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Abstract 
Background.  Evaluation of treatment response for brain metastases (BMs) following stereotactic radiosurgery 
(SRS) becomes complex as the number of treated BMs increases. This study uses artificial intelligence (AI) to track 
BMs after SRS and validates its output compared with manual measurements.
Methods.  Patients with BMs who received at least one course of SRS and followed up with MRI scans were ret-
rospectively identified. A tool for automated detection, segmentation, and tracking of intracranial metastases on 
longitudinal imaging, MEtastasis Tracking with Repeated Observations (METRO), was applied to the dataset. The 
longest three-dimensional (3D) diameter identified with METRO was compared with manual measurements of 
maximum axial BM diameter, and their correlation was analyzed. Change in size of the measured BM identified 
with METRO after SRS treatment was used to classify BMs as responding, or not responding, to treatment, and its 
accuracy was determined relative to manual measurements.
Results.  From 71 patients, 176 BMs were identified and measured with METRO and manual methods. Based on a 
one-to-one correlation analysis, the correlation coefficient was R2 = 0.76 (P = .0001). Using modified BM response 
classifications of BM change in size, the longest 3D diameter data identified with METRO had a sensitivity of 0.72 
and a specificity of 0.95 in identifying lesions that responded to SRS, when using manual axial diameter measure-
ments as the ground truth.
Conclusions.  Using AI to automatically measure and track BM volumes following SRS treatment, this study 
showed a strong correlation between AI-driven measurements and the current clinically used method: manual 
axial diameter measurements.

Key Points

•  AI-driven measurements of brain metastases correlate to manual measurements.

•  AI can alleviate labor-intensive processes in BM radiation treatment planning.

•  AI provides longitudinal data to supplement clinical decision-making.

Brain metastases (BMs) are the most common central nervous 
system tumor,1 and they are diagnosed in 170 000 patients in 
the United States annually.2 Historically, cancer patients with 
metastases to the brain were frequently treated with palliative 
whole-brain radiation therapy with a median overall survival 
(OS) of only 4–7 months.2 Stereotactic radiosurgery (SRS) 

was labor-intensive and performed with an invasive frame,3 
and it was therefore limited to select patients with small num-
bers of BMs. In recent years, advancements in delivery tech-
nologies4 and an increase in evidence that using SRS to spare 
normal brain tissues results in improved quality of life, cog-
nitive outcomes,5 and local tumor control6 resulted in a shift 

Artificial-intelligence-driven measurements of brain 
metastases’ response to SRS compare favorably with 
current manual standards of assessment  
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in radiotherapy (RT) protocols for BM management away 
from whole-brain radiation therapy towards targeting indi-
vidual lesions with SRS.7 In addition, advances in systemic 
therapy have led to improved extracranial disease control 
and an increase in OS in these patients.8–12 The combina-
tion of prolonged survival with a local management ap-
proach for BMs means that patients may receive multiple 
courses of SRS after locoregional failure. Given the multi-
plicity of lesions treated at multiple time points, consistent 
and accurate monitoring of individual BMs is now crucial.

Evaluation of treatment response for each BM and plan-
ning of new SRS treatments become more complex as the 
number of BMs increases. Patients receive multiple MRI 
and CT scans for each treatment course and a follow-up 
MRI every 2–3 months following treatment for surveil-
lance. Current commercial software does not provide an 
automated solution for tracking BMs, and the recent PACS-
integrated longitudinal tracking tool has highlighted the de-
sire to simplify this laborious process.13 Manual methods are 
time-intensive and fraught with potential errors if sequential 
images are not co-registered and radiation plan information 
is not overlayed on the images. It is neither practical nor 
feasible to detail each metastasis in the official radiological 
report. Even when recorded, small and neighboring metas-
tases in the same brain lobe, or gyrus, may be mistaken for 
one another across follow-up surveillance imaging.

The current method for evaluating BMs and their re-
sponse to treatment is manual evaluation. BM size has 
been reported based on a measurement of the longest axial 
diameter.14 According to the results of a study by Benson et 
al., given the complexities of the manual process, radiolo-
gists often will only comment directly on a few dominant, 
or clinically significant, BMs and make general assess-
ments of the total number of BMs in the brain.15 Bi et al. 
contend that artificial intelligence (AI) can be used to auto-
mate this laborious process and open big data analytics.16 
Although clinical decision-making will still rely on mul-
tiple factors, including patients’ clinical presentation, per-
formance status, and information from multiple imaging 
techniques (ie, perfusion, k-trans, PET),17 AI can provide 
quantitative longitudinal data. This can help augment the 
current standard of care and drive escalation/de-escalation 
of treatment and surveillance imaging frequency.

This validation study uses in-house developed AI 
software18,19 to determine how BM detection, auto-
segmentation, and longitudinal tracking compares with the 
current clinically used method of manual BM measurement. 
BM measurements obtained by AI are compared to the 

manually collected data on a one-to-one basis. BM response 
to SRS is derived from the Response Assessment in Neuro-
Oncology working group for Brain Metastases (RANO-BM) 
criteria, which has been modified for this study.14

Materials and Methods

Data Collection

Under an institutional review board approved protocol, 
RT-naïve patients with renal cell carcinoma (RCC) BMs who 
received cranial single- or hypo-fractionated SRS were ret-
rospectively identified. RCC has relatively good OS and 
response to SRS, allowing the analysis of longitudinal BM re-
sponse in this study. Patient demographic data was recorded.

A tool developed in-house for automated detection and 
segmentation of intracranial metastases on longitudinal 
images, MEtastasis Tracking with Repeated Observations 
(METRO),18,19 was applied to the dataset. METRO utilizes 
a three-dimensional (3D) convolutional neural network to 
segment gross tumor volumes on pre- and post-treatment 
follow-up T1-weighted (T1w) MR images and automated 
rigid registration to identify and track each lesion on 
longitudinal scans. The software then calculates the BM 
volume and longest 3D diameter on all available images 
following SRS based on the diameter of Gd contrast en-
hancement. The longest 3D diameter is defined as the di-
ameter of the sphere with the minimum volume needed 
to encompass the lesion in three dimensions. The METRO 
software was used to longitudinally track 176 BMs treated 
within this patient group on a per-lesion basis.

For the manual data collection, images were visual-
ized and measured using Centricity Universal Viewer v.7.0. 
Manual measurement was conducted on the same 176 
BMs by measuring the maximum axial diameter of the BM 
using T1w brain volume imaging (BRAVO) post-Gd-contrast 
sequences. Axial T1w post-contrast images were used when 
BRAVO post-Gd-contrast sequences were lacking.20 Manual 
measurements were conducted by authors L.D.B. and J.M. 
and were reviewed by senior author L.R.G.P.

METRO to Manual Diameter Comparison

A one-to-one comparison of the METRO longest 3D di-
ameter vs. the manual expert-drawn axial diameter was 
made for each BM at all follow-up imaging time points. The 

Importance of the Study

In this study, we aimed to determine how BM meas-
urements obtained by AI compared with the manu-
ally collected data on a one-to-one basis as well as 
to investigate BM SRS response classification per-
formance. We found a strong correlation between the 
manual and AI one-to-one measurements. The advan-
tages of METRO over manual measurement, as found 
in this study, include its longest three-dimensional (3D) 

diameter measurement more accurately capturing 3D 
BMs that deviate from classical spherical shape, and its 
consistent reproducibility in contrast to manual meas-
urements that are subject to human error. AI-driven 
automated BM response classification was accurate 
and therefore can assist in streamlining clinical course 
monitoring and decision-making for patients with BMs.
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correlation between the longest 3D diameter identified by 
METRO and the manual axial diameter was determined 
by basic linear regression. For BMs that had a 100% dis-
crepancy, ie, they were missed by either METRO or manual 
measurement methods, the median BM diameter between 
the two methods was compared to gain insight regarding 
the size of the missed lesions using the Mann–Whitney 
test. All resection cavities were excluded from this analysis 
because METRO was not trained on resection cavity data.19

BM SRS Response Classification

To investigate clinically relevant outcome measurements, 
BM change in size after SRS treatment was investigated. 
Similar to previous work,18 a time window of 6 ± 3 months of 
follow-up time (90–270 days) was chosen. This time window, 
although not long enough to radiologically differentiate be-
tween treatment effect vs. BM recurrence, was chosen to 
investigate BM SRS response while balancing the limiting 
factor of patient OS. The pretreatment longest 3D diameter 
for each BM, determined by METRO, was compared to the 
longest 3D diameter measured on the 6-month post-SRS 
follow-up MRI. Then, the percent change in the longest 3D 
diameter of each BM between pre-SRS and 6-month post-
SRS follow-up was calculated. Response categories derived 
from criteria proposed by RANO-BM14 were modified in ac-
cordance with this study and applied to categorize each BM’s 
response to SRS. BMs that decreased in diameter by at least 
80% or were found to have resolved entirely on  follow-up 
imaging were classified as unappreciable. A 30% or greater 
decrease in diameter was classified as “decreasing,” a 20% 
or greater increase in size was “increasing,” and the re-
mainder were “stable.” Because this study is meant to com-
ment on the volume of change in each BM, rather than the 
clinical disease status, the four classifications used are mod-
erately analogous to RANO-BM classification categories of 
complete progressive disease, stable disease, partial re-
sponse, and complete response.14

The response category classification from METRO was 
compared with the classification based on manual axial 
diameter measurements for the same lesions on the cor-
responding pretreatment and nearest 6-month follow-up 
MR images in the picture archiving and communication 
system (PACS, GE Healthcare). Using manual axial diam-
eter measurement as the ground truth (the current clin-
ically used method), the precision, recall, specificity, and 
F1-score of response assessment categories determined 
by METRO were calculated. Therefore, a true positive indi-
cated that METRO correctly categorized a BM in line with 
manual measurements. Precision is the ratio of the cor-
rectly categorized BMs to all BMs that METRO placed in 
that category. Recall, or sensitivity, is the ratio of correctly 
categorized BMs to all BMs that were placed in that cate-
gory by METRO, as determined by manual axial diameter 
measurement as the ground truth. Specificity is the ratio of 
the negatively categorized BMs by METRO to all BMs that 
were genuinely negative, as determined by manual axial 
diameter measurement as the ground truth. The F1 score is 
the average of precision and recall.

When considering the decision to re-treat a BM, the 
change in its size since the last SRS is of interest, and in 

addition to clinical presentation, can trigger the need for 
closer follow-up and acquisition of other image modalities 
(ie, PET, perfusion, delayed contrast) to verify active tumor 
tissue. Within a clinical context, automatic measurement 
and flagging of BMs increasing in volume is important be-
cause further images and evaluation are needed for such 
cases. Therefore, to best capture clinically relevant quan-
titative data, a modified BM SRS response classification 
system was applied to the dataset, which classified treated 
BMs as either responding or not responding to SRS. The 
“responding” category combines the BM SRS response 
classification criteria (unappreciable, decreasing, and 
stable categories); it was defined as a diameter percent 
change of <20% from pre-SRS measurement to approxi-
mately 6 months follow-up. The “not responding” category 
is comparable to the “increasing” or “progressive disease” 
category of RANO-BM in that the lesions have continued to 
increase since receiving SRS treatment and were defined 
as a diameter percent change of ≥20%. The AI-measured 
change in volume was also compared with the manual 
measurements described earlier.

Results

There were 71 RT-naïve patients with RCC BMs who re-
ceived cranial single- or hypo-fractionated SRS retrospec-
tively identified. The cohort was 49:22 male to female, with 
a median age of 57 years (range 22–77) at primary tumor 
diagnosis, and median age of 62 years (range 24–81) at BM 
diagnosis. There were 176 BMs in the study, with a median 
of 1 BM per patient (IQR: 1–2, range: 1–19). Patients had a 
median of 1 (IQR: 1–2, range: 1–7) SRS courses.

Among the 71 patients, and a total of 176 unique BMs, 
there were 629 unique instances (ie, pre- and post-SRS 
MRI) in which BM measurements identified by both 
METRO and manual measurements were completed on the 
same patient MRI. Resection cavities (n = 23) were then ex-
cluded from further comparison. From the 606 remaining 
instances, 79 measurements were analyzed separately due 
to a 100% discrepancy between METRO and manual meas-
urements. Of the 79 differences identified, 45 BMs were 
missed by METRO (ie, METRO indicated BM volume equal 
to zero whereas manual methods provided a non-zero volu-
metric measurement), and 34 BMs were missed by manual 
measurement methods (ie, METRO provided non-zero vol-
umetric measurement whereas manual methods indicated 
BM volume equal to zero). Of the BMs missed by METRO 
(n = 45), the median BM manual diameter was 2.8 mm 
(IQR, 1.8–5). Of the BMs missed by manual measurement 
(n = 34), the median BM longest 3D diameter was 6.6 mm 
(IQR, 5.4–10.2) (Figure 1). BMs that were missed by manual 
measurement but contoured by METRO were confirmed to 
be true BMs by authors L.D.B. and L.R.G.P. as well as ra-
diology reports where appropriate. The Mann-Whitney test 
comparison resulted in a statistically significant mean rank 
between these two groups (P < .0001), indicating that the 
BMs missed by METRO were smaller than those missed by 
manual methods.

Five hundred twenty-seven instances for comparison re-
mained, representing 70 patients with 175 unique BMs. In 
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the one-to-one comparison of 527 instances between the 
longest 3D diameter determined by METRO, and the man-
ually measured BM axial diameter, the correlation coeffi-
cient was R2 = 0.76 (P = .0001) (Figure 2).

Eighty-four of the 176 BMs had at least one follow-up 
MRI within the specified time window. For patients with 
multiple follow-up scans within this time window, the 
scan closest to 6 months (180 days) was used, as deter-
mined by the minimal difference between the SRS start 
date and all follow-up MRIs within the time window. The 
median time between the SRS start date and the 6-month 
follow-up scan was 134 days (IQR, 107–162). Ninety-two 
BMs were excluded from the BM SRS response clas-
sification due to a lack of follow-up imaging in the time 
window, poor image quality, or other clinical factors. 
Among the 84 BMs that METRO tracked in the specified 
follow-up window of 6 ± 3 months, the calculated longest 
3D diameter agreed with the manually measured axial 

diameter classifications for 47 BMs (Table 1), resulting 
in an overall sensitivity and specificity of 0.72 and 0.85, 
respectively (Table 1). Figure 3A shows the classification 
differences between METRO and the manual classifica-
tion; the manual vs. the METRO-defined percent change 
with the BM SRS response classification percentage 
cutoffs are shaded.

Using modified BM SRS response criteria defined in 
this study, METRO agreed with manual axial diameter-
based classification for 13 out of 18 “not responding,” ie, 
“increasing” BMs (Table 1), when referencing the change 
in manual axial diameter as the ground truth, and 63 out 
of 66 correctly classified as “responding.” Five false nega-
tives (FN1–FN5), ie, BMs that manual measurement-based 
classification determined to not respond to SRS, but 
METRO classified as responding to SRS, are labeled in 
Figure 3B.

Select cases from METRO are displayed in Figures 4  
and 5.

Discussion

The focus of this study was to determine how BM meas-
urements obtained by AI compared with the manually 
collected data on a one-to-one basis as well as to inves-
tigate BM SRS response classification performance. A 
strong correlation was found between the manual and 
AI one-to-one measurements. As expected, the longest 
3D diameter of a BM measured by METRO was found to 
be longer than the manual measurement of the longest 
3D diameter on the axial plane, as shown in Figure 2. 
Because they are inherently different measurements, a 
perfect one-to-one correlation would not be expected. 
Although standardized across the field, the manual axial 
diameter measurement may not represent the full pic-
ture. For example, when lesions deviate from a spher-
ical shape and expand in the coronal or sagittal planes, 
ie, a cylindrical BM (Figure 4), the longest 3D diameter 
can more accurately capture the maximum diameter of 
the BM. Accordingly, many of the points falling below 
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with Repeated Observations (METRO) (n = 45) had a median man-
ually measured axial diameter of 2.8 mm (IQR, 1.8–5). BMs missed 
by manual methods (n = 34) had a median BM longest 3D diameter 
of 6.6 mm (IQR, 5.4–10.2).

60 10

8

6

4

2

0

40

20

0
0 20 40 60 80 0

METRO Longest 3D Diameter (mm)

M
an

ua
l A

xi
al

 D
ia

m
et

er
 (

m
m

)

2 4 6 8 10

Figure 2. MEtastasis Tracking with Repeated Observations (METRO) longest 3D diameter calculated from the brain metastases (BMs) volume 
vs. manual axial diameter for n = 527 BMs. R2 = 0.76.
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the line of equality are shown in Figure 2, indicating 
that the longest 3D diameter measured by METRO is, 
as expected, consistently larger than the corresponding 
manual axial diameter measurements.

In addition, for lesions with irregular shapes, it can be 
difficult for an observer to manually measure the maximal 
diameter and identify the true maximal extent of a lesion. 
On the other hand, an automated method can easily iden-
tify the true full extent of the disease through a geometrical 
calculation (Figure 5).

Lastly, AI software, such as METRO, offers 3D volumetric 
information about a BM. This can provide a more com-
plete picture of how the BM is responding rather than a 
simple diameter estimate. In addition to volume and di-
ameter, many other metrics indicative of size and shape 
can be easily obtained by METRO, such as elongation and 
sphericity.

METRO AI suffers from the limitations of the detection 
and segmentation algorithm that it utilizes for lesion iden-
tification. In a previous study, our group described and 
characterized the 3D CNN algorithm utilized in METRO 
for BM identification and obtaining the volume measure-
ment.19 The results of the study demonstrated that the al-
gorithm has near 100% detection sensitivity for larger 
lesions, which drops under 90% for lesions smaller than 
5 mm, and METRO follows that trend, as shown in Figure 
1. BMs that fell below the detection sensitivity of METRO 
were missed (n = 45). However, the manual detection also 
missed BM measurements (n = 34), and the manual misses 
were in a less predictable manner because they included 
lesions of all sizes, as shown in Figure 1. The known and 
well-characterized performance of an AI algorithm can 
be seen as advantageous compared with the more ran-
domized human error seen in the detection by manual 
human measurements. The 34 BMs missed by manual 
measurements occurred on 20 unique BMs over consecu-
tive follow-up MRIs. This is likely partially attributed to the 
scenario in which a BM shows no contrast enhancement 

in one time point and then shows enhancement on a later 
follow-up MRI. The recurrence may not be found due to 
human error because they stopped tracking once the en-
hancement was gone.

METRO displayed good precision, recall, and specificity 
in identifying increasing and unappreciable BMs in the BM 
SRS response classification (Table 1). In terms of the inter-
mediate categories, ie, stable and decreasing, which have 
a narrow percent change range, performance was reduced, 
as shown in Figure 3A. Specificity remained high across all 
4 categories (Table 1). For most BMs studied, which were 
<20 mm in diameter, an approximately 2 mm difference 
in the diameter measurement can make a 10–20% differ-
ence in percent change that would cause a BM to become 
reclassified, especially among categories that only span 
a narrow percentage range. In addition, many of the dis-
agreements between METRO and the manual measure-
ment classification in the decreasing category resulted 
from small lesions (<5 mm) not being detected by METRO 
and therefore incorrectly classified as unappreciable. 
When extrapolating such misclassifications to the clinical 
management of patients, a >50% reduction in the size of 
a small BM vs. a 100% complete disappearance would be 
considered a success in SRS and would not require further 
surveillance or treatment.

Identifying and tracking the increase in BM volume 
after treatment will have a significant impact on the 
patient’s continuous care. BM size increase will prompt 
closer follow-up, potentially with different image modal-
ities, or additional MRI sequences, to establish whether 
the increase in volume is due to active tumor growth, 
treatment effect, or radiation necrosis. To investigate the 
performance of METRO for BMs that continue to increase 
after RT, a clinically based binary decision was applied 
to these metrics. When combining the three BM SRS re-
sponse classification categories of stable, decreasing, 
and unappreciable to a binary clinical decision of not re-
sponding or responding (Table 1), METRO had a similar 

Table 1. Confusion matrix to determine METRO’s BM classification performance. Bold values indicate agreement between METRO and manual 
determination

METRO predicted classification Ground truth (manual axial diameter)

Increasing Stable Decreasing Unappreciable

Increasing 13 2 1 0

Stable 3 6 7 3

Decreasing 1 2 5 6

Unappreciable 1 1 10 23

Not responding Responding

Not responding 13 3

Responding 5 63

BM classification Precision Recall Specificity F1-score

Increasing 0.81 0.72 0.95 0.76

Stable 0.32 0.55 0.82 0.40

Decreasing 0.36 0.22 0.85 0.27

Unappreciable 0.66 0.72 0.77 0.69

Not responding 0.81 0.72 0.95 0.76
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performance to the manual observer. A specificity of 
0.95, ie, a reliable classification of a BM as responding 
to SRS or not increasing in size, can be helpful in clin-
ical decision-making, especially in complex patient cases 
where there are multiple new and old lesions to con-
sider. In turn, this would allow the clinician to focus on 
BMs of interest in an expedited manner, ultimately al-
lowing for improved treatment management. The sen-
sitivity of 0.72 is not sufficiently high to confirm that a 
BM is not increasing in size. The metric of classification 

performance is impacted by the difference between the 
longest 3D diameter determined by METRO and the cor-
responding manual axial diameter measurements, which 
further highlights the need to correlate BMs with addi-
tional clinical imaging studies.

BMs that increased in size, but were incorrectly classi-
fied as responding by METRO, were further investigated 
(n = 5). False negative 1 (Figure 3B) was likely misclassi-
fied due to a lack of contrast uptake by the BM, which is 
relied upon by METRO to properly segment it from the 
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surrounding brain tissue. False negative 2 (Figure 3B) was 
likely misclassified resulting from MRI limitations due to 
patient motion artifact. False negatives 3, 4, and 5 (FN3, 
FN4, and FN5, Figure 3B) were likely misclassified due to 
the difference between calculating the 3D longest diam-
eter (METRO) vs. the manual axial diameter. For such BMs, 
an increase in diameter was measured manually on the 
axial plane whereas they remained stable on the plane of 
the longest 3D diameter. For these cases, BM volume from 
METRO, where the lesion is evaluated as a 3D structure, 

would likely be the most accurate way to capture the BM 
change in size.

Limitations of MRI technology, such as patient motion 
artifact and resolution, will continue to affect the accuracy 
of AI-driven detection and segmentation of BMs in terms 
of maximizing sensitivity and decreasing false positive 
detections.19,21–26 The high specificity of METRO in classi-
fying BMs that were responding to treatment will allow 
physicians to quickly focus on BMs of interest for poten-
tial re-treatment and spend less time manually analyzing 

t = 42 d

t = 130 d

Figure 4. Brain metastases measurements by manual methods and MEtastasis Tracking with Repeated Observations (METRO) at two time 
points, t = 42 days and t = 130 days, showing an increased discrepancy between measurements as the lesion becomes cylindrical rather than 
spherical at a later time point.

Figure 5. An irregularly shaped brain metastasis segmented by the MEtastasis Tracking with Repeated Observations (METRO) process is 
shown.
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BMs that have a confirmed reduction in volume. The 
AI-driven segmentation of BMs from METRO provided 
lesion volumes. In current practice, such segmentation 
would require significant manual effort and a lot of time 
to accomplish by clinicians; however, AI-driven segmen-
tation makes this data feasible to obtain in a relatively 
quick timeframe with minimal user interaction. Although 
no current classification system uses BM volume, this 
method will provide more accurate information for non-
spherical BMs as well as information on a patient’s overall 
intracranial tumor burden27,28 and therefore can assist 
clinicians when following their patients post-treatment.

Conclusions

In this study, manual axial diameter measurements of BMs 
were compared with measurements created by METRO, 
an AI-based tool for automated detection and segmen-
tation of intracranial metastases. Although METRO 
measures BMs based on their longest 3D diameter, the 
measurement strongly correlates to that of the currently 
used clinical method. The known and well-characterized 
limitations of detection sensitivity in METRO may have an 
advantage over that of random human error when con-
sidering missed lesions, especially when considering the 
time savings for clinicians who would not have to obtain 
BM size estimates. Furthermore, METRO performs well 
with detecting and measuring large BMs, which have the 
highest impact on patient quality of life and OS. With fur-
ther refinement of training datasets for METRO, its ability 
to aid clinical decision-making will be enhanced. Because 
AI tools, such as METRO, can be used to acquire large vol-
umes of data over long treatment courses for patients, 
applications of big data analytics will be of value to study 
BM growth curves and how they correlate to clinical char-
acteristics that can refine longitudinal BM management 
and patient care.
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