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Abstract: A novel and innovative solution addressing wind turbines’ main bearing failure predictions
using SCADA data is presented. This methodology enables to cut setup times and has more flexible
requirements when compared to the current predictive algorithms. The proposed solution is entirely
unsupervised as it does not require the labeling of data through work orders logs. Results of
interpretable algorithms, which are tailored to capture specific aspects of main bearing failures,
are merged into a combined health status indicator making use of Ensemble Learning principles.
Based on multiple specialized indicators, the interpretability of the results is greater compared to
black-box solutions that try to address the problem with a single complex algorithm. The proposed
methodology has been tested on a dataset covering more than two year of operations from two
onshore wind farms, counting a total of 84 turbines. All four main bearing failures are anticipated at
least one month of time in advance. Combining individual indicators into a composed one proved
effective with regard to all the tracked metrics. Accuracy of 95.1%, precision of 24.5% and F1 score
of 38.5% are obtained averaging the values across the two windfarms. The encouraging results,
the unsupervised nature and the flexibility and scalability of the proposed solution are appealing,
making it particularly attractive for any online monitoring system used on single wind farms as well
as entire wind turbine fleets.

Keywords: main bearing; wind turbine; failures; predictive maintenance; ensemble learning; unsu-
pervised; interpretable; scalable; SCADA

1. Introduction

The future is bright for wind energy. New turbines are being installed, technologies
are improving and costs are decreasing. IRENA estimates a tumultuous growth for the
industry, expecting a global installed capacity of 1000 GW by 2050, and new installations
rate of 200 GW/yr, including replacement of old turbines [1]. By the end of 2019 Europe
alone boasted 205 GW of installed wind power capacity [2].

A number of challenges have to be faced in order to reach such ambitious goals, reduc-
ing costs of operation and maintenance (O&M) is paramount. In large wind farms O&M
costs can account up to 30% of the total cost of energy, the influence of physical maintenance
is estimated around 20% of the levelized cost of electricity (LCOE) [3]. Turbines are often
situated in remote locations, the components are bulky and difficult to transport, logistics
costs are significant. The growth of offshore installation, which accounted for 22 GW of
power capacity in Europe in 2019 [2], exacerbates the problem as logistics becomes even
more challenging.

Of all the components in a turbine: the main bearing, which provides support to
the ma axis connecting blades and gearbox, is one of the most problematic in terms of
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maintenance and logistics. Failure rates reaching 30% for single main-bearing and of 15%
for double main-bearing turbines, over 20 year lifetime are reported by Hart et al. [4].
Replacing a main bearing is no trivial task, unlike other systems that can be repaired
in on-tower interventions, a crane is needed and the faulty turbine has to be put out of
production for a long period of time.

Most turbines are equipped with a Supervisory Control and Data Acquisition (SCADA)
system. This is a network of sensors monitoring various physical quantities: such as
temperature, speed and pressure of the principal components of a turbine. International
Standards, such as IEC 61400-25 simplify the representation of turbines and guarantee the
uniformity of information exchange and control design [5]. While initially designed for
control purposes only, SCADA data have also predictive capabilities and it has been used
widely in the literature [6,7].

This articles presents a solution built on SCADA data to address main bearing failures,
predicting the occurrence of future faults, and thus, helping wind farm operators to improve
maintenance and reduce costs related to unexpected failures. Predictions from a set of
understandable indicators, designed to capture different characteristics of the signal, are
combined into a composed health status indicator. Data from two onshore wind farms, for
a total of 84 monitored turbines, is used to evaluate the performances of this solution.

The main contributions of this research can be summarized in three key-points:

1. Present an unsupervised system, requiring minimum setup and limited prerequisites,
capable to monitor entire wind farms.

2. Provide interpretable and understandable predictions, in contrast to black-box solu-
tions.

3. Implement an Ensemble Learning strategy that produces reliable predictions from a
set of understandable indicators, improving their individual performances.

1.1. Main-Bearing Failure Discussion

The rolling elements of wind turbines’ main-bearing are subjected to severe working
conditions, far different from the typical stress that are known in other industrial applica-
tions such as power plants. Windspeed, turbulence index and in general variations of the
wind field conditions have a significant effect on main bearing deterioration [4].

The principal damage and wear mechanisms are reported by Hart et al. [8], defects
in the assembly, design and manufacturing of main bearings lead to premature wear of
the main bearing. Phenomenons such as micro-pitting, spalling, smearing etc. can be
observed [8]. Progressive wear of material leads to sub-optimal operating conditions,
higher localized loads where defects arise and in general overheating of the main bearing.

An incipient main-bearing failure is expected to be preceded by anomalous vibrations
and increases in temperature of the component. In this study, vibration measurements
are not available, thus the attention is given to anomalous patterns in temperature read-
ings. Moreover, temperature signals are easy to interpret and they are part of the typical
recordings of a SCADA system, unlike vibration signals that rarely are available. The use
of temperature data thus make this solution applicable for a wider range of wind-farms.

Different authors have successfully studied temperature behaviors to predict failures
in various turbines’ components. Guo et al. devised a monitoring strategy for turbines’
generators based on tracking of the generator temperature via change detection of a mem-
ory matrix of the component behavior [9]. Qiu et al. presented a thermophysics approach
to assess drive train conditions from which various diagnostic rules are defined [10]. Tonks
and Wang showed experimentally that monitoring temperature can reveal misalignments
and problems of shaft couplings, as these defects increase friction therefore temperature
of the component [11]. Cambron et al. developed a method to monitor main bearing
condition comparing the measured and expected temperture of the component, predictions
were obtained using a physical model of the bearing [12]. Sun et al. describe an anomaly
identification method using mainly temperature readings and other standard SCADA
signals to monitor the behavior of the major components [13].
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One of the main bearing failure event is presented. Figure 1 shows the temperature
profile of the faulty turbine and the average of the wind farm. The damaged main bearing
is evidently warmer than the average. In Figure 2, other evidences of the failure are visible,
the relation between main bearing temperature and wind speed is steeper for the defective
turbine. Moreover, the density distribution of the faulty main bearing is shifted to higher
values than the wind-farm average.

Figure 1. Timeseries profiles of the main bearing temperature of a faulty turbine and the average of
the wind-farm.

Figure 2. (A) Relation between main bearing temperature and wind speed. (B) Probability density
plot of the main bearing temperature of a faulty turbine and the average of the wind-farm.

The paper is organized as follows. Section 2 is a review of previous works available
in the literature. Section 3 provides an explanation of the data used and the applied
pre-processing techniques. Section 4 details how the solution is built, showing the base
components and how they are combined into a single health status indicator. In Section 5,
results are presented and analyzed, followed by Section 6, where a discussion is provided.
Finally, Section 7 contains the final remarks and recommendations for future work directions.

2. Previous Works

Various solutions are available to assess the status of wind turbine components and
predict failures. Methods can be classified by the type of data utilized. Vibrations, currents
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and acoustics measurements are particularly effective to diagnose drive-train failures, as
documented in [14–18]. These solutions require the installation of additional sensors or
in-situ measurements campaigns to collect the data. On the contrary, SCADA system is
available as standard equipment for most turbines and its recordings registered in the
databases of wind farm owners, such that operators who did not think in advance of
data-based predictive maintenance strategy can implement one, using SCADA data, at
minimal additional costs.

SCADA predictive maintenance algorithms can be sorted in multiple categories as
proposed by Tautz and Watson [6]. In this paper, the following are analyzed:

1. Signal Trending;
2. Normality models;
3. Anomaly detection and Clustering methods.

These three methods are reviewed in the following Sections 2.1–2.3. Then, a review
of Ensemble Learning is provided in Section 2.4 since this is an essential component of the
methodology. Relevant applications in predictive modeling and data analysis are discussed.
Gradient Boosting and Isolation Forest are also presented in Sections 2.5 and 2.6, respectively,
as they are used in our solution.

2.1. Signal Trending

The signal trending approach is based on the study of changes and trends in a long
period of time. The underlying hypothesis of this approach is that failures have a sort of
signature that can be detected observing variables such as temperatures.

Astolfi et al. proposed a simple, but effective methodology to monitor turbine compo-
nents. The relation between binned active power and key sensor’s readings such as rotor
and generator bearing temperature are tracked within the wind-farm and through time
obtaining useful visualization of the state of the turbines and an effective failure detection
tool [19]. Cambron et al. proposed a control chart monitoring algorithm based on the
comparison of turbines against wind-farm average to detect problems in the generator [20].
Yang et al. presented a technique to track incipient failures through the analysis of the
relation between some key variables and contextual parameters such as the wind speed,
as shown in the two case-studies the progression of failures is gradual through time and
trends towards anomalous conditions can be observed [21]. Feng et al. devised a failure
detection strategy for gearboxes based on the thermodynamics and physical behavior of
this component, a relation between the loss of efficiency and increase in temperature is
derived and utilized to analyze a known failure [22]. Li and Yu formulated a method based
on the difference of the median of each turbine with the rest of the wind-farm and used
it to build a condition vector. The authors use monitoring charts to generate alarms and
discuss several strategies to deal with autocorrelation of operation data [23].

Main advantages of these methods are: ease of implementation, straightforward
interpretation of the results and limited data requirements. Being based on simple statistics
they can be replicated with minimal knowledge of advanced algorithms and data-analysis
techniques. Moreover, the underlying hypotheses of these methods are rooted in the
thermodynamics and physical principles governing operations of the components. Wind-
farm maintainers often track the same deviations and trends that are automatized by these
algorithms, thus results will sound familiar and understandable.

That being said, many of these methods are univariate and are not capable of capturing
the interactions between multiple variables. Being wind turbines complex systems, based
on the interconnection of mechanical, electrical and electronic components this limitation
can be significant. Moreover, incorporating the influence of external variables, such as
wind speed and external temperature is not trivial for these methods.

2.2. Normality Models

Normal Behavior Modeling (NBM) is a class of predictive algorithms attempting to
infer the relation between a set of inputs and a target variable under normal operation
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of a turbine component. Deviations between predictions and measurements of the target
sensor are used to detect failures.

Schlechtingen and Santos compared simple regression models to more sophisticated
implementations based on neural networks; details on the training and utilization of
normality models are also provided [24]. Puig et al. presented a normality model for
turbine generator and gearbox based on Extreme Learning Machines that can be deployed
in the cloud, allowing real-time operations [25]. Zhang and Wang proposed an artifi-
cial neural network solution for fault detection in wind turbines main bearings, using
SCADA data and able to anticipate failures, allowing to schedule maintenance avoiding
unexpected breakdowns [26]. A self-evolving maintenance scheduler, based on artificial
neural network tracking gearbox bearings conditions is discussed by Bangalore and Tjerrn-
berg [27]. Normality models are a well established solution in wind turbines’ predictive
maintenance field.

The multivariate nature of this approach is suited to capture complex relations between
turbines’ sensors, advanced algorithms and neural network architectures can be used to
detect non-linearities in the data and model turbine behavior.

Two main criticisms can be addressed to normality models. First, the interpretability
of the predictions is scarce as often sophisticated algorithms are used and the influence of
input parameters on the output prediction is not trivial, the behavior is that of a ‘black-box’.
Second, the selection of the training set to feed to the algorithm is crucial. This task is
time-consuming, the sample of data should include all possible operating and external
conditions, thus training set shorter than one year are not particularly reliable. On top
of that, normal operating conditions only should be selected, this involves a thorough
analysis of the turbines logs and eliminations of alarms and unusual operating instances.

2.3. Anomaly Detection and Clustering Methods

Anomalies in SCADA data can be detected modifying NBMs. Instead of predicting
the value of a target variable using regressive models, the physical model underlying input
variables can be learned and the difference between the original and reconstructed signal
tracked. Autoenconders (AE), Restricted Boltzmann Machines (RBM) and Generative Ad-
versarial Networks (GAN) are suited for this task [28–30]. Signal reconstruction algorithms
are capable of capturing non-linearities and produce refined models of the data. On the
other hand, as for NBMs, a training set composed of normal operation data is needed.
Moreover, complex structures such as AE and GANs often require large volumes of data.

Clustering offers an alternative approach, data is analyzed in search of meaningful
groups that can capture interesting relationships within the input variables. Blanco et al.
presented a methodology based on Self-Organizing Maps (SOM) and clustering to assess
wind turbines’ health status [31]. Du et al. also proposed a SOM based solution to identify
system level anomalies [32]. These methods are able to produce insightful representations
of the data, that can help the analyst to discover unexpected, but interesting relationships.
The purely unsupervised nature though, leads to significant problems in the integration of
these algorithms in automatic predictive pipelines. Rules, thresholds and other solutions
are needed to make these solutions valuable in an online system.

A large selection of Machine Learning algorithms can also be used for anomaly de-
tection. McKinnon et al. have studied the performances in condition monitoring of a
gearbox of three popular algorithms: Isolation Forest (IF), One Class Support Vector Ma-
chine (OCSVM) and Elliptical Envelope (EE) and found that depending on the conditions
OCSVM and IF reach best results [33]. Purarjomandlangrudi et al. used Support Vector
Machine (SVM) to process previously extracted features of the data for early detection of
anomalies [34]. Isolation Forest is a particularly interesting approach as it does not require
a normal operation dataset to characterize data, anomalies are determined analyzing the
density of data in the different regions of the feature space [35]. On top of that, these meth-
ods can deal with multivariate distributions and normally require less data and training
time with respect to more complex Deep Learning solutions.
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2.4. Ensemble Learning

Predictions of base learners, sufficiently independent from each other, can be combined
into a meta-predictor which often achieves better performances than the individual predic-
tors. This approach is typically referred to as Ensemble Learning, some of its declinations
are: boosting, bagging, model averaging and stacking.

This learning paradigm is particularly popular in data-science competitions, a famous
example is the algorithm that won the “Netflix Challenge” [36]. An example of Ensemble
Learning in an industry application is presented by Wu et al. that used ensembling to deal
with imbalanced datasets [37]. A meta-learner trained on a subset of base predictors has
been used to improve wind power production in [38,39]. Liu et al. proposed a solution to
detect wind turbine blades icing combining features extracted by Deep-Autoencoders into
an ensemble model where decision is taken by majority vote [40]. Ensembles can be used
to merge information from different data sources, as Turnbull et al. demonstrated using a
OCSVM to combine NBMs of a temperature SCADA and vibration data for gearbox and
generator bearings of wind turbines [41].

Most of the aforementioned literature make use of a meta-algorithm trained on the
predictions of base learners. To do so, a subset of the data have to be withhold to train the
higher level algorithm and adjust its parameters. Work orders are used to label healthy and
faulty operating conditions of turbines. In this research, an alternative approach is taken,
instead of training a high-order classifier, the predictions of the individual unsupervised
algorithms are combined into a single health status indicator, to avoid the necessity of
labeling data.

2.5. Gradient Boosting

First introduced by Friedman, gradient boosting machine is a popular Ensemble
algorithm applied both in classification and regression problems [42]. This technique
makes use of base-learners, typically decision trees, to learn the relation between input and
output data.

The algorithm is iterative as new base learners are routinely trained on a dataset.
The name gradient boosting encapsulates the key idea of this technique: accelerating
the convergence towards the optimum set of parameters that minimizes the adopted
loss function.

Concretely, at each new iteration residuals between prediction and real values are
calculated and larger weights are assigned to the instances where the error is greater such
that more efforts will be made to fit the model to them. The process is repeated until a
stopping criteria, such as the maximum number of iterations or the minimum error, is
reached. The algorithm from the original paper [42] is reported below.

ALGORITHM: Gradient Boosting
Given input data (x, y)N

i=1, a differentiable loss function L(y, ρ), a base learner h(x, a), a
function F(x) to estimate and a maximum number of iterations M.

These are the steps to follow:

1. F0(x) = arg minρ ∑N
i=1 L(yi, ρ)

2. For m = 1 to M do:

3. ỹi = −
[

∂L(yi ,F(xi))
∂F(xi)

]
F(x)=Fm−1(x)

, i = 1, N

4. am = arg mina,β ∑N
i=1[ỹi − βh(xi; a)]2

5. ρm = arg minρ ∑N
i=1 L(yi, Fm−1(xi) + ρh(xi; am))

6. Fm(x) = Fm−1(x) + ρmh(x; am)
7. endFor

end Algorithm

The algorithm works with a large selection of loss functions and guarantees short
training and predicting times. Variations such as XGBoost and LightGBM exist to ad-
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dress some shortcomings of the original algorithm, granting parallel execution and more
tuneable parameters.

2.6. Isolation Forest

This algorithm was introduced in 2008 by Liu et al. [35]. The founding principle of this
method is that anomalies are usually a minority within the data and can be easily divided
from the rest of the dataset. With this in mind, multiple fully developed randomized trees
are fully trained, meaning that each of their terminal leaf is to be composed of one point
only.Trees splits are made setting a random threshold, instead of the optimal one.

Being an Ensemble method this procedure is repeated multiple times, training an entire
forest of decision trees. The average path length, meaning the number of splits necessary to
isolate a given point, is used to define an anomaly score defined in Equation (1):

s(x, ψ) = 2
−E(h(x))

c(ψ) (1)

where E(h(x)) is the average value of the path length for a given point, c(ψ) is the average
path length of unsuccessful search in Binary Search Trees and ψ number of instances.
Values of s approaching 1 are related to anomalies, scores lower than 0.5 are associated
with normal observations and finally, if the entire dataset has scores close to 0.5 no evident
anomalies are present.

3. Data

SCADA data (10 min time resolution) of two onshore wind farms are used. More than
two years of operation are analyzed for a total of 84 turbines. The first wind farm, located
in North America, is made of 66, 1.5 MW rated power turbines; the second one, situated in
Poland, has 18, 2 MW turbines. SCADA data comes in comma-separated values (csv) format
files. The dataset and pre-processing steps are discussed in the following subsections.

3.1. SCADA Dataset

The original SCADA dataset is composed of hundreds of columns, since turbines are
typically equipped with a multitude of sensors monitoring various components. These
sensors record the state of the system at a high frequency. Then, they are downsampled to
lower resolution, most commonly 10 min. Raw signal is summarized by taking its mean,
standard deviation, minimum and maximum value during the aggregation period. An
example of the SCADA dataset is presented in Table 1. In this research, only the main
bearing temperature sensor, active power output, environment temperature, wind speed
and rotor speed are used, reducing significantly the dimensionality of the dataset. The
choice of these variables is dictated by the necessity to characterize the main-bearing
working conditions and the context in which it is operating. The relevance of the variable
selection has been certified by experts of the wind turbine maintenance field.

Table 1. Sample of SCADA data.

Turbine Timestamp Main-Bearing Temp. C◦ Active Power W External Temp C◦ Wind Speed m/s Rotor Speed rpm

WT01 02/01/18 10.00 am 32 1529 −6 14 17
WT01 02/01/18 10.10 am 32 1532 −6 13 17
WT01 02/01/18 10.20 am 32 1532 −6 13 17

3.2. Data Processing

Real-life data is typically affected by missing records or outliers, caused by miss-
communications or defects of the sensors. A preliminary filter of absurd readings is
necessary to reduce the chances of generating false alarms. In the Literature various
data filtering approaches have been proposed, most of them are based on the application
of statistical filters [43]. In this research a manual threshold values based on technical
knowledge of turbines behaviors are used to filter data, as the number of variables to
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analyze is limited. Values trespassing the imposed thresholds have been removed from the
dataset, no imputation nor interpolation are used to fill the gaps.

4. Methodology

The scheme of the proposed solution is illustrated in Figure 3. The three indicators
used to analyze the data are the following: Mean average temperature of the main bearing;
Normality model; and Anomaly detection algorithm.

Figure 3. Diagram of the predictive maintenance solution.

Each indicator is calculated from raw data at 10 min resolution, using the rest of
the wind farm as meter of comparison, a similar approach is used in [19,23,44]. Turbines
belonging to the same wind farm are typically from the same manufacturer and technology.
Moreover, with regard to external conditions, measurements registered at each turbine such
as wind speed and external temperature behave similarly for a given period of time. Results
are aggregated on a weekly basis to account for timely variation of conditions between
turbines that could skew results excessively. The decision of the weekly aggregation time-
frame is dictated by a compromise between ensuring continuous and precise monitoring of
turbines and avoiding to flood maintainers with updates on the wind-farm status. The final
assessment of the main bearing status is given by the comparison between the averaged
value of the combined indicator over a 4 week period and a decision threshold.

A sliding window, as shown in Figure 4 is used to scan the data. On the left side, the
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normality models rolling scheme, train and test sets are illustrated. On the right side, the
rolling window used for the the other two indicators, whose output is calculated directly
on the analyzed data, without the need of a training phase, is shown.

Figure 4. (A) The rolling window train/test scheme used for normality models. (B) The rolling
window train/test scheme used for mean and anomaly indicators.

4.1. Mean Average Indicator

The first indicator tracks the weekly mean average temperature of turbines’ main
bearing. This indicator is used to determine whether some turbines are operating at
consistently higher temperatures with respect to the wind farm. As presented in Section 1.1,
higher temperatures of the main bearing are a common pattern in faulty turbines. An
example of the temperature distribution of main bearings is presented in Figure 5. Variation
between the turbines is evident.

This indicator is straightforward and easy to interpret, but being the measure of a
univariate series, it cannot account for crossed relations between variables such as different
operating conditions of the turbines. Higher temperatures may be caused simply by higher
production conditions.

Figure 5. Boxplot of the main bearing temperature. The median is represented by the red line and
the mean corresponds to the triangle.

4.2. Normality Model

Normality models are used to infer the relation between some inputs and a target
variable, that can characterize the system under analysis. Normal operating data is needed
to train the algorithm and infer the expected behavior of the system. The trained model
can be used to predict values that are compared to the measurements of the target variable.
Large deviations between predicted and observed values are to be considered suspicious,
as they represent deviations from normal behavior.
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The pre-selection of normal data is a time-intensive task as it requires the analysis of
the work order logs to remove faulty data and abnormal conditions. Automating this task
is not trivial and retrain is needed after repairs and modifications of the component. This
research presents an adaptation of normality models that allows to skip the labeling step,
reducing greatly time overheads in the training phase of the model.

A rolling window, as the one shown in Figure 4 is slid over data, its size being 8 weeks
for the training set and 1 week for the test set. The window is then shifted by intervals of
one week for next predictions. Instead of mapping the normal behavior of the turbine, the
recent relation between the input and target variables is inferred during the training phase.

Deviations in this case, help to detect drifts in the target variable distribution as this is
a pattern observed in main bearing failures. Obviously, difference between prediction and
observed records can be the consequence of external conditions (high winds, heat waves,
etc.) novel to the train set, in this case though a systematic error is expected in all turbines
and alarms are unlikely to be raised, as all turbines will have large deviation.

The inputs used for this algorithm are:

• Active power [W];
• Wind speed [m/s];
• Rotor speed [rpm];
• External temperature [◦C].

The main bearing temperature [◦C] is used as output.
The sklearn implementation of gradient-boosting regressor for Python programming

language is used [45,46]. The number of trees is set to 100 and their depth limited to 2,
all other parameters are left to their default values. These parameters are found running
cross-validation trials on a subset of the data. Deviation between a predicted and an
observed value is measured calculating the root-mean squared error (RMSE), defined by
Equation (2), where ŷi and yi are the predicted and the measured value, respectively, and
N is the number of instances analyzed:

RMSE =

√
∑N

i=1(ŷi − yi)2

N
(2)

An example of the predictions for a given week and the RMSE by turbine is presented
in Figure 6. Error is not uniformly distributed for the different operating conditions, what is
important though is the comparison within the wind farm. Turbines that deviate more are
isolated from the rest.

Figure 6. (A) Normality indicator, RMSE by turbine. (B) Timeseries comparison of predicted versus
measured value.
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4.3. Anomaly Detection

Isolation forest algorithm is used to detect anomalies in the windfarm data. Unlike
other indicators that model turbines independently, the whole windfarm is analyzed at
once with the objective to determine turbines that are behaving differently from the rest.

The feature space is composed by:

• Rotor speed [rpm];
• External temperature [◦C];
• Main bearing temperature [◦C].

Sklearn implementation of isolation forest is used [47], the percentage of anomalies
is set to 10% of the data. This value is chosen after a series of tests on the sample of data.
Choosing a higher percentage of anomalies will result in a larger number of normal points
being considered as anomalies. A low value, instead, would lead to the isolation of very
anomalous working conditions, missing other that can be relevant. A different dataset
might require another value for this parameter, thus test of various values and examination
of the indicator results are warmly recommended.

As for the other indicators, anomalies are calculated on a rolling-fashion, following the
train-predict shown in Figure 4. Once anomalies are found, the percentage of anomalous
records with respect to the total number of records for each turbine is calculated, see
Equation (3), where ASi is the anomaly score of turbine i, x̂i is the number of anomalous
points found for this turbine and xi is the total number of points of the turbine.

ASi =
x̂i
xi

(3)

This value is the anomaly detection indicator shown in Figure 7. Turbines having
high percentage of anomalies are behaving differently with respect to the wind farm, thus
should be more reasonably suspected to have some sort of problem. The right side of
Figure 7 illustrates how isolation forest tends to separate data lying in peripheral regions of
the feature space, where density of points is typically lower. On the left side, the percentage
of anomalous points in each turbines for a given week is shown.

Figure 7. (A) Anomaly Indicator plots: percentage of anomalous versus total number of points.
(B) 3D plot showing normal (blue) versus anomalous (red) points.

4.4. Indicators Merge Processing

The results of the individual algorithms are merged, obtaining a composed score of
the turbine status. For each indicator is created a weekly ranking, assigning the percentile
of the wind-farm distribution in which each turbine falls.

The three algorithms are designed to assign higher values to turbines, that according
to their definition are to be considered faulty. The composition of the three values is
calculated using a rolling average, with a sliding window of size 4 weeks as shown in
Figure 8, using Equation (4). Where xij is the value of indicator j for a given turbine in
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week i.

Hind =
1

Nweek Nind

Nind

∑
j=1

Nweek

∑
i=1

xij (4)

Once the composed score is found, a decision threshold that decides if maintenance is
defined. Setting the threshold is a trade-off between anticipating failures and having to do
more maintenance intervention. A cost-benefit analysis is recommended to set this value to
the value that maximizes economic savings, due to lack of information of the specific costs
it has not been possible to optimize in such a way this parameter. A sensitivity analysis of
the results is proposed instead.

Figure 8. Composed indicator calculation scheme and decision threshold setting.

5. Results

Predictions for roughly two years of data are made and evaluated using the work
orders logs. Windfarm operators commonly keep track of the checks and interventions
required by the turbines. Unlike SCADA datasets, work orders logs do not follow standard
formats. Records are typically organized as free-text. The time of the intervention, as
well as the affected turbine and information regarding the actions taken are reported.
Often, work order logs are used to filter data, removing abnormal operating conditions and
assigning a healthy/faulty status to turbines. This research avoided this step, as the absence
of a common standard makes difficult to automatize the labeling process; unsupervised
algorithms have been favored instead. Work orders have been used only to assess the
veracity of the predictions. The work order logs of the failures occurred during the period
of analysis is presented in Table 2.

Table 2. Main Bearing failures work order logs.

Wind Farm Location Failure Date Turbine Comment

1 US 7 October 2017 WT31 Main Bearing Replacement
1 US 24 March 2018 WT62 Main Bearing Replacement
2 Poland 11 June 2018 WT71 Main Bearing Exchange
2 Poland 15 July 2019 WT72 Main Bearing Exchange

A limit to the anticipation period is defined, as an alarm is useful in practical terms
only if it anticipates failures by a margin of time that allows wind farm operators to
organize the replacement of the main bearing, optimizing the logistics and minimizing
energy losses due to unexpected stops of the turbine. Weekly predictions are grouped in
blocks of 4 months, if one alarm occurred during this period the turbine is reported for a
maintenance check.

Performance of the proposed methodology is assessed by a confusion matrix. Predic-
tions are sorted in the following categories:

• True Positive (TP);
• False Positive (FP);
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• False Negative (FN);
• True Negative (TN).

A TP is assigned whenever an alarm is raised and the work order log reports a problem
with the main bearing, if no problem is detected a FP is marked instead. In case a failure
occurs and no alarm is raised, a FN is assigned. Finally, when no failure occurs and no
prediction is given a TN is assigned.

5.1. KPIs Definition

A selection of performance indicators is used to track results, namely: accuracy, preci-
sion and F1 score. Their definition is defined using Equations (5), (6) and (7), respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Precision =
TP

TP + FP
(6)

F1 =
TP

TP + 1
2 (FN + FP)

(7)

5.2. Decision Threshold Sensitivity Analysis

As mentioned in the methodology, the decision threshold is an important parameter.
It has a great influence on the results. A sensitivity analysis is proposed, in which the
dependence of KPIs with respect to the decision threshold value is studied. The results of
this analysis in the two wind-farms are shown in Figure 9.

Figure 9. Relation between KPIs and decision threshold value by wind-farm and indicator.

Firstly, it should be observed that merging the information of the three indicators
generally leads to improved performance, regardless of the decision threshold. Except for
low values of the threshold, that have no practical relevance, since they would lead to an
excessive number of reviews of the turbines.

Secondly, the algorithms are able to separate faulty turbines from healthy ones such
that high decision threshold can be set. A high decision threshold means that only the
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most critical turbines will need checks and most of these reviews lead to the discovery of
relevant problems, rather than false alarms.

That being said, a rigorous evaluation of the benefits and costs of choosing a certain
value for the decision threshold is recommended to wind farm operators interested in
this predictive algorithm. The cost of false alarms and unnecessary checks should be
compared to the savings of early fault detection of a main bearing, and an economic
optimum searched.

5.3. Comparison of Individual and Composed Indicator

The combination of the predictions of multiple algorithms leads to a better overall
performance and this is one of the main claim of this research. This observation has been
utilized in multiple fields of research, but not frequently by the wind energy predictive
maintenance community. Having observed Figure 9, the decision threshold is assigned
a value of 0.95 and a comparison of the available indicators and their composition is
presented in Figure 10 and Table 3.

Figure 10. (A) Performance comparison of individual and composed indicators for Windfarm 1 and
(B) Windfarm 2.

Table 3. Comparison of the results of individual and combined indicator for a threshold value of 0.95.

Windturbine Indicator TP FP FN TN Accuracy Precision F1

WF1 normality 48 600 0 5688 0.905 0.074 0.138
mean 48 600 0 5688 0.905 0.074 0.138

anomaly 48 576 0 5712 0.909 0.077 0.143
merge 48 264 0 6024 0.958 0.154 0.267

WF2 normality 49 120 0 1577 0.931 0.29 0.45
mean 49 146 0 1551 0.916 0.251 0.402

anomaly 49 146 0 1551 0.916 0.251 0.402
merge 49 97 0 1600 0.944 0.336 0.503

Combining predictions of individual indicators into a composed predictor is beneficial
according to all the tracked metrics. Precision and F1 score benefit greatly from the
combination of the indicators. For wind farm 1, precision and F1 scores double with respect
to each single indicator as an effect of decreased number of FP, combining various sources
allows to discard behaviors that are unusual, but not so critical to deserve maintenance
check. Wind farm 2 also manifests an increase of precision and F1, but not as large as wind
farm 1, overall results are better though as a precision of 33.6% and F1 score of 50.3% are
reached. Accuracy is the metric that less benefits from the merging process as the starting
values are already high, but an increase of 3–5 percentage points is recorded.
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The information fusion process increase complexity of the predictive algorithm, but
grants improved performance. Moreover, the design of simpler and specialized algorithms
that focus on the detection of specific patterns in the data helps interpretability of the
predictions. Base algorithms are implemented with the objective of capturing a specific
trend in the data, rather than searching generic relationships within the variables. Once an
alarm is raised the analyst can assess which indicators have greater influence in the alarm
and verify whether the prediction is reasonable and eventually schedule a check of the
turbine.

Information fusion theory and Ensemble learning state that a combined indicator
performs best when its basic components have little correlation between themselves, as
indicators mutually overcome each others shortcomings. The scatter-plot and correlation
matrix of the indicators is presented, respectively in Figures 11 and 12.

Figure 11. Scatter-plot of each pair combination of basic indicator.

Figure 12. Correlation matrix of the base indicators.

The correlation coefficient of the indicators is never greater than 0.4. The amount of
overlapped, redundant information is small, thus making their combination beneficial
for overall predictive performances. Whenever additional indicators are added their
correlation with the existing predictors should be checked. If two indicators are too similar,
then only one should be used and the other may be discarded.
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5.4. Failure Anticipation

Predictions, to be useful, must anticipate a failure by a sufficiently large amount of
time, giving to the wind farm operator the possibility to organize the substitution of the
broken component and adjust turbines production not to incur in fines due to missed
production.

The verification of the anticipation margin is made observing a heatmap representation
of the value of the combined indicator for the two analyzed wind farm. The combined
indicator for wind farm 1 is shown in Figure 13. Two failures occurred and both of them
are preceded by various weeks of high scores of the fault indicator value. A minimum of
one month of anticipation of the main bearing failure is ensured.

Figure 14 presents results for wind farm 2. Both failures are correctly predicted
with a safe margin of time allowing maintenance to be timely organized. Both heatmaps
show turbines with high values of the combined indicator, without recorded maintenance
interventions. This can be caused by concurring failures in other components or different
operating conditions with respect to the rest of the wind farm. That being said, the ratio
between false positives and true positives indicates that the proposed methodology offer a
valid solution to automatize turbine reviews.

Figure 13. Heatmap of the combined main bearing health status indicator for wind farm 1. Failures
are represented by a yellow star.

Figure 14. Heatmap of the combined main bearing health status indicator for wind farm 2. Failures
are repersented by a yellow star.

6. Discussion

The proposed solution is characterized by an increased complexity of the decision
process, when compared to Signal Trending or Normal Behavior Modeling techniques, as
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the information of multiple indicators is considered. Choosing a complete and significant
set of indicators might be challenging, that being said, the presented results prove that it is
a beneficial choice.

This strategy is highly modular, new indicators tailored to capture different behaviors
of the data or utilizing other data streams can be easily incorporated into the decision
process, once their complementarity to the already included indicators is verified. The
use of multiple indicators based on detection of specific patterns in the data provides a
more explainable interpretation of the behavior of the turbine with respect to complicated
solutions processing data in a unique algorithm, often based on black-box structures.

The chosen indicators worked especially well for the detection of main bearing failure.
As presented in Section 5.2, it is possible to set a high value of decision threshold without
undermining failure detection. This means that wind farm operator do not require to
check too many turbines to be sure to anticipate failures, a small number of revisions are
necessary, following this strategy, and most of them will result in the discover of defects.

While more complex, the use of various indicators, proved especially beneficial in
terms of elimination of FPs, as clearly shown in Section 5.3. Precision and F1 score greatly
take advantage of the use of multiple indicators. In the first wind farm precision and F1
score almost doubled their values. The second wind farm benefits in a lower measure of
the merging process, but significant improvements are observed.

Another remarkable characteristic of this approach is the ability to reliably anticipate
failures, as debated in Section 5.4. It is critical to guarantee a margin of anticipation for
main bearing failures, as the logistic is not trivial and a maintenance intervention cannot
be arranged on a short-notice. As it is shown, the predictive methodology anticipated all
four events by at least one month. Wind farm operators are then put in condition to adapt
their production schedule and avoid losses due to unexpected and critical failures of main
bearings.

Ultimately, the decision to avoid supervised learning solutions that require the time-
consuming phase of data labeling helped to decrease greatly setup times of this architecture,
repaying the additional time required to implement a set of multiple indicators and a
merging strategy to aggregate their results.

7. Conclusions

This paper proposes a novel and innovative predictive maintenance solution based on
Ensemble Learning using SCADA data, for wind turbine farms. The main characteristics
of this solution can be summarized in three key-points:

• Unsupervised algorithms;
• Interpretable results;
• Combination of various indicators into a more reliable one via Ensemble Learning.

The time to pre-process and train algorithms is greatly reduced, as labeling of operat-
ing data into healthy and faulty conditions is not required. Incidentally, this techniques
also has more flexible requirements, work orders are not necessary as they are used for
evaluation purposes only. The presented algorithm only requires SCADA data to be put
into production.

The indicators are designed on specific failure patterns, that are easy to interpret (drift
in temperatures, changes in the relation of key variables...). The presented methodology
has been rigorously tested on two year worthy of data from two onshore wind farms, for a
total of 84 turbines.

Results proved that the combination of multiple indicators into a single predictor
grants substantial improvements in performances, reaching an average accuracy of 95.1%,
precision of 24.5% and F1 score of 38.5%. The sensitivity to key parameters as the threshold
that discriminate faulty turbines from normal ones is studied, suggesting that high thresh-
old values leads to good results, as the chosen indicators are able to isolate faulty from
healthy turbines. The anticipation of failure, in all four events analyzed, is no less than one
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month giving wind farm operators time to organize logistics and minimize losses related
to downtime.

Future researches may design additional indicators, as well as define tuning strategies
of the decision threshold, incorporating maintenance costs and savings for early fault
detection and optimize economic benefit of the predictive strategy. If vibration or acoustics
data is available, new indicators could be designed and integrated to improve performances.
It has to be noticed that we have been able to test this methodology on main bearing failures
only, due to the limitations of the dataset at hand. Other turbine systems, such as gearbox
and generator bearings or pitch actuators could have different failure signatures, thus other
indicators might be needed and adjustments to the presented methodology required. The
application of this strategy to monitoring of other components is a line of research that we
warmly recommend to readers.
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