca),
phosphorus (P), magnesium (Mg), potassium (K), zinc (Zn) and copper (Cu) are important in bone
structure. Ceramics with structural similarity to these minerals, such as hydroxyapatite (HA), calcium
phosphate (CaP), tri-calcium phosphate (TCP) have been sourced for bone regeneration [66]. However,
there are distinct differences in the osteogenic promoting properties of these materials in vivo between
species, which often lead to encouraging pre-clinical studies but poor human clinical outcomes [67,68].
Other ceramics including coral, bioactive glass ceramics, silicon dioxide (SiO2), zirconium oxide (ZrO2),
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titanium dioxide (TiO2) and metal alloys, such as titanium (Ti) and Mg have also been utilized in
scaffold synthesis [63–65,69].

Figure 1. Schematic representation of the current approaches to bone regeneration. Non-cell therapy
approaches to bone regeneration encompass bioactive molecules cellular derivatives and hydrogels/
scaffolds/implants that can interact with and regulate/influence cellular responses. Cell therapy approach
comprise the delivery of exogenous cells, either autologous or allogeneic in combination with
non-cell therapy approaches. Alternatively the activation of endogenous cells (stem cells, endothelial
cells, hematopoietic populations and/or mesenchymal populations) through non-cell therapy
approaches have been and are currently being developed to regenerate the appropriate skeletal
tissue. The bioactive molecules include a range of growth factors/cytokines, small molecules/drugs,
endocrines/hormones, antibiotics and nucleic acid/genetic manipulation. The cellular derivatives
incorporate components that have been derived from cells within the bone, these include exosomes,
conditioned media, plasma/platelet rich plasma (PRP) and aspirates from the bone marrow (BM).
The hydrogels/scaffolds/implants embodies the fabrication of injectable, microbeads, nanogels, fibers,
biofilms, membranes, sponges, bone grafts and solid scaffolds that are derived from either natural
materials, synthetic polymers, ceramics, nanoparticles, metal alloys or composites of these components.
These bio-compatible hydrogels/scaffolds are also manipulated to incorporate and deliver cells, cellular
derivatives and/or bioactive molecules in a temporal and spatial manner to enrich bone regeneration.

Hydrogels and scaffolds possess desirable qualities to either assist in the regeneration of bone
or to provide a bone substitute [58,65,70]. Hydrogels are versatile in geometry and can be used as
an injectable or for transplantation. They provide the necessary moisture required to mimic the
tissue-like extracellular matrix microenvironment, while solid porous scaffolds attempt to mimic
bone. Both allow for cellular induction, dynamic multi-cellular interactions, which can then lead
to cellular differentiation in situ. However it has become apparent in recent years that fabrication,
biocompatibility, bio-degradability and bio-integration, immunogenicity, cytotoxicity, gelation time,
porosity, incorporation of metal ions, payload release profile, cellular infiltration, delivery of a vascular
permissive environment, bone adhesiveness, degradation time, mechanical and anti-bacterial properties
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need to be considered when developing hydrogels, scaffolds or composites [70–76]. The natural and
synthetic materials are fabricated into a range of structures including but not limited to injectable
hydrogels, microbeads, nanogels, hydrogel fibers, biofilms, membranes, solid porous scaffolds or
sponges. These scaffolds are prepared by microfluidics, in situ polymerization, electrostatic droplet
extrusion, emulsification and coaxial air jetting, physical and chemical crosslinking, electrospinning,
solvent casting and particulate leaching, gas-foaming, powder compaction, emulsion freeze-drying,
thermal phase separation, laser sintering, stereolitography, and 3D printing [56,59,60].

New tissue engineering approaches are being employed to generate composite hydrogels/scaffolds
combining biopolymers, materials, small molecules or cells for enriched skeletal regeneration [55,65,67].
For example, Liu and colleagues have modified the chitosan (CS) hydrogels, incorporating catechol
(CA), to improve the adhesive properties of the hydrogel, and zeolitic imidazolate framework-8
nanoparticle (ZIF-8 NP), where zinc displays antibacterial properties, and contributes to angiogenesis
and osteogenesis [77]. Supportive in vitro data using rat BMSC and an in vivo studies using a rat
calvarial defect model demonstrated that the CA/CS hydrogel modified by ZIF-8 NP at a medium
(1.2 mg) composition (CA-CS/ZM) hydrogel combined with bone graft was more stable, displayed
neovascularization and osteogenesis, and enhanced bone regeneration [77]. Furthermore elastin-like
proteins (ELP) and surfactants fabricating structured organofibers have recently been developed.
These organofibers are strong, elastic and can be programed with molecular and protein engineering
approaches and survival of BMSC. Although still at a proof-of-concept stage, this tissue engineering
strategy holds great promise [78].

Studies utilizing silk fibroin, have shown promising results where this material appears to
be as efficient in assisting in bone formation as commercially available collagen membranes [79].
Silk fibroins in combination with HA nanocomposite particles can be adjusted to facilitate the formation
of different bone types or required regeneration period [80]. Alternatively silk fibroins have been
manipulated in vitro to form biomaterial rolls resembling the appearance of osteons, which enabled
not only osteogenesis of human MSC (hMSC) but also the survival and directional growth of neurite
processes [81]. Other examples include the development of bioglass functionalized gelatin nanofibrous
scaffolds, which promoted ectopic bone formation in rats [64], and the use of the BMSC derived
extracellular matrix in combination with a 3D-printed HA scaffold to promote strong osteogenic ability
and appropriate “tissue-space” structure [82]. Furthermore, researchers have also suggested bone
synthesis can be improved via a biphasic dual delivery scaffold systems [83,84]. More specifically one
approach used a system containing two scaffolds, one consisted of a Collagen type I hydrogel that
was overlaid onto the surface of the other beta-TCP (β-TCP) scaffold. The β-TCP scaffold contained
a slow release of osteogenic peptide (functionally synthesized equivalent of bone morphogenetic
protein-2 (BMP-2)), while the hydrogel was loaded with a quick release angiogenic peptide (functionally
synthesized equivalent of vascular endothelial growth factor (VEGF)), thus appropriately influencing
both osteogenesis and angiogenesis, respectively [84]. In the preclinical setting others are investigating
the multifactorial approach of utilizing hMSC in conjunction with endothelial progenitor cells cultured
within a macroporous scaffold under “dynamic conditions” in a biaxial bioreactor prior to sub-cutaneous
transplantation in immunocompromised mice. This study demonstrated enhancing vascularization
improves bone formation both in vitro and in vivo [73]. The importance of the vasculature for bone
regeneration is also supported by other studies. Where periosteum derived cells, albeit from mouse,
undergo osteogenesis, these cells also contribute to various facets of vascularization. The production of
VEGF promoted angiogenesis by adopting pericyte characteristics which support the vasculature [85].

Alternative approaches have provided an environment that is less likely to cause infection such as
osteomyelitis. This was addressed by modifying nanoscale HA with sliver, which is known to have
antimicrobial properties, and combining with an electrospun scaffolds. As a proof-of-concept study
this scaffold was shown to be non-toxic to rat BMSC and improved osteogenic differentiation capacity
of cultured BMSC, while significantly reducing bacterial populations [86]. Using a similar concept,
ZnO/nanocarbon modified fibrous scaffolds have demonstrated osteogenic and antibacterial properties,
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albeit in vitro [87]. While there are still limitations with regard to the functional capacity of hydrogels
and scaffolds, the unique and versatile configurations and continuous refinement in combination with
BMSC treatment holds considerable promise for bone regeneration [70,74].

3. BMSC Treatment for Bone Related Skeletal Diseases/Disorders/Trauma

3.1. Repair of the Long Bones and Vertebrae

A number of musculoskeletal conditions such as osteoporosis, osteomyelitis, osteosarcoma,
diabetic fracture and congenital disorders such as osteogenesis imperfecta result in a compromise
or delay in skeletal formation/repair [88–91]. While a majority of reports have utilized exogenous
autologous or allogeneic MSC, other studies have attempted to recruit endogenous MSC through the
administration of bioactive signals, including but not limited to BMP, parathyroid hormone (PTH),
C-X-C Motif Chemokine Ligand 12 (CXCL12), VEGF, PDGF-Rβ, Interleukin 10 (IL-10), and Leucine
Rich Repeat Containing G Protein-Coupled Receptor 5 (Lgr5) signaling pathways, mediated by the
above-mentioned biomimetic delivery methods [17,92–95]. Several of these bioactive signals and
delivery approaches have been highlighted in this review.

Preclinical studies and clinical trials have demonstrated that BMPs, particularly BMP2 and BMP7,
improve outcomes of sinus lifts, spinal fusion and open tibial fractures [96–101]. However there
have been side-effects with these treatments including heterotropic ossification and ectopic bone
formation, as well as bone resorption and spinal swelling [102–104]. Another family member, BMP6
(OSTEOGROW) coupled with a biocompatible autologous peripheral blood coagulum derived carrier
has been administered to a critical size bone defect to augment bone repair in a preclinical rabbit
model through the stimulation of endogenous MSC differentiation without initiating inflammation
nor resorption [105]. This product is currently undergoing clinical assessment (EudraCT number:
2017-000860-14) to investigate the safety, tolerability and efficacy of a single administration of
OSTEOGROW in conjunction with lumbar fusion to treat degenerative disc disease.

A novel and alternative approach of stimulating endogenous MSC with BMPs is via local targeted
gene therapy utilizing a microbubble-enhanced, ultrasound (Sonoporation) mediated gene delivery of
bmp6 and a collagen scaffold that was inserted within the non-union fracture site of a large animal
model (miniature pigs). Bez and colleagues demonstrated that bmp6 gene delivery to the fracture site
2-weeks post fracture predominantly targeted the MSC. This approach appeared to be safe, feasible
and effective at improving fracture healing, resulting in bone union comparable to the gold standard
autograft treatment [106]. Interestingly, genetically modifying allogeneic porcine MSC to over express
bmp6 in a preclinical porcine model mimicking vertebrae compression fractures, as experienced by
osteoporotic patients, resulted in greater vertebral bone repair 6 months post transplantation [107].
However, it’s worthwhile noting that these observations were based on comparison to the fibrin gel
only control rather than fibrin-MSC, therefore the contribution of bmp6 or MSC is unclear in this
pilot study [107]. Furthermore, an alternative paracrine approach suggests that exosomes secreted
from BMSC are thought to improve osteogenesis and angiogenesis during skeletal repair of nonunion
fractures which has been attributed in part to the BMP-2 and VEGF signaling pathways [108]. However,
limitations of this approach involve the accumulation of exosomes within the liver and lungs. Therefore
building on this concept researchers have combined aptamer complexes specifically targeting the bone
with BMSC derived exosomes to improve skeletal outcomes in an osteoporotic mouse model [109].

Similar lines of investigation, have employed combined release of an osteoinductive agent,
BMP2, and chemoattractant of MSC, CXCL12 [95,110], via a newly engineered chitosan oligosaccharide/

heparin (CSO/H) nanoparticle-modified chitosan-agarose-gelatin (CAG) scaffold. These studies resulted
in the migration of allogeneic BMSC towards the transplanted scaffold mediated through CXCL12
signaling, while BMP2 signaling promoted osteogenesis within the scaffold in vitro [111]. Furthermore,
the administration of a MSC membrane sheet combined with injection of CXCL12 synergistically
enhances bone repair when compared to monotherapy in a nonunion fracture rat model [112].
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These findings are in agreement with observations where CXCL12 release from an alginate hydrogel
within the nonunion fracture results in the recruitment of inflammatory cells and endogenous MSC,
which were able to retain their multipotent state [113]. Thus the co-administration of BMP2 and
MSC would be appropriate to instigate osteogenic differentiation of the recruited or administered
BMSC. CXCL12 has also been reported to promote early vascular formation when co-administered
with MSC, which was equivalent to MSC co-administration of endothelial progenitor cells [114].
In contrast, the Food and Drug Administration (FDA) approved C-X-C chemokine receptor type 4
(CXCR4) antagonist, AMD3100, also activates MSC mobilization within the circulation, which assisted
in femoral and spinal bone regeneration [115,116]. These observations suggest that CXCL12 can be
utilized in multiple ways to help facilitate MSC mediated bone regeneration.

The first anabolic treatment for osteoporosis was the administration of PTH, more specifically
the N-terminal 1–34 fragment commonly known as Teriparatide [117,118]. While PTH is well known
for its catabolic action, the anabolic action of PTH is mediated by PTH acting through its receptor
Parathyroid Hormone 1 Receptor (PTH1R) expressed by MSC and osteogenic lineages, to promote
proliferation and osteogenic differentiation [119]. A meta-analysis study based on eight randomized
trials has shown that injection of PTH is also safe and effective in treating fracture repair. Patients treated
with PTH displayed accelerated fracture healing [120]. Other researchers are currently investigating
whether local delivery/release of PTH via either cell-free biomimetic nanofibrous scaffold or hydrogel
embedded in a porous poly scaffold are more advantageous for bone healing compared to systemic
administration via injection of PTH using rodent preclinical models [121,122]. While PTH has been
used to stimulate endogenous MSC function, PTH has recently been combined with MSC therapy,
where the co-administration of MSC and PTH significantly enhanced bone repair when compared to
the monotherapies or no treatment in a preclinical rat and minipig lumber vertebral defect model [123].
The authors proposed that the less invasive nature of systemic administration via a combinatorial
therapy could be a better approach to treating fragility fractures, particularly in the elderly. This notion
is also supported by reports of enhanced bone regeneration in a rat non-union rib defect model following
systemic administration of hMSC (IV injections) in combination with PTH treatment (subcutaneous
injections). Furthermore, these repaired ribs exhibited stiffer tension than non-fractured ribs during
compression and bending simulations [124]. Whilst the MSC and PTH treatments were delivered
separately and by alterative means, this combinational approach was found to be substantially more
beneficial than either treatment alone.

Alternative strategies have attempted to mimic the bone remodeling process, where bone anabolic
osteoblast function and catabolic osteoclast function are reproduced. One report utilized mouse derived
BMSC transplanted at a 10:1 ratio with mouse bone marrow mononuclear cells (BMMNC), containing
pre-osteoclasts, combined with a decalcified bone matrix scaffold, which resulted in greater bone
formation in a rat critical size defect model over BMSC transplanted alone or with no BMSC [125].
Supportive proteomic analysis and in vitro studies utilizing neutralizing antibodies suggest that the
mechanism by which the combination of BMSC and pre-osteoclasts facilitates greater bone repair was
mediated by the pre-osteoclast secretion of CXCL12, which promoted MSC migration; and Insulin
Like Growth Factor Binding Protein 5 (IGFBP5), which enhanced MSC osteogenic differentiation [125].
While others have also demonstrated CXCL12 stimulates MSC migration [95,110], CXCL12 is also
abundantly expressed by MSC and osteogenic populations [126,127] and is known to attract monocytes
and promote osteoclast development and function [128,129]. Therefore CXCL12 may have multiple
roles that should be considered [130]. In another study, a cell free strategy using a novel medullary
needle implant composed of degradable Mg and the bisphosphonate, zoledronic acid (ZA) augmented
fracture healing, bone quality and mechanical strength of fracture femur of osteoporotic rats. In this
model the dual biological functions of the Mg stimulated osteogenesis, while locally delivered
ZA inhibited osteoclast resorption. This proof-of-concept study may provide alterative avenues for
orthopedic implants [131]. Interestingly, both studies influenced osteoclast function in opposing ways,
while still demonstrating enhanced bone regeneration. These observations suggest that the factors
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released by the osteoclastic population improve osteogenic outcomes, which are associated with the
reversal stage of skeletal repair. Certainly it has been reported that co-culture of BMSC with either bone
marrow, platelet rich plasma or fibrin improves skeletal outcomes in fracture healing, in preclinical
and clinical settings [132–135]. In the clinical setting, the use of autologous BMMNC coupled with
allogenic bone grafts in a phase I/II clinical trial, showed bone regeneration, lack of pseudoarthrosis
and reoccurring pain in treated patients [38]. Notably the BMMNC comprise a heterogeneous cellular
population largely comprised of mature monocytic and lymphoid populations with minor subsets of
stem cells and progenitors of endothelial, mesenchymal and hematopoietic origin. The BMMNC or
PRP produce pro-angiogenic and -osteogenic factors that support bone synthesis [38,135]. However,
a systematic review of the administration of bone marrow aspirates for skeletal defects or nonunion
fractures supports the proposal of MSC within the bone marrow aspirate contribute to skeletal repair.
Although they do appreciate that the biological events and subsequent therapeutic outcomes requires
further investigation [136].

Various studies have suggested the importance of culturing BMSC prior to in vivo transplantation.
Preclinical nonunion rat model, subperiosteal osteotomy and critical size femoral defect rabbit models
have been used to show that this is also an efficacious approach to repair skeletal tissue. While pre-
differentiating BMSC towards osteogenic lineage in combination with biomaterials is one approach to
facilitate skeletal repair clinically [137–139], the maturation of BMSC in vitro diminishes their capacity
to survive when transplanted in vivo compared to immature BMSC. The paracrine effects of BMSC
are also critical in expediting neovascularization within the scaffold [139]. These observations are
supported by other studies investigating skeletal repair through intravenous injection of allogeneic
osteogenic-induced BMSC in a preclinical rat model of osteoporosis [140]. Furthermore, an ovine study
using STRO-4 selected ovine BMSC in combination with bone-derived extracellular matrix (ECM)
hydrogels for 3 months demonstrated comparable bone repair to that of the gold-standard autografts
in a tibial segmental defect model. However, the limitations of this study were the deficiency in
functional blood supply and potentially the STRO-4 selected cells displaying a chondrogenic phenotype
in vitro, which may have delayed the repair process [141]. Alternatively the use of bone-derived
ECM hydrogels may have only promoted a suboptimal bone regeneration response, where the use of
prospectively isolated allogeneic ovine MSC seeded onto HA/TCP collagen scaffolds yielded significant
bone regeneration in a critical sized tibial defect model [142].

The use of HA composites seeded with autologous BMSC to repair non-union fractures of long
bones was first reported by Quarto and colleagues [143]. In 2010, the Australian Therapeutic Goods
Administration (TGA) issued the world’s first license to Mesoblast Ltd. to supply ex vivo expanded
autologous mesenchymal precursor cells for use in the repair and regeneration of long bone fractures
after trauma, stress fractures following sporting injury, and vertebral fractures due to osteoporosis.
The license was granted following a phase 1 clinical safety trial utilizing 100–200 × 106 autologous
cells seeded onto HA/TCP collagen scaffolds per patient, which resulted in the fusion of non-union
fractions in 9 out of 10 patients. Currently there is a multicenter (ORTHOUNION) open-label, three-arm,
randomized comparative phase 3 clinical trial (EudraCT number 2015-000431-32) in progress. This trial
is investigating skeletal repair of patients that have experienced long bone (femur, tibia or humerus)
diaphysis and/or metaphyso-diaphyseal fractures where the patient status was atrophic or oligophic
nonunion for greater than 9 months. The trial is initially addressing whether a low (100 × 106 cells) or
a high (200 × 106 cells) dose of autologous human BMSC, in combination with human albumin and the
granulated biomaterial MBCP+ improves skeletal repair when compared to the standard autograft
from the iliac crest [35]. However, at present there is no available data relating to this study outcomes.
In other trials, autologous MSC therapy have been used to treat non-union fractures in diabetic
patients [144]. Autologous MSC treatment displayed favorable outcomes when compared to standard
care bone-graft treatment of non-union fractures in diabetic patients [145]. Furthermore, while BMSC
from diabetic and non-diabetic patients display similar proliferative capacity as demonstrated by
colony forming unit-fibroblast (CFU-F) assays, the capacity for the autologous BMSC to facilitate
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frequency of union, time of healing and callus volume were impeded in the diabetic patients. In diabetic
patients, bone synthesis and quality/fracture healing is impeded due to the dysregulation in molecular
signals influencing adipogenic, osteogenic and osteoclastic formation and function [146]. Therefore,
it has been proposed that diabetic patients should be administered a higher concentration of BMSC
than non-diabetics to achieve better outcomes [144]. It has also been suggested that stimulating BMSC
response to IGF-1 signaling may improve fracture healing as demonstrated in a rodent preclinical
model [145,147]. Therefore BMSC dosing, choice of biomaterial (Figure 2) and addition of exogenous
factors may help optimize the efficacy of BMSC based therapy for skeletal regeneration and repair.

Figure 2. Differential osteoconductive properties of bio-materials. Culture expanded human BMSC
were seeded onto (A) JAX 100% β-TCP (Smith & Nephew) or (B) Master Graft 15% HA/80% β-TCP
granules (Medtronic Sofamor Danek), then transplanted subcutaneously into immunocompromised
NOD-SCID mice for eight weeks. Representative cross sections of each transplant are shown stained
with H&E depicting new bone formation (arrows). Magnification 200x.

3.2. Bone Related Disease—Osteogenesis Imperfecta

Osteogenesis Imperfecta (OI) is a congenital disorder caused by different dominant and recessive
mutations in the collagen genes, COL1A1 and COL1A2 result in OI type I-IV. However, causative
genes whose proteins normally associate with collagen also result in rare recessive forms of OI,
including types V-XII and unclassified as reviewed by Marini and colleagues [148]. Depending on
the severity, the pathophysiology predominantly results in reduced collagen quantity or abnormal
collagen microfibril assembly, while the other causative genes influence osteoblast development,
matrix mineralization and hydroxylation defects [91,148]. The most common clinical manifestations
include abnormal skeletal development, short stature, and skeletal fragility among other non-skeletal
related indications [93,149,150]. Preclinical OI mouse studies have reported that MSC transplantation
may be a viable option to treat OI [51,91,149,151,152]. Furthermore, priming blood-derived human fetal
MSC with CXCL12 to upregulate CXCR4 expression enriches donor cell engraftment, improves bone
mechanisms and reduces bone brittleness in a mouse OI model [150]. Work conducted by Horwitz
and colleagues was the first to demonstrate the utility of MSC therapy to treat OI patients. The initial
clinical studies demonstrated safety and efficacy of intravenous infusion of HLA-matched allogeneic
unmanipulated bone marrow in children with OI. Patient outcomes improved with increased growth
and decreased incidences in bone fractures observed over a 36 month period [153,154]. This was
followed by clinical studies investigating the efficacy of administering two courses of culture expanded
allogeneic MSC [155] due to the limiting influence of MSC administration. In one case study fetal
implantation of MSC to a 32-week old fetus with OI was assessed as a potential treatment option [156].
Other studies have demonstrated that prenatal transplantation of allogeneic fetal liver derived-MSC
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are safe and beneficial, and that subsequent transplantation with the same fetal liver-derived MSC
at 8 years of age was feasible. It is worth noting that the number of patients in this study was low
and therefore requires further ivalidation with increased patient numbers [157]. A European clinical
trial (NCT03706482) known as the “Boost Brittle Bones Before Birth (BOOSTB4)” which is utilizing
liver-derived MSC is currently recruiting patientas. Whilst another phase 1 clinical trial (NCT02172885)
based on MSC infusion has treated two patients, there are no publications relating to the outcomes of
this study. Furthermore, Horwitz and colleagues have demonstrated that intravenous infusion of T-cell
depleted BMMNC, comprising <0.01% MSC to patients (NCT00187018) that had previously received
bone marrow transplant resulted in cellular engraftment and accelerated growth in some patients [51].

Understanding the cellular and molecular mechanisms contributing to stem cell derived skeletal repair
in OI is of particular interest. It has been proposed that BMMNC contain osteoprogenitors that are able to
form normal collagen following their differentiation into osteoblasts [51]. While, MSC predominantly
mediate a paracrine response indirectly stimulating chondrogenic activity with the growth plate [51].
Therefore an alternative approach has been postulated to treat OI. This approach utilizes a cell-free
strategy of infusing extracellular vesicles secreted by MSC [158]. This approach showed some promising
outcomes in a mouse model of OI with improved bone growth that was mediated by stimulating
chondrogenesis within the growth plate [158]. Fisk and colleagues also noted a lack of donor-derived
osteogenesis within the bone following intrauterine bone marrow transplant in an OI mouse model.
However, osteoclasts and osteomacs derived from the bone marrow transplant were detected within
the epiphyseal and metaphyseal regions [159]. This observation is also supported by lineage tracing
studies demonstrating hematopoietic lineage engraftment following bone marrow transplantation [160].
Collectively these findings suggest that MSC treatment for OI appears to be of some benefit to the
patient, however further research is required to further elucidate the mechanism by which MSC therapy
or combined bone marrow transplantation improve skeletal outcomes in individuals with OI.

Genetic manipulation of MSC is another promising approach to treat OI, which was first explored
in the early 2000s [161–164]. More recently human derived induced pluripotent stem cells (hiPSC) from
OI patients or engineered iPSC to replicate OI have been generated. In combination with in vitro assays
and in vivo models, these iPSC are being used to investigate therapeutic genome editing strategies
and to test drug targets which may rescue the OI phenotype [165–167]. Notably, a proof-of-concept
study demonstrated that MSC derived iPSC from OI patients, termed iMSC, could be genetically
manipulated with adeno-associated virus mediated gene targeting to correct the mutant collagen
genes. These genetically modified iMSC produced bone when seeded onto HA/TCP and implanted
into immunocompromised mice [165]. While these finding are encouraging, further verification is
needed to demonstrate efficacy and safety of these approaches using preclinical OI models.

3.3. Repair of Craniofacial Bone

Cranial defects are a global healthcare burden, where defects can arise from dental caries,
periodontal disease, oral cancer, osteonecrosis of the jaw during treatment of osteoporosis, in addition
to mandibular defects and congenital defects such as craniofrontonasal syndrome (CFNS), cleft palate
and cleft lip. Traditional treatments have utilized autologous grafts originating from the iliac crest,
fibula, ribs or scapula. While these approaches are somewhat effective, they are coupled with secondary
morbidity sites and restricted access to these tissues.

Recently it has been proposed that a cell-free approach utilizing small molecules such as CXCL12,
or exosome mimetics isolated from hMSC may be worthwhile pursuing clinical [168–170]. This approach
was examined using a rodent preclinical calvarial defect model [170]. Alternatively conditioned media
derived from hMSC under cyclic stretch conditions may also be advantageous in stimulating cranial
bone repair and vascular infiltration through the secretion of paracrine factors that promote osteogenesis
and angiogenesis [171]. The use of endogenous and exogenous MSC have also been utilized to treat
critical sized defects within the cranium with some success. A proof-of-concept study demonstrated
that a rapidly resorbable scaffold consisting of calcium sulfate/simvastatin-controlled microspheres
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augmented calvarial bone synthesis in a rat cranial critical sized defect model. This scaffold was
osteo-conductive and osteo-inductive, with enriched osteogenic and angiogenic activity [172]. Building
on this concept a coral derived HA-collagen hybrid scaffold called Coll/Pro Osteon 200 has also
been developed which promoted bone regrowth in patients that were treated for maxilla-mandibular
malocclusion and/or asymmetry. A 36-month follow-up demonstrated that this scaffold was efficacious,
improving bone growth, where the scaffold had been resorbed over time and replaced with cortical
bone [173]. While these studies did not directly investigate the infiltration of endogenous MSC, it could
be presumed that endogenous MSC were recruited based on the enrichment in bone formation.

Alternative tissue engineering approaches to treat critical size defects within the cranium or to
access exogenous MSC, have been coupled with osteo-conductive/biocompatible biomaterial scaffolds;
or with inductive factors or alternative cellular populations, which have the capability to mimic the
bone environment and potentiate bone regeneration [174–177]. Certainly this later approach has
shown some promise in rodent proof-of-concept preclinical cranial critical size defect models [178,179].
Where allogeneic BMSC pre-seeded onto specialized bio-compatible scaffolds containing BMPs,
particularly BMP2, BMP6 and BMP9, augmented bone regeneration [178,180]. Furthermore, it was
also established that CXCL12 in combination with BMP further enhanced bone repair [179]. While this
strategy has not yet been implemented in the clinic, several clinical studies have been conducted
utilizing exogenous stem cells although few have investigated BMSC stem cell based treatment
options. Rather dental derived cell options have been employed for dental, periodontal, gingival and
bone regeneration clinical trials, including dental pulp, gingival and periodontal ligament derived
stem/progenitor cells [181–189].

The first randomized controlled clinical trial (ClinicalTrials.gov number CT00755911) for the
treatment of localized jaw bone defect used culture expanded autologous bone marrow derived cells
placed within Gelfoam, an absorbable gelatin sponge. This trial showed that treatment with the bone
marrow population was efficacious, feasible and safe when compared to the conventional guided bone
regeneration procedure [50]. Although these cells were not BMSC as such, the population did include
CD90+ cells, in addition to CD14+ monocyte/macrophage population. Collectively, this population
resulted in greater tissue regeneration that appeared to also display greater vascularity and implant
stability that required less secondary bone grafting than the control group [50]. The therapeutic
potential of this population of bone marrow derived CD90+ cells and CD14+ monocytes, this time
combined with a β-TCP scaffold, also improved maxillary sinus bone regeneration in a randomized
clinical trial (Clinicaltrials.gov NCT00980278). The engineered alveolar bone showed greater bone
density and quality, where no adverse events were recorded 1-year follow-up to implantation of the
functionally loaded dental restoration [49]. More recently a pilot study utilizing autologous BMSC
grafts to treat medication-related osteonecrosis of the jaws also healed appropriately [190]. Collectively
these studies suggest that tissue engineered MSC therapy for the treatment of cranial bone defects
is beneficial.

Periodontitis is a chronic multifactorial inflammatory disease caused by exposure to Gram-negative
bacteria including P gingivalis and F nucleaturm. This exposure leads to bone loss, periodontal ligament
destruction and tooth loss. This is mediated through the enhanced recruitment of monocytes and
macrophages in addition to inflammatory cells which negatively influence the bone remodeling process
through elevated Receptor Activator of Nuclear Factor Kappa B Ligand (RANKL) and Transforming
Growth Factor Alpha (TNFα) signaling and thus increased osteoclast activity. There are limited clinically
available therapeutic treatments for periodontitis apart from mechanical or surgical debridement with
grafting procedures. Therefore stem cell based approaches have been explored to improve functional
regeneration of lost bone [182]. In a phase I/II clinical trial based on preclinical studies, autologous
BMSC combined with platelet-rich plasma, and a biodegradable 3D woven-fabric composite scaffold
showed efficacy, stability and safety for periodontists over a 36 month period [54]. Importantly the
platelet rich plasma consists of various growth factors essential for proliferation and differentiation [191].
Collectively these studies along with a number of others described in this review suggest that stem cell
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treatment combined with either a heterogeneous population of cells or plasma appears to be efficacious
for bone regeneration by recapitulating to some degree the in vivo bone microenvironment.

4. Conclusions/Summary

Whilst the use of tissue engineering for skeletal repair is a complex undertaking, it has been shown
to be a feasible approach for mediating bone regeneration, through the exploitation of the multi-faceted
characteristics of MSC. Over the last decade, significant advancements have been made in the field
of bone tissue engineering through interdisciplinary collaborations. These advances have led to the
generation of novel hydrogels and biomimetic scaffolds as cell-free delivery systems, and the use of
MSC alone, their products or in combination with biomaterials and/or bioactive molecules to attain the
appropriate mechanical, cellular and regenerative properties required to recapitulate bone structures.
This work has made considerable headway into the clinic, with encouraging outcomes being reported
for non-union fracture repair. However, further studies are still required to build on current preclinical
and clinical studies in order to address limitations in facilitating tissue and site specific osseous repair.
In particular, more detailed assessment is required to understand the heterogeneity of different stromal
populations and their products or factors that contribute to bone synthesis. Importantly, the role of
resident cell populations within the bone microenvironment, require further investigation to identify
the mechanisms driving bone regeneration. It is anticipated that future advances in MSC based
therapies would also benefit from the inclusion of adjuvant strategies (such as plasma products) and
the manipulation of other cellular components (such as monocytes, pre-osteoclasts and endothelial
cells), which help recapitulate and maintain the bone microenvironment. This could be facilitated
through the use of scaffold based systems to deliver small molecules and/or genetic modified BMSC
for more directed and controlled skeletal tissue regeneration.
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Abbreviations

3D Three dimensional
α Alpha
β Beta
BMMNC Bone marrow mononuclear cells
BMP Bone morphogenetic protein
BMSC Bone marrow stromal/stem cells
Ca Calcium
CA Catechol
CA-CS/ZM Ca/cs hydrogel modified by zif-8 np at a medium (1.2 mg) composition
CAG Chitosan-agarose-gelatin
CaP Calcium phosphate
CD Cluster of differentiation
CFNS Craniofrontonasal syndrome
CFU-F Colony forming unit-fibroblast
CPC Calcium phosphate cement
CS Chitosan
CSO/H Chitosan oligosaccharide/heparin
Cu Copper
CXCL12 C-X-C Motif Chemokine Ligand 12
CXCR4 C-X-C Chemokine Receptor type 4
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DBBM Deproteinized bovine bone mineral
DBM Demineralized bone matrix
DPSC Dental Pulp Stem Cells
ECM Extracellular matrix
EGF-R Epidermal Growth Factor Receptor
ELP elastin-like proteins
FDA Food and Drug Administration
HA Hydroxyapatite
hiPSC human derived induced pluripotent stem cells
HLA-DR Human Leukocytet Antigen-DR
hMSC Human mesenchymal stem cells
IGFBP5 Insulin-like Growth Factor Binding Protein 5
IGF-R Insulin-like Growth Factor Receptor
IL-10 Interleukin 10
K Potassium
Lrg5 Leucine Rich Repeat Containing G Protein-Coupled Receptor 5
Mg Magnesium
NGF-R Nerve Growth Factor Receptor
OI Osteogenesis Imperfecta
P Phosphorus
PAM Polyacrylamide
PDGF-R Platelet-Derived Growth Factor Receptor
PEG Poly(ethylene glycol)
PLGA Poly Lactic-co-Glycolic Acid
PRP Plasma rich plasma
PTH Parathyroid Hormone
PTH1R Parathyroid Hormone 1 Receptor
PVA Plyvinyl alcohol
RANKL Receptor Activator of Nuclear Factor-Kappa B
SiO2 Silicon dioxide
TCP Tri-calcium phosphate
TGA Therapeutic Goods Administration
Ti Titanium
TiO2 Titanium dioxide
TNFα Tumor Necrosis Factor alpha
VEGF Vascular Endothelial Growth Factor
ZA Zoledronic acid
ZIF-8 NP Zeolitic imidazolate framework-8 nanoparticle
Zn Zinc
ZnO Zinc oxide
ZrO2 Zirconium oxide
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