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Abstract: The cellular prion protein, notorious for its causative role in a range of fatal neurodegenerative
diseases, evolved from a Zrt-/Irt-like Protein (ZIP) zinc transporter approximately 500 million years
ago. Whilst atomic structures for recombinant prion protein (PrP) from various species have been
available for some time, and are believed to stand for the structure of PrPC, the first structure of a ZIP
zinc transporter ectodomain was reported only recently. Here, we compare this ectodomain structure
to structures of recombinant PrP. A shared feature of both is a membrane-adjacent helix-turn-helix
fold that is coded by a separate exon in the respective ZIP transporters and is stabilized by a disulfide
bridge. A ‘CPALL’ amino acid motif within this cysteine-flanked core domain appears to be critical
for dimerization and has undergone stepwise regression in fish and mammalian prion proteins.
These insights are intriguing in the context of repeated observations of PrP dimers. Other structural
elements of ZIP transporters and PrP are discussed with a view to distilling shared versus divergent
biological functions.
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1. Introduction

Prion proteins are notorious for their central role in fatal neurodegenerative diseases in a subset
of mammalian species, including humans [1–3]. In prion diseases, the cellular prion protein (PrPC)
undergoes structural rearrangements to a β-sheet-rich conformer termed PrPSc (named after Scrapie in
sheep, the first known prion disease). That essential role of PrP in these disorders was demonstrated
by showing that the knockout of the prion protein gene (Prnp) renders mice refractory to acquiring
the disease [4]. A side-product of mouse Prnp knockout studies undertaken concomitantly in several
laboratories was the identification of a paralog of the prion gene, termed Doppel (Dpl). Dpl maps to
a genomic region C-terminal to Prnp and, consequently, was determined to have arisen from a gene
duplication event [5,6]. Further genomic sequence analyses revealed that the Shadoo (Sho) gene coded
for an additional prion protein paralog [7,8]. The ancestry of this small gene family was enigmatic until
2009 when PrP was initially observed to interact with a subset of zinc transporters of the Zrt-/Irt-like
Protein (ZIP) family [9], and subsequent bioinformatic analyses revealed PrP and ZIP transporters to
meet several criteria that establish common ancestry [10]. The evolutionary relationship was particularly
apparent in comparisons of PrP and ZIP ectodomain sequences in fish genomes, which exhibit a degree of
sequence similarity and identity previously reported in pair-wise sequence comparisons of PrP and Dpl,

Pathogens 2018, 7, 4; doi:10.3390/pathogens7010004 www.mdpi.com/journal/pathogens

http://www.mdpi.com/journal/pathogens
http://www.mdpi.com
https://orcid.org/0000-0001-5102-8706
http://dx.doi.org/10.3390/pathogens7010004
http://www.mdpi.com/journal/pathogens


Pathogens 2018, 7, 4 2 of 11

or PrP and Sho. In contrast to ZIPs, which are multi-spanning transmembrane proteins, the prion protein
is anchored in the membrane by a glycosylphosphatidylinositol (GPI) anchor, a shift in topology also
observed in other protein families [11,12]. Consistent with the view that the prion protein founder gene
represented a truncated ZIP gene, such a shift in topology can be experimentally induced when a gene
coding for a transmembrane protein is truncated at the 3′ end of its first transmembrane domain [13].

Whereas the biology of the prion protein in health and disease has been extensively studied
and reviewed [3,14,15], considerably less is known about ZIP transporters, which are coded by
members of the solute carrier 39a (Slc39a) gene family. In humans and mice, this family comprises
14 genes, whose gene products appear to be tasked with the import of zinc and other divalent cations
into the cytosol, either from the extracellular space or from intracellular compartments. Autosomal
recessive mutations in ZIP4 and ZIP13 genes have been linked to Acrodermatitis enteropathica, a rare
zinc deficiency syndrome [16], and a form of Ehlers-Danlos syndrome characterized by a skeletal
dysplasia that mainly affects the spine, and also causes developmental deformations of the hands [17].
The latter symptoms speak to an emerging pattern of ZIP-dependent phenotypes that point toward
roles of these proteins in specific morphogenetic programs. In particular, members of the so-called
LIV1 subfamily of ZIPs, featuring ectodomains with homology to PrP [10], stand out in this way
(Figure 1A). For instance, ZIP6 and ZIP10, the ZIP transporters most closely related to PrP, were
shown to contribute to the mammalian oocyte-to-egg transition [18]. Moreover, the morpholino-based
knockdown of ZIP6 or ZIP10 caused an embryonic arrest in zebrafish that exhibited characteristics of
an impaired epithelial-to-mesenchymal transition (EMT) [19,20]. Test embryos exhibited a phenotype
reminiscent of a similar impairment to that observed following the knockdown of PrP in the same
paradigm [21]. The striking overlap in ZIP6- and ZIP10-dependent phenotypes was recently resolved
by data, which clarified that these proteins form a functional heteromer [19,22]. The ability of these ZIPs
to interact directly may also account for their original appearance amongst a short list of PrP interacting
proteins [9]. This theory assumes that PrP inherited structural features responsible for interactions
amongst these ZIPs from a common ancestor. It is currently unclear whether direct or third-party
interactions underlie shared links of PrP and ZIPs to EMT. Recent work in NMuMG cells, a mammalian
EMT model, put a spotlight on the neural cell adhesion molecule (NCAM1), by showing that not just
PrP [23–25] but also the ZIP6-ZIP10 heteromer [22] predominantly interacts with this cell adhesion
molecule. However, although both PrP and ZIP6-ZIP10 affect post-translational modifications on
NCAM1 during its involvement in EMT, they do so in different and perhaps complementary ways.
More specifically, whereas signaling downstream of PrP was shown to control the transcription of
the sialyltransferase (ST8SIA2) that mediates NCAM1 polysialylation [26], the ZIP6-ZIP10 heteromer
appeared to control NCAM1 phosphorylation at a specific cluster of cytosolic phosphoacceptor sites
through its recruitment of GSK3 [22].

What are the structural features that govern these similarities and differences between PrP and its
closest ZIP family members? Until recently, high-resolution structural data were only available for
recombinantly expressed PrP [27–29], but not for ZIPs. According to these data, prion proteins from
various species are composed of a disordered N-terminal domain and a folded C-terminal domain
characterized by three α-helices and a short two-stranded β-sheet. The two most C-terminal α-helices
form a conserved helix-turn-helix fold that is stabilized by an internal disulfide bridge and can be
post-translationally modified by up to two complex N-glycans. Attempts to solve the structure of a fish
prion protein, which presumably would be more closely related to ZIP ectodomain structures, were
not met with success [30]. Finally, the first high-resolution crystal structure of a ZIP ectodomain [31,32]
became available in the past couple of years. This was followed by the discovery of a separate structure
of a prokaryotic ZIP containing the transmembrane domain conserved in the ZIP family [32]. Although
the ZIP ectodomain structure is from ZIP4, a relatively distant PrP relative [10], the sequence of its
membrane-adjacent domain is sufficiently similar to ZIP6 and ZIP10 to be of interest in this context.
Here we describe this structure, compare it to PrP, and discuss its significance for understanding the
biology and evolution of mammalian prion proteins.
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Figure 1. Comparison of molecular architectures of Zrt-/Irt-like Proteins (ZIP)s and prion protein (PrP)
molecules, comprising either helix-rich domains (HRDs) or disordered domains at their N-terminus and
a separate module consisting of helix-turn-helix motifs adjacent to the plasma membrane. (A) Domain
organization of selected members of the ZIP/PrP protein family. The depiction of all proteins was
centered on the predicted site of their insertion into the outer face of the plasma membrane. Pa,
Pteropus alecto; Hs, Homo sapiens; Tr, Takifugu rubripes. (B) Side-by-side views of the bat (Pa) ZIP4
ectodomain monomer (PDB: 4x82; Zhang et al., 2016; Nat Commun) and the human PrP NMR structure
(PDB: 1qm0; Zahn et al., 2000; PNAS). Homologous α-helices are colored in cyan. Just for reference,
the rendering also depicts the position of the side-chain of methionine-129 within the first short β-strand
in PrPC. (C) Comparison of CFC domains of bat ZIP4 (PDB: 4x82) and human PrP (PDB: 1qm0). As the
available bat ZIP4 ectodomain structure does not contain residues C-terminally to the CFC, its structure
ends on the respective cysteine, but the PrP structure extends to the C-terminus.

2. Main

2.1. Comparison of Molecular Architectures of ZIP and Prion Proteins

The ZIP4 ectodomain (from Pteropus alecto, the fruit bat) was solved at a resolution of 2.85 Å and
was shown to be composed of two structurally independent subdomains. Its N-terminal subdomain
of 156 amino acids, bearing no sequence homology to PrP, folds into a globular cluster of nine
α-helices, termed helix-rich domain (HRD). The HRD is connected through a flexible linker to a folded
C-terminal domain comprising amino acid residues 192–322. The latter featured two helix-turn-helix
folds composed of helices α10–α11 and α13–α14 that were connected to each other by a disordered
histidine-rich segment (residues 232–255) and a short α12 helix (Figure 1B). A striking feature of the
ZIP4 ectodomain is that it was crystallized as a dimer, held together by extensive interactions among
the hydrophobic residues on a large interface including the ‘PAL’ sequence motifs present in the middle
of helix α14 of interacting protomers. Hence, it was suggested to refer to the C-terminal subdomain as
the PAL-motif containing domain (PCD). When comparing the ZIP4 PCD to PrP, the most apparent
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shared characteristic is the C-terminal helix-turn-helix fold, which in PrP comprises its helices α2 and
α3 (often referred to as helices B and C). However, helix α2 in PrP is longer than α13 in ZIP4, thereby
spanning homologous sequence segments that encompass ZIP4 PCD helices α12 plus α13 (Figure 1C).
More N-terminal sequence elements present in mammalian prion proteins, including helix α1 (helix A)
and the short two-stranded β-sheet observed in this sequence region, cannot be aligned to structural
elements within ZIP4. While these elements are well-conserved within mammalian PrP, they fall
within a sequence segment that is highly divergent not only in ZIPs but also in fish prion proteins.
The diversity of this region can be attributed to the presence of repetitive elements that are prone
to contract and expand throughout evolution but may also indicate that this region is not essential
for a shared core function of members of this protein family. In the ZIP4 PCD, a relatively short and
disordered histidine-rich fragment (31 amino acids) is present between the pair of helix-turn-helix folds.
The corresponding region is expanded in the subbranch of ZIPs closer related to PrP, encompassing
89 and 232 residues in human ZIP6 and ZIP10, respectively. As the respective N-terminal domain of
mammalian PrPC is known to be highly disordered, one may speculate that N-terminal regions of
related ZIPs might also not acquire a particular fold. This may indeed be the case for ZIPs 6 and 10,
whose histidine-rich fragments, preceding the second helix-turn-helix fold (α13 and α14 in ZIP4 PCD),
are predicted to be unstructured, and which have no sequences that correspond to the HRD in ZIP4.

2.2. Disappearance of CPAL Motif in the Prion Protein Subbranch of ZIP-PrP Protein Family

The ZIP4 ectodomain structure draws attention to the membrane-adjacent helix-turn-helix fold,
which appears to be a core element shared between homologous members of the ZIP/PrP protein family
(Figure 1C). Extensive sequence comparisons of ZIP genes across a multitude of organisms revealed
this sequence segment to have evolved approximately 750 million years ago in a ZIP ancestral gene
around the time when metazoans evolved [33]. The approximate timing of this event can be inferred
from the presence of homologous exons in the genomes of basal metazoan organisms, including
Trichoplax adhaerens, a marine organism with a body plan lacking organs. Whereas the exon-intron
structure of ZIP genes is generally quite diverse, the genomic segment coding for this core region is
invariably flanked by introns in metazoans (Figure 2A). Consequently, the absence of these flanking
introns in all PrP sequences represented one of the strongest pieces of evidence in support of the
conclusion that the prion protein founder gene must have evolved by retroinsertion of a spliced
transcript of an ancient ZIP gene [33]. Additional elements by which this segment is recognizable
include a pair of highly conserved cysteines (hence its designation as the cysteine-flanked core (CFC)
domain) and the aforementioned PAL sequence. Close comparison of PrP and ZIP ortholog sequences
bearing the PAL motif establish that only the proline in this motif is highly conserved, the second
position is very often occupied by a small amino acid (A/G), and the third position by a hydrophobic
one (mostly L/I/V). The motif is often preceded by a cysteine residue and is followed by another
hydrophobic amino acid (mostly L/I/V). A regression of this extended CPALL motif appears to
have occurred throughout PrP evolution, i.e., fish prion proteins lack the cysteine residue, which is
present in its closest ZIP relatives, and a full replacement of the PAL motif with a sequence stretch
characterized by polar amino acids occurred in mammalian PrP genes (Figure 2B). The CFC also
frequently encompasses Nx(T/S) glycan acceptor sites, which, in a subset of prion proteins [34] and
close ZIP relatives [35], were shown to be glycan-occupied, but nonetheless cannot be considered a core
feature of the CFC domain. There is another variation to the CFC that can be observed in a subset of
members of the ZIP/PrP family, namely a relatively large sequence insertion at a site predicted to form
the ‘turn’ within the helix-turn-helix fold. Such insertions are found in ZIP orthologs of some insects
(e.g., the mosquito Anopheles aegypti) and a subset of fish prion proteins (e.g., PrP2 from pufferfish,
Takifugu rubribes). Consistent with the interpretation that the respective region in the native folds of
these proteins must be able to accommodate relatively large additional structures, the second N-glycan
acceptor site in mammalian PrP also maps to this ‘turn’. One may speculate that the lack of the PAL
motif in mammalian PrP is linked to the insertion of this second N-glycan acceptor site. For example,
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it may either functionally replace the PAL motif (see below) or offer some other unknown evolutionary
fitness adaptation.
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Figure 2. The cysteine-flanked core (CFC) domain represents an ancient intron-flanked module, from
which the PAL motif gradually disappeared in the prion protein subbranch of this protein family.
(A) Intron–exon gene architecture of selected ZIP and PrP sequences. The organization of most
prion protein genes resembles the one shown for human PrP. Examples in this panel represent a
wide breadth of available architectures. (B) Multiple sequence alignment of selected CFC sequences
illustrates the gradual loss of the extended CPALL motif in fish and mammalian prion proteins.
The selection of sequences was made with a view to best illustrate trends and features described in
the main text. Note the absence of the cysteine preceding the PAL motif in fish PrP sequences, and
the replacement of the PAL motif in mammalian PrP. Species abbreviations: Hs, Homo sapiens; Mm,
Mouse musculus; Dr, Danio rerio; Tr, Takifugu rubripes; Ga, Gasterosteus aculateus; Md, Mouse domestica;
Gg, Gallus gallus; Ol, Oryzias latipes; Pa, Pteropus alecto; Ci, Ciona intestinalis; Bf, Branchiostoma florida;
Ta, Trichoplax adhaerens; Ag, Anopheles gambiae; Aa, Anopheles aegypti; Ts, Trachemys scripta. Both panels
are derivatives of original Figures 2 and 3 in reference [33] used under CC BY.
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2.3. The CPAL Motif Represents a Dimerization Interface

In the context reviewed here, perhaps the single most interesting insight revealed by the ZIP4
ectodomain structure is the discovery of the ZIP4 dimer interface as being centered on the hydrophobic
PAL motif (Figure 3A). Several lines of evidence suggested for some time that ZIP proteins comprising
a CFC domain can assemble into dimers in vitro, and may also exist as dimers in vivo. For example,
recombinant ZIP5 and ZIP13 ectodomains were observed to purify as homodimers [36,37]. Additional
combinatorial complexity of ZIP protein structures may exist due to the formation of heterodimers.
The aforementioned ZIP6–ZIP10 heteromer is the first example of this phenomenon (note that current
data are consistent with the latter complex representing a heterodimer. However, a rigorous validation
of the stoichiometry of this interaction has not been made, hence its tentative designation as a
heteromer [19,22]). As all of the above proteins share a homologous PAL motif, it is to be expected that
this motif will also be central to their dimerization interface. When the recombinant ZIP4 construct
was truncated C-terminal to its helix α11, the expressed protein no longer eluted as a dimer on
size exclusion chromatography, indicating that the CFC is indeed essential for dimerization [31].
Moreover, a serine-to-cysteine replacement of the amino acid that precedes the ZIP4 PAL motif,
thereby mimicking the predicted dimerization interface of the ZIPs that naturally harbor a cysteine in
this position, caused the mutant to migrate in a Western blot as an SDS-resistant dimer (Figure 3B).
This finding is intriguing, as it suggests the enhanced stability of the mutant dimer is due to the
respective cysteine residues in the interacting monomers forming a disulfide bridge in trans. Consistent
with this interpretation, the protein shifted to monomeric molecular weight, when the same samples
were subjected to disulfide bridge reducing conditions prior to their SDS-PAGE separation. Additional
evidence supporting this dimerization model came from the biochemical characterization of the
ectodomain of ZIP14 (from Pteropus alecto), which naturally possesses a cysteine residue immediately
preceding the conserved proline residue. Again, as for the aforementioned artificial ZIP4 mutant,
a disulfide bond-mediated dimer was observed in the SDS-PAGE analysis, and a cysteine-to-serine
substitution led to a monomeric species under non-reducing condition. These results corroborate the
conclusion that the PAL motif-centered dimerization represents a universal model for ZIPs containing
this motif in their ectodomains.

Whereas there seems to be good agreement on the predominant existence of ZIPs comprising
a CFC domain as dimers, the same cannot be said for PrP, although PrP dimers were repeatedly
reported. For instance, a 60 kDa PrP dimer was initially observed in murine neuroblastoma cells
expressing hamster PrP [38]. Extensive subsequent recombinant work with various PrP constructs,
which most often relied on in vitro refolding steps, revealed the protein to give rise to monomeric
NMR structures [28]. The folding repertoire of PrP is more complex though, as the protein could
be observed to crystallize as a monomer or dimer [39]. Curiously, subtle differences in the protein
sequence (e.g., single amino acid mutations or the presence of the M129V polymorphism) were critical
for whether the protein crystallized as a non-swapped or swapped dimer, and seemed to determine the
specific architecture of the dimer interface [38,40]. Although the aforementioned studies corroborated
the notion that PrP can adopt a surprising diversity of conformational states, the in vivo relevance of
these states is difficult to gauge. Cell-based studies with N-glycosylated wild-type PrPC observed a
monomer–dimer equilibrium on the basis of crosslinking experiments, size exclusion chromatography,
and enzyme-linked immunosorbent assay analysis [41]. Similarly, expression of cattle, hamster and
human PrP in baculovirus-transduced insect cells led to dimeric PrP [42]. It is currently not understood
if differences in the folding behavior of PrP in bacterial or eukaryotic cells merely reflects a need
for a eukaryotic cellular protein folding environment, indicates that the attachment of N-glycans is
critical for dimer formation, or has other causes. That dimerization might play a critical role in PrP’s
biogenesis and trafficking was corroborated by fusing it to the dimerization domain of the FK506
binding protein (Fv). When dimerization was induced by the addition of an Fv dimerization ligand,
the authors observed profound increases in the levels of PrP that reached the cell surface [43,44].
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Figure 3. The CPAL motif present in LIV-1 and fish PrP sequences represents a dimerization interface.
(A) Structural model of human ZIP4-ECD dimerization interface based on the crystal structure of
Pteropus alecto ZIP4-ECD. The two protomers are colored in green and cyan, respectively. The residues
in the ‘SPAL’ sequence are shown in stick mode. The ‘*’ symbol indicates the residues from the other
protomer. The yellow dashed line shows the distance between the Cβ atoms of the two interacting
S297 residues. (B) Validation of the dimerization interface in (A) by substitution of S297 with a cysteine
residue in the full-length human ZIP4 expressed in HEK293T cells. Both panels are derivatives of the
original Figure 3C, D in reference [31] used under CC BY.

Currently available data on dimerization motifs for mammalian PrP indicate that these are
non-homologous to the ZIP4 dimer interface discussed above and instead rely on structural features
not shared with this ZIP transporter. It remains to be seen to which extent the structures of more
closely related ZIPs will be informative for understanding this aspect of the biology of mammalian PrP.

To date, the smallest extensively studied PrP deletion construct known to convert and transmit
prion-like disease in mice was of 106 amino acids (∆23–88, ∆141–176) [45]. This expression product
comprised the entire helix CFC domain, which in human begins at amino acid 179. However, although
the CFC is a critical component of disease-associated prion proteins, and appears to be retained in their
proteinase-resistant core of 27 to 30 kDa (PrP27-30), the study of ZIPs may not help us elucidate their
structures (the reader is reminded that even fish PrP or the mammalian paralogs Dpl and Sho have not
been shown to undergo prion-like conversion). Rather, we anticipate that comparative analyses of PrP
and ZIPs may continue to help elucidate the physiological function of PrPC, and may hold a key to
understanding the molecular mechanisms by which PrP affects its next neighbors.

Based on the striking conservation of the PAL motif in fish PrP sequences, our prediction is that the
latter not only exist naturally as dimers, but also adapt the interface seen in ZIP4. Dramatic effects of
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point mutations on the ability of ZIP4 to fold and reach the cell surface [16,31] and a strong interaction
of the ZIP6–ZIP10 complex with calreticulin (an ER resident chaperone) suggest that the assembly of
ZIPs might be intricate. It then may not come as a surprise that fish PrP was observed to be refractory
to recombinant protein refolding protocols that repeatedly produced high-quality NMR structures
for mammalian prion proteins [30]. It is tempting to speculate that a move to a eukaryotic expression
system, possibly augmented by a tyrosine-to-cysteine replacement of the tyrosine preceding the ‘PAL’
motif present in fish prion sequences, will lead to better-behaved fish PrP expression products [30].

3. Conclusions

Studying the physiological function of homologous segments within ZIPs may hold a key to
understanding elusive aspects of the biology of PrP. Nonetheless, because ZIP4 is a relatively distant
PrP relative, there are limits to the extent insights into its biology will be informative for understanding
PrP. However, this overall approach should become more valuable once structures for the ZIP6–ZIP10
heteromer become available. Already, this general comparative approach has precipitated research that
revealed a role of PrP in EMT [26]. It also was instrumental for understanding that the PrP–NCAM1
interaction is unlikely to have evolved following the split of PrP sequences from its ZIP relatives, but
was most likely inherited by PrP and the ZIP6–ZIP10 complex from a common ancestor [22]. Currently
missing are insights into the molecular workings of PrP and the molecular mechanisms by which its
presence influences its interactors. We anticipate that major advances in this direction will be made
once the ZIP6–ZIP10 complex can be functionally interrogated to dissect how structural elements
within this complex affect its function.
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Abbreviations

Aa Anopheles aegypti
Ag Anopheles gambiae
AE Acrodermatitis enteropathica
Bf Branchiostoma florida
CDF cation diffusion facilitator
CFC cysteine-flanked core
Ci Ciona intestinalis
CTD carboxy-terminal domain
Dm Drosophila melanogaster
Dr Danio rerio
ECD extracellular domain
Ga Gasterosteus aculateus
Gg Gallus gallus
GPI glycosylphosphatidylinositol
HRD helix-rich domain
Hs Homo sapiens
LZT LIV-1 subfamily of ZIP zinc transporters
Md Monodelphis domestica
Mm Mus musculus
Ol Oryzias latipes
ORF open reading frame
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Pa Pteropus alecto
PCD PAL-motif containing domain
PL prion-like
PrPC cellular prion protein
SLC solute carrier
Ta Trichoplax adhaerens
TM transmembrane
Tr Takifugu rubripes
Ts Trachemys scripta
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