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Abstract

Background: High-throughput screens comparing growth rates of arrays of distinct micro-organism cultures on solid
agar are useful, rapid methods of quantifying genetic interactions. Growth rate is an informative phenotype which can
be estimated by measuring cell densities at one or more times after inoculation. Precise estimates can be made by
inoculating cultures onto agar and capturing cell density frequently by plate-scanning or photography, especially
throughout the exponential growth phase, and summarising growth with a simple dynamic model (e.g. the logistic
growth model). In order to parametrize such a model, a robust image analysis tool capable of capturing a wide range of
cell densities from plate photographs is required.

Results: Colonyzer is a collection of image analysis algorithms for automatic quantification of the size, granularity,
colour and location of micro-organism cultures grown on solid agar. Colonyzer is uniquely sensitive to extremely low
cell densities photographed after dilute liquid culture inoculation (spotting) due to image segmentation using a mixed
Gaussian model for plate-wide thresholding based on pixel intensity. Colonyzer is robust to slight experimental
imperfections and corrects for lighting gradients which would otherwise introduce spatial bias to cell density
estimates without the need for imaging dummy plates. Colonyzer is general enough to quantify cultures growing in
any rectangular array format, either growing after pinning with a dense inoculum or growing with the irregular
morphology characteristic of spotted cultures. Colonyzer was developed using the open source packages: Python, RPy
and the Python Imaging Library and its source code and documentation are available on SourceForge under GNU
General Public License. Colonyzer is adaptable to suit specific requirements: e.g. automatic detection of cultures at
irregular locations on streaked plates for robotic picking, or decreasing analysis time by disabling components such as
lighting correction or colour measures.

Conclusion: Colonyzer can automatically quantify culture growth from large batches of captured images of microbial
cultures grown during genome-wide scans over the wide range of cell densities observable after highly dilute liquid
spot inoculation, as well as after more concentrated pinning inoculation. Colonyzer is open-source, allowing users to
assess it, adapt it to particular research requirements and to contribute to its development.

Background

Spotted cultures grown on solid agar are commonly used
by microbiologists as "spot tests" where serially diluted
cultures are inoculated, typically by hand, onto agar
plates, and resultant differences in growth over the range
of dilutions are used to distinguish between the fitness of
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mutants. Performing high-throughput screening of arrays
of genetically distinct micro-organism cultures growing
on solid agar plates is a useful way to screen for genetic
interactions or for the effects of small-molecules (e.g.
drugs) or environment (e.g. temperature or nutrient
availability) on organisms of different genotypes using
this method. This is particularly true for model organ-
isms such as Saccharomyces cerevisiae (brewer's yeast).
Growing cultures on solid agar has some advantages over
growth in liquid medium including speed and ease of
robotic handling. To grow microbe cultures on solid agar,
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cultures are inoculated by direct pinning onto solid agar
plates, or inoculated from liquid after dilution (spotting).
Liquid spotted culture inoculum can be of arbitrary cell
density. The inoculation method used affects the initial
cell density for each culture on the plate, and the resulting
final achievable densities (see Fig. 1). Cell populations
grow at a rate depending on the viability of their particu-
lar genotype in the plate environment (e.g. depending on
agar nutrient availability, the presence or absence of
drugs in the agar or temperature). Observed differences
in growth rates reveal which genotypes grow best, if at all,
in a given environment, allowing conclusions to be drawn
about gene function. Large, qualitative differences in
growth can easily be observed by eye (as in Addinall et al.
[1]), but quantitative measures of growth are required to
reliably detect small differences in a high-throughput
context and to demonstrate the statistical significance of
differences.

In order to quantify data produced using this tech-
nique, we decided to develop Colonyzer, a new tool for
generating several measures of culture cell density and
morphology including area, integrated optical density
(IOD), colour and granularity which emphasises being
able to reliably detect cultures with low cell densities.
These measures are appropriate for addressing a wide
range of research questions and can be disabled or
ignored by the user as required. Colonyzer is capable of
detecting low cell densities after performing background
lighting correction to allow a fair comparison between
the densities of all cell cultures on a plate and implement-
ing a Gaussian mixed model image segmentation algo-
rithm which robustly detects the location of cultures
barely visible to the human eye.

Culture density can be estimated from agar plate
images, either captured as photographs or by plate-scan-
ning, by segmenting images of growth into agar and cul-
ture areas. There are several tools currently available
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Figure 1 Cultures can be spotted or pinned onto agar. A) 16 differ-
ent S. cerevisiae mutant cultures growing in 384-format on solid agar
after inoculation by spotting of dilute liquid inoculum. B) The same 16
mutants, growing in quadruplicate cultures on a different plate in the
same location, in 1536-format, inoculated by direct pinning onto agar.
Images were simultaneously captured 2 days after inoculation. Mutant
specific differences in cell densities are apparent in both images, but
more pronounced in panel A.
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which can perform this segmentation, for example HT
Colony Grid Analyzer described by Collins et al. [2],
YeastXtract as described by Shah et al. [3], the proprie-
tary Colony Imager software distributed by S&P robotics
[4] (Toronto, Canada), or the multi-purpose CellProfiler
described by Lamprecht et al. [5] However these tools
have some drawbacks, particularly for spotted cultures,
as summarised in Table 1. The performances of CellPro-
filer and HT Colony Analyzer are directly compared with
that of Colonyzer in the Results & Discussion section.

Most image analysis tools for quantifying the growth of
gridded colonies do not deal well with the irregular spot
morphology which results from highly dilute inoculation
of liquid spots (e.g. Fig. 1A). This appears to be because
tools of this kind are primarily designed to quantify final
cultures with high cell densities which have been either
pinned onto agar or spotted with highly concentrate
inoculum. These particular inoculation techniques give
rise to clearly defined, opaque, circular cultures (e.g. Fig.
1B).

There are two advantages to using dilute, liquid inocu-
lum in these high-throughput screens: 1) The wider range
of cell densities observed during the growth period can
be used to more accurately parametrise dynamic simula-
tion models of cell population growth, and is likely to be
more sensitive to differences between phenotypes. The
longer growth period observed in spotted cultures affords
more experimental opportunity for image capture over a
wider range of growth. This is important for characteris-
ing growth kinetics since information about model
parameter values can best be derived from data where
cell density is changing most rapidly. 2) Micro-colony for-
mation and growth can be observed microscopically in
independent, spatially distinct colonies of poorly growing
cultures which may only go through a few divisions
before growth arrest. This allows direct, detailed follow
up of cultures flagged as poor growers by high-through-
put analysis (e.g. the culture on row 3 column 4 in Fig.
1A). For a range of examples of liquid inoculated spots,
see the upper timecourse in Fig. 2C.

We can observe the different window of opportunity
for capturing changes in cell density in spotted and
pinned cultures in Fig. 2. The pinned cultures grow from
inoculum to carrying capacity in one day, whereas the
same cultures growing from the more dilute spotting
inoculum grow from inoculum to carrying capacity in
over two days. Given practical limitations to the fre-
quency of image capture, particularly overnight, spotted
cultures will give more information about cell division
rates than pinned cultures. Shah et al. [3] demonstrate the
utility of the logistic population model for summarising
the growth of S. cerevisiae cultures grown on agar, cap-
tured as scanned plate images, and this same approach is
demonstrated in Fig. 2 using Colonyzer output. Esti-



Lawless et al. BMIC Bioinformatics 2010, 11:287
http://www.biomedcentral.com/1471-2105/11/287

Table 1: Summary of image analysis tool features.
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Spotted Pinned Lighting Fast Open Simple Colony IOD Non-Comm. Dev.
Cultures Cultures Correction Source Interface

Colonyzer

HT Colony Analyzer

YeastXtract ? ? ?

Colony Imager
CellProfiler

N/A

Colony Integrated Optical Density (IOD) is a measure of cell density appropriate for spotted cultures, calculated as the sum of pixel intensities in
an area found to contain cells. The Non-Comm. Dev. column indicates whether code development and assessment requires no commercial
licenses (such as Matlab). YeastXtract code and executable has not been available for download at its published web address for the past several

months.

mated, maximum (exponential-phase) growth rates may
be more directly related to the phenotype of interest than
final cell density, which likely depends on competition
between distinct cultures for space and nutrients and
slight variation in inoculum concentrations for instance,
as well as on intrinsic growth rates resulting from culture
genotype. In order to take full advantage of summarising
the wide range of cell density observations produced in a
timecourse experiment with a dynamic model, it is
important to be able to quantify very low, early, exponen-
tial-phase cell densities.

In order to detect low cell densities by photography it is
necessary to correct for any lighting gradients which exist
across the image after the image is captured. Even in pro-
fessionally designed, purpose-built plate photographing
systems (such as S&P Robotics SPImager and BM3-SC
[4]), we have found significant lighting gradients in cap-
tured images. We have found that the best strategy to
overcome this is to detect any existing gradients after
image capture and to compensate for them computation-
ally. Culture IOD (the sum of pixel intensities over an area
of an image which is classified as belonging to an individ-
ual culture) is an alternative to culture area as a measure
of cell density. In dilute S. cerevisiae cultures, for example,
at low densities, cultures are opaque and so close to the
colour of the agar. As cell density increases, cultures
become thicker and begin to take on a colour characteris-
tic of the micro-organism, which is generally different to
that of the agar. This colour difference provides a rough
measure of culture thickness. Opacity varies in a non-lin-
ear fashion with colony thickness over some thickness
range and so IOD is an imperfect surrogate for cell den-
sity, however, we have observed that lighting-corrected
IOD dynamics are less noisy, and a more perfect fit to the
logistic model than direct area data. Without lighting cor-
rection, the IOD of cultures which happen to be in
brightly lit locations on the plate is overestimated. Over-
all, the observation that culture opacity changes with cell

density and our ability to correct for lighting gradients
which would otherwise bias density estimates suggests
that lighting-corrected IOD should be a better estimator
of cell density than culture area alone.

In order to calculate culture area or IOD, image analysis
tools must first classify pixels as belonging to culture or
agar. One way to do this is to classify pixels by intensity
(or brightness) thresholding. Again we find that the
intensity difference between cultures with low cell density
and the background agar can be less than the difference
in pixel intensities throughout the plate caused by light-
ing effects. The result is that, without lighting gradient
correction, in darker parts of the image, poorly growing
or low cell density cultures are more likely to be classified
as background agar than in brighter parts, introducing a
spatial bias in detection of poorly growing cultures or
early growth. Comparing Fig. 3C &3D we can observe the
spatial bias which can occur without lighting correction.

Implementation

Algorithm Overview

The user captures a photograph of an array of cultures on
a plate (typically in .jpg format) at one or more times after
inoculation, by photographing or scanning the plate. For
high-throughput screens, inoculation and image capture
are typically carried out with robotic assistance, and pho-
tographic image capture can sometimes be carried out
more frequently and cheaply than scanning. The user
provides an estimate of the location of cultures on the
plate (typically arrayed on a rectangular grid in 48, 96,
384, 768 or 1536 format). Colonyzer segments the image
locally by thresholding to capture the steepest intensity
gradients in an area of the image, roughly classifying cul-
tures and agar (see Fig. 4). Colonyzer then creates a
pseudo-empty plate image by replacing locally thresh-
olded culture pixels with appropriate interpolated back-
ground pixels. This image is used to create a background
lighting map to adjust for spatial lighting gradients: pixels
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densities is represented by the black crosses in panels A) & B).

Figure 2 Logistic growth model fit. A) & B) Logistic model (grey curves) fit to a timecourse of cell density observations (black symbols) for identical
S. cerevisiae mutants grown from a dilute liquid inoculated (spotted) culture on solid agar in 384 spot format (open black circles) and from direct pin
inoculation (black crosses) in 1536 format at 23°C. Cell density is estimated from 10D using Colonyzer. The logistic model is fully described by the three
parameters: G(0), the inoculum cell density, K the carrying capacity or maximum achievable cell density for that culture and rthe culture growth rate
(d1). Images were captured manually, in parallel for both inoculation types. A) Observations and model estimates plotted with density on the linear
scale. B) Observations and model estimates plotted with density on the log scale. C) Culture photograph timecourses in 384 spotted and 1536 pinned
formats corresponding to the data in A) & B). The lower timecourse (1536) format has pinned cultures in quadruplicate. The sum of these four culture

in the pseudo-empty image are regressed towards the
median background intensity on the plate, and the same
regression is applied to the original image. Finally the cor-
rected image is segmented by maximising the log-likeli-
hood of a two-component Gaussian mixed model, and
thresholding at a pixel intensity which has an equal prob-
ability of being classified as culture or agar (see Fig. 5).
This allows plate-wide, gradient independent segmenta-
tion capable of detecting cultures of extremely low cell
density where culture and agar intensities are similar, due
to culture opacity. Segmentation allows Colonyzer to
locate irregularly shaped cultures (typical of dilute liquid
inoculum for example) precisely in space, before estimat-
ing their area, integrated optical density, colour and gran-
ularity.

Quantification of captured timecourses of the growth
of spotted culture cell densities arrayed on 384-spot for-
mat solid agar plates, from photographs while correcting
for an existing lighting gradient is the most difficult sce-

nario for an image analysis tool for quantifying culture
growth. Colonyzer can perform this task, and its algo-
rithms are also suitable for the quantification of simpler
images (e.g. quantifying pinned culture size). Colonyzer is
therefore general enough to be suitable for all solid agar
culture density analyses.

Colonyzer is a mixture of algorithms, some of which are
original, which have been integrated as a Python [6]
script using the statistical package R [7] (via the Python
library RPy [8]) with the R package rgenoud [9] and uses
the Python Imaging Library [10] and Numerical Python
[11] extensively. It is available for download under GNU
general public license [12]. Despite the fact that Colo-
nyzer has been optimised for sensitivity, generality and
robustness rather than speed, deploying these algorithms
on a Linux cluster of 90 CPUs, we can reliably quantify
cell density for photographs representing over 2 million
cultures (photographed repeatedly in timecourse experi-
ments) arrayed in 384-format overnight.
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Figure 3 Colonyzer lighting correction & thresholding. Colonyzer
detects cultures with low cell density in liquid-inoculated spots in 384
format. A) Original captured plate image from S&P Robotics [4] BM3-
SC, B) Image after lighting correction, C) Thresholded image without
prior lighting correction, D) Thresholded image with prior lighting cor-
rection. Coloured squares around cultures are tile locations as estimat-
ed by Colonyzer. In panels C) & D), white pixels are those classified as
being cell cultures, black pixels are classified as being agar. Pixel mis-
classification on some non-experimental edge colonies in panel D) are
artefacts caused by light reflecting from plate walls onto the agar. Col-
onyzer largely (but not completely) corrects for these artefacts when
they occur.

User-input

This method starts with an image of a relevant plate. Col-
onyzer is currently designed to work with a rectangular
grid of cultures (with edges parallel to the image), but
could easily be adapted to work with arbitrarily placed
cultures. To help Colonyzer locate the cultures on a rect-
angular grid, the horizontal (xj,) and vertical (yg,)
dimensions (pixels) of a typical rectangle completely con-
taining a culture (a tile) are estimated along with the
coordinates (%, ¥y (Pixels) of the top left hand cor-
ner of the top left hand tile (see Eq. 1) The user provides
the number of tile rows (N,,,,,) and columns (N,,;,) on the
grid, together with estimates of the locations of the cen-
tres of the top left and bottom right spots (x,;, y,;and b,,,

ows

¥, respectively). The algorithm begins with an estimated
tile location of (%, Y. and steps x,, horizontally
and y,,,, vertically Ncols and Nrows times respectively to
provide starting guesses for optimal tile locations. These
guesses are then improved on a tile-by-tile basis by brute
force minimisation of the number of pixels classified as
culture which are present on the edge of the tile. These
estimates become critical for smaller culture sizes (e.g.
cultures arrayed in 1536 format), and so we have devel-
oped a GUI tool called Parametryzer [12] for rapid esti-
mation of spot locations for batches of images.

P o
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Figure 4 Local thresholding algorithm for fast, sensitive first-pass
image segmentation. A) 16 spotted cultures from an example origi-
nal plate image, B) Sobel gradient map of panel A, C) Mask of top 5%
intensity gradients from panel B, D) Mask applied to original image
(background set to white) E) Original image intensities locally thresh-
olded by tile to exclude the darkest 33% of pixels from panel D in each
tile location

X i = Xor —X4 Vaim = Yor =Yu
im im
Nrows -1 Ncals -1 (1)
_ Xdi _ Yai
Xstart = X — 21m Vstart =Va — 21m

Having provided these estimates once for an entire
batch, or on an image-by-image basis as appropriate, the
user simply executes the Colonyzer script, which runs
through (usually large) lists of images stored in a given
directory, and generates textual output files appropriate
for further analysis. No further user input is required.

Correction of spatial lighting gradient

To counter the effects of lighting gradients, Colonyzer
constructs a lighting map for the whole image by building
a pseudo-empty plate, which is the best estimate of what
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Figure 5 Automatic Thresholding with Gaussian mixed model. Ex-
ample trimmed image pixel intensity distribution (black crosses), max-
imum likelihood model estimate for mixed model (red curve),
individual Gaussian components modelling agar and culture intensi-

ties separately (blue curves) and optimal threshold xy,,.¢, (green line) at
intersection of the two component distributions. This example histo-
gram represents a plate image with a strong agar signal and a low cell
density (culture barely detectable by eye).
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that particular agar plate alone (with no cultures) would
look like. Then a correction map is created which would
regress all pixels on that pseudo-empty plate back
towards the median agar intensity. Finally that correction
map is applied to the original image to remove all lighting
bias. A pseudo-empty agar plate is most appropriate for
this analysis as there are often reflective artefacts and
halos surrounding the cultures which are caused by light
reflecting from the sides of the petri dish and from cul-
ture reflections through the translucent agar on which
they are growing (see Fig. 3A for example). Constructing
a pseudo-empty plate instead of using, say, a neutral grey
sheet has the added advantage of partially eliminating
these unwanted artefacts while correcting the gradient
(e.g Fig 3B &3D). Fig. 3 demonstrates the effect of lighting
gradients on the segmentation of cultures with low cell
density. Comparing Fig. 3C &3D we can see that, without
correction, many cultures have incorrectly been allocated
zero growth estimates, particularly in the bottom centre
of the sample plate. We can see that in this example
image, glare on some of the edge colonies, from the plas-
tic walls of the plate has caused Colonyzer to overesti-
mate their area in both cases (although to a lesser extent
after correction). This edge effect can be seen to remain
after lighting correction in Fig. 6. We have not attempted
to completely eradicate this glare problem since edge cul-
tures on 384-format plates should be non-experimental.
These cultures have a competitive advantage over spots
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Figure 6 Colonyzer corrects spatial lighting gradients. Horizontal and vertical intensity slices from a 384 well plate image with growing S. cerevi-
siae spots captured on an S&P robotics [4] BM3-SC. Local intensity peaks represent cultures (at low cell density) or plate edges. Blue curves show the
lighting-induced intensity gradient before correction. Red curves show a flat intensity gradient after correction, which maintains culture information.
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in the middle of the plate since they have access to greater
amounts of nutrients, therefore comparative analysis of
their density is always misleading. This does not seem to
be the case for less dense formats like 96-format, how-
ever.

Pseudo-empty plates are constructed by cutting culture
pixels out of the plate image and filling in the remaining
gaps with interpolated background agar intensities. Cul-
ture pixels are cut out using a sensitive thresholding algo-
rithm based on morphological edge detection to segment
the image into agar and culture, similar to that presented
by Chen et al. [13], on a tile-by-tile basis. The original
image is then masked, cutting out culture areas, leaving
only agar behind.

First-pass local thresholding algorithm
* Take the original RGB image (Fig. 4A), and convert
it to greyscale.
* Create an intensity gradient map using the Sobel
algorithm [14] (Fig. 4B)
* Generate a gradient histogram for a user-estimated
tile location. Estimate the gradient value below which
95% of the pixels in the tile lies, and threshold the gra-
dient map for the tile at this gradient intensity (Fig.
4C).
= Use this binary image as a mask on the greyscale
image (Fig. 4D). In this way the pixels whose intensity
gradient is in the top 5% for the colonies are cut out
(the edges have been masked).
* For each approximate rectangular tile location, as
estimated from the user input, that tile is cut out of
the masked image. The intensity histogram for that
masked tile is constructed and the original image tile
thresholded so that the darkest 33% of the masked
pixels are allocated as background (Fig. 4E).

The 5% and 33% cutoff frequencies were chosen heuris-
tically to suit the wide range of images we have analysed
but essentially they are cutting out the very highest gradi-
ents, and then thresholding to exclude the darkest pixels
having those high gradients. We implemented this partic-
ular method of image segmentation since it is very fast
(important for high-throughput analysis) and it locally
adapts its sensitivity depending on the amount of signal
present. Signal in this case is the intensity of growing cul-
tures, which depends on cell density in each tile (which
can vary across tiles within a plate), but also on the light
incident on a particular colony. We simply require that
any signal is correctly identified as culture. Misclassifica-
tion of agar pixels as culture is not important since mis-
classified pixels will be cut out and filled in with an
approximation of agar intensity in the next step. The
opposite, misclassification of culture pixels as agar, would
lead to significant errors as our algorithm would later
"correct" the intensity of the culture towards the back-
ground median during the gradient correction, thereby
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eradicating the intensity signal for these pixels. It would
be trivial to adapt this method to threshold on a pixel-by-
pixel basis (using user defined tile dimensions), rather
then on a tile-by-tile basis as presented here, however the
tile thresholding step would be ~O(x,,,*V;,,) times
slower.

Creation of a pseudo-empty plate
There are two slight practical problems with cutting out
the culture pixels and replacing them with interpolated
background pixels. Firstly, any segmentation algorithm
will classify the very edges of a culture as background,
since including all of the culture would likely mean classi-
fying much background noise as culture. Secondly,
depending on the image capture and lighting methods
used, there can be reflective haloes surrounding cultures
from reflections through the translucent agar medium
and off the surface beneath the plate, as well as reflective
glare from the sides of the petri dishes. Both of these phe-
nomena imply that immediately outside the thresholded
area, a strip of pixels which are of higher intensity than
the true background agar intensity is often seen. To
resolve this, we search from the edge of a thresholded
culture area over a distance approximately equal to the
radius of a typical culture (e.g. x4,,/2) to find the darkest
pixel in that range and use that as the edge intensity for
filling in the gaps.
Pseudo-empty plate construction

* Strongly smooth the greyscale version of the original

image. This averages out the background values and

reduces the chance of extreme values being selected

for interpolation.

* For each image row, scan horizontally identifying

gap edges from the thresholded map.

* At each edge, search away from the gap for a dis-

tance of x;,,,/2 pixels and take the darkest pixel in that

region. Use this as the background edge value.

= Step across the gap on the same row and find the

edge on the other side, repeat the previous step to get

a background edge value for this side of the gap.

* Now fill in the gap-slice by linearly interpolating

between the two newly found edge values

* Create a new smoothed copy of the original grey-

scale image.

* Repeat this process, but this time, scan vertically

(along image columns instead, and using a search dis-

tance of y;;,,,/2)

* Merge the vertically-scanned and horizontally-

scanned images by taking the minimum value at each

pixel location. This is the pseudo-empty plate image

Scanning horizontally and then vertically, taking the

minimum pixel value for the two scans is necessary since
the irregular morphology of some cultures occasionally
results in islands of bright pixels within a defined gap.
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This results in one edge being brighter than intended,
affecting the interpolation. This technique reduces the
chance of a given gap pixel being filled with an excessively
bright intensity.

Regression towards median background intensity

From the smoothed, masked greyscale image, the user-
estimated area containing growing spots is cut out and its
median background pixel intensity calculated. Then, for
each pixel on the pseudo-empty plate, the ratio Rqopp is
calculated: Reppr = Lyp/Ipp where I is the pseudo-
empty pixel intensity and I, is the median background
pixel intensity for the plate. On a per-pixel basis the pixel
intensity of the original image (1) is scaled so that the
new intensity is Roopp*loric in order to correct the light-
ing gradient on the plate. For non-saturated source
images the resulting corrected image maintains the signal
of interest, as demonstrated in Fig. 6.

Segmentation algorithm

Colonyzer segments the lighting-corrected image into
agar and culture areas, using a method similar to that pre-
sented by Huang and Chau [15]. A mixed model of two
Gaussian distributions (g, Eq. 2) is constructed which
models the histogram of pixel intensities for the entire
corrected image (y; is the expected value of Gaussian &, o
is the standard deviation of Gaussian k and 8 is the ratio
between the peak heights of the two Gaussian curves rep-
resenting agar pixels and culture pixels):

g(x; Hagar+ O agar+ Hcolony O colony 0) =

2
—(x—ﬂagar)z —(x=ttcolony)

2
20
1 e agar 0

2
2Ucolony
CagarV 27 (1+0) G colonyN 27 (1+0)

(2)

By constraining the number of Gaussian components in
the mixed model to exactly two, we insist that all pixels be
classified as either culture or agar. Parameter estimation
is carried out by constructing a log likelihood estimator
for the model g, given the pixel intensity histogram
PI[0:255] (Eq. 3) and maximising it with respect to its
parameters (Eq. 4).

L(.uagar' O agar + Hcolony 1 O colony 9) =
255
H PIU] lOg(g(]  Hagar+ O agar + Hcolony 1 O colony 9))
j=1

(3)

The optimum parameters (denoted by *) are estimated
as follows using the genetic optimisation package rge-
noud [9]. Fig. 5 shows an example of the fit.
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* * *) —
agar 'S agar Meolonyr S colony ' 9 ) - (4)

max(L( Magar 1S agar Meolony 1 S colony q))

L(m

The most appropriate threshold intensity is then esti-
mated by numerically solving the following for intensity
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Huang and Chau [15] segment images by taking the
mean intensities of the Gaussian components and using
the average of these mixture means as their threshold.
This assumes that each segment contains a roughly equal
proportion of the image pixels. For this particular prob-
lem, the intersection of the two component distributions
with the highest intensity is the most appropriate thresh-
old since this is the intensity at which the probability of a
pixel being assigned to either foreground or background
is identical. Intensities either side of the intersection
threshold are on balance of probabilities most likely to
belong to culture or agar. Performing the final image seg-
mentation with this mixed model approach allows for
extremely sensitive segmentation in conditions of low
growth. Clear spot signal (which has been maintained
through the lighting correction algorithm) can be picked
up where only agar is visible with the naked eye.

Location of colony tiles

In an ideal experiment, cultures would remain entirely
within the approximately square tiles that they were
intended to be inoculated into on the rectangular agar
grid. Biological heterogeneity, overgrowth or slight errors
in plate location or alignment during image capture
necessitate improving on initial location guesses before
quantifying cell density. Colonyzer fine-tunes tile loca-
tion estimates by taking the corrected, thresholded
image, and for each tile, minimizing (by brute-force opti-
mization) the number of culture pixels on the tile edge by
changing the tile location while keeping its size fixed.
Colonyzer performs this search over a 20*20 pixel search
area.
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Measurements

Once an exact tile location has been found, Colonyzer
stores the coordinates of the top left hand corner of the
tile together with its x;,,, and y,,, allowing users to access
sub-images of individual tiles if required. Then the num-
ber of culture pixels in the thresholded image are counted
and this is stored as a measure of culture area. Similarly,
the number of pixels in the tile's location on the gradient
map are counted as a measure of culture morphology (i.e.
texture or granularity). The original image is masked with
the thresholded tile and the mean colour (RGB triplet) of
the culture, and mean background agar colour are calcu-
lated and stored. The lighting corrected image is masked
with the thresholded tile and the sum of the culture
intensities in the masked image (less the median back-
ground intensity) is used as a measure of IOD. The sum
of all the pixel intensities in the tile (less the median back-
ground intensity) is calculated as another measure of cell
density. All of these values are written to a tab-delimited
text file, together with row and column number for sub-
sequent analysis.

Results and Discussion

Colonyzer is a tool for the quantification of the cell den-
sity in micro-organism cultures growing on solid agar
from images of growth. It is sensitive enough to quantify
extremely low cell densities in the presence of a spatial
lighting gradient. We have demonstrated that informa-
tion about cultures with low cell densities can be reliably
extracted from plate photographs by implementing light-
ing correction (see Fig. 3 for example) and using a Gauss-
ian mixed model of pixel intensity distribution for image
segmentation. Colonyzer also estimates other measures
of density and morphology, such as granularity, IOD and
colour. It is general enough to also deal with the simpler
problem of quantifying culture density of pinned or
dense-inoculum liquid spots and is fully automated,
requiring minimal user input. Colonyzer can quantify
cultures of Sacchromyces cerevisiae, Schizosacchromyces
pombe and Escherichia coli (Fig. 7). We can see from the
384-format timecourses in Fig. 2B and Fig. 2C that Colo-
nyzer can reliably detect cultures with cell density so low
that they are barely observable by eye (see from fourth
datapoint onwards).

We have compared the features of Colonyzer with
those of several other software tools for quantifying cul-
ture density on solid agar (see Table 1 and Fig. 8). Most of
these tools are designed to quantify pinned cultures
where lighting correction and sensitive segmentation are
not a critical issue. HT Colony Analyzer is one such tool,
and Fig. 8A demonstrates quantitatively the large discrep-
ancies between spot measurements made by this tool and
the corresponding Colonyzer measurements. This is sim-
ply a reflection of the fact that HT Colony Analyzer (and
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Figure 7 Example Colonyzer input. Some example photographs of
S. cerevisiae, S. pombe and E. Coli cultures growing on solid agar with
various spotting/pinning formats which are suitable for analysis using
Colonyzer. A) Liquid inoculated 384 spot plate, B) 384 spot plate with a
coloured drug in the agar, C) 1536 colony plate (pinned), D) 384 spot
plate with an agar crack from drying E) Circular petri dish with serial di-
lution of rectangular gridded E. coli spotted cultures F) 384 spot plate
with strongly growing contaminant cut out by hand to prevent over-
growth. Panels D and F are extremely rare worst-case scenarios for ex-
perimental plates and are only included to demonstrate that
Colonyzer is robust to these features. All of these images (plus more ex-
amples) are available for download and testing [12].

other similar tools) are not designed to be able to quantify
growing, dilute spotted culture cell densities. From Table
1 we can see that CellProfiler matches many of the fea-
tures of Colonyzer. CellProfiler is a flexible image analysis
environment, but its development has not been focussed
on capturing growth kinetics of spotted cultures. Fig 8B
demonstrates that there is much greater agreement
between CellProfiler and Colonyzer density estimates
than with simpler tools, but there are nevertheless some
inconsistencies between them. The curvature apparent in
the CellProfiler intensity profiles demonstrated in Fig 8D
and 8E arises from incomplete lighting correction, partic-
ularly for cultures near the edge of the plate. The CellPro-
filer test image does not contain cultures of particularly
low cell densities, but this degree of uncorrected intensity
bias would cause bias in IOD estimates for low densities.
CellProfiler also mis-identifies some example culture
locations (Fig. 8C) which would lead to associated errors
in IOD estimates. CellProfiler is significantly faster at per-
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Figure 8 Comparison of cell density estimates from different tools. A) HT Colony Analyzer culture area estimate plotted against Colonyzer area
estimate for the 384-format Sample4.jpg image from the Colonyzer example image collection hosted on SourceForge. Note that HT Colony Analyzer
and several other high-throughput colony quantification tools are not designed to deal with the opacity and irregular morphology of spotted cultures
and so this comparison is not completely fair. B) CellProfiler culture IOD estimate plotted against Colonyzer estimate for the 96-format yeast plate ex-
ample from Figure 2E in Lamprecht et al. [5], downloaded from http://www.cellprofiler.org and analysed using the CellProfiler "Grid of Spots" demon-
stration pipeline. Pearson's correlation coefficient of 0.89, but with slope of 0.53. C) Two example cultures from the image in panel B with original
images together with CellProfiler culture location (designated with a circle) in the left column. The right column shows the equivalent Colonyzer masks
defining its estimates of cell locations CellProfiler incorrectly estimates culture location badly in three of the 96 cultures and erroneously trims ~5% of
culture edge for almost all cultures. D) & E) Horizontal and vertical intensity slices through bottom and right sides of CellProfiler test image after cor-
rection by Colonlyzer (blue curve) and by CellProfiler (red curve).

forming this analysis than Colonyzer (~1 min and ~3
mins respectively on a modern workstation), however
CPU time is relatively cheap and accuracy and high sensi-
tivity for this particular image analysis problem were pri-

orities during Colonyzer development.

To date we have used Colonyzer to quantify sets of
timecourse photographs for several thousand S. cerevi-
siae and S. pombe plates in 384, 768 and 1536 format (see
Fig. 7 for some example images that Colonyzer can deal
with), amounting to several million quantified colony tile
images. We typically execute large batches of analysis jobs
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on a 90 node Linux Beowulf cluster, but we can also ana-
lyze genome-wide screens within 36 hours by executing 8
simultaneous analysis jobs on a relatively inexpensive 64-
bit dual quad-core Intel Xeon workstation with 12 Gb of
RAM. By permanently archiving the source code on
SourceForge [12,16] we hope that other groups and com-
panies involved in high-throughput screening of micro-
organism growth will use and develop this tool. Inter-
ested users, daunted by the prospect of installing many
packages before trying Colonyzer, are welcome to email
the corresponding author with an example image for
analysis and can expect the return of Colonyzer output
files to assess whether Colonyzer is useful for them.

On SourceForge we also provide a supplementary GUI
tool to help users provide initial guesses for culture loca-
tions (Parametryzer), and code for summarising time-
course data with the logistic model (Logisticyzer). The
latter also depends on our in-house Robot Object Data-
base system (ROD) which will be released in the near
future.

In future we are interested in improving the speed of
analysis, while maintaining its sensitivity (which is its
main feature), adapting Colonyzer to utilize some cloud
computing services to achieve ever higher throughput,
and to improve the ease with which users can install the
packages required to run Colonyzer. Others may be inter-
ested in adding new functionality or disabling some Colo-
nyzer functions to suit their particular requirements.

Conclusions

This paper presents Colonyzer, an image analysis tool
which specialises in quantification of cell density in
micro-organism cultures growing on solid agar over a
wide range of culture densities from plate photographs.
Growing cultures on solid agar is often cheaper and less
demanding than equivalent growth in liquid medium.
Similarly, photographic image capture is cheaper and
faster than spectrophotometric analysis of cell density in
liquid wells. Colonyzer's particular strength is its sensitiv-
ity in detecting cultures with low density. It achieves sen-
sitivity by correcting for any lighting gradients in
captured photographs, and by segmenting images, differ-
entiating between agar and culture, using a two-compo-
nent Gaussian mixed model of pixel intensity. Algorithms
underlying Colonyzer quantify densities of pinned cul-
tures and all late-growth cultures well, but we have opti-
mised them to tackle the more difficult problem of
quantifying exponential-phase dilute liquid-inoculated
culture density on agar. Colonyzer is significantly more
accurate when compared to other tools in this regard.
Colonyzer's sensitivity opens up the possibility of quanti-
tative modelling of the growth curves of thousands of
independent cultures grown on solid agar during high-
throughput screens.

Page 11 of 12

Availability and requirements
Project name: Colonyzer

Project home page: http://research.ncl.ac.uk/colo-

nyzer
Operating system(s): Platform independent.

Programming language: Python & R

Other requirements: Python Imaging Library, RPy,
NumPy, rgenoud

License: GNU GPL

Any restrictions to use by non-academics: No restric-
tions
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