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Introduction

The widespread use of veno-arterial extracorporeal 
membrane oxygenation (VA ECMO) in severe cardio-
genic shock is importantly driven by its relative ease of 
implantation and immediate reversal of inadequate sys-
temic perfusion.1 Yet, clinical management of VA 
ECMO remains challenging and requires mechanistic 
insights and careful monitoring of a proper balance 
between the circulatory needs and the cardiac condition 
of an individual patient.2 Although, VA ECMO allows 
full circulatory support to counteract a severe shock 
state, the continuous, extracorporeal blood flow and 
increased aortic pressure are opposed to the ejection of 
the native, failing heart.

It is increasingly recognized that VA ECMO, espe-
cially peripheral VA ECMO, may significantly increase 
left ventricular (LV) afterload through retrograde infu-
sion of arterialized blood into the descending aorta.1–4 
As a consequence of this inherent limitation of VA 
ECMO, the myocardium is overloaded (Figure 1a) and 
the impaired LV dilates, while increased filling pressures 
and pulmonary edema ensue. All these adverse sequelae 
of VA ECMO not only significantly limit cardiac recov-
ery, but also negatively impact on long-term prognosis.5,6

In order to minimize LV overload and support recov-
ery of the failing heart during VA ECMO, different per-

cutaneous and surgical adjunct interventions to VA 
ECMO have been proven to be useful in clinical prac-
tice, as recently also supported by comprehensive car-
diovascular modeling and computer simulation.2,7

Intra-aortic balloon pump combined with 
VA ECMO

The intra-aortic balloon pump (IABP) has been used as 
an adjunct to VA ECMO for almost two decades and in 
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more than 2,500 patients reported in the literature (sup-
plemental Table 1 and supplemental Figure 1) in order to 
create pulsatile flow and afterload reduction. In post-
cardiotomy, post heart transplantation and medical VA 
ECMO indications, including refractory cardiac arrest, 
concomitant IABP has been considered to be an inde-
pendent predictor of improved survival and facilitates 
weaning from VA ECMO.8–12 Therefore, some authors 
have advocated the use of an IABP for all patients on VA 
ECMO, although this strategy has not universally been 
agreed upon.8,10,11 Recent clinical data are conflicting 
and partly contrast this notion for post-cardiotomy fail-
ure, infarct-related shock and other clinical settings 
based on extensive analyses that do not unequivocally 
support the routine combination of VA ECMO and IABP 
as a clinical standard,13–15 whereas another recent analy-
sis favors its application and suggests a survival benefit.16

Mechanistically, it has been shown that the combined 
use can enhance patients’ blood flow in the native coro-
nary arteries as well as in bypass grafts, although this has 
been questioned in an experimental setting and may 
importantly depend on the VA ECMO configuration, 
cannulation sites and cannula direction.17–19 The IABP 
may also negatively impact on the spinal cord and cere-
bral blood flow during VA ECMO, especially when the 
native cardiac function is severely impaired, while 
experimental studies challenge this notion.19–21 
Moreover, experimental work on the combined use has 

demonstrated an improved myocardial oxygen-supply-
demand balance in central and peripheral VA ECMO,22 
whereas a beneficial impact on the microcirculation 
seems to be lacking.23,24

From a theoretical perspective, the introduction of 
an IABP during VA ECMO could be expected to reduce 
the mean systemic impedance, systolic pressure and 
peak LV wall stress by 10-15%25 (Figure 1b). Therefore, 
adjunct use of the IABP may be indicated in a persis-
tently non-ejecting LV during peripheral or central VA 
ECMO support, where LV thrombosis is impending and 
systolic afterload reduction may allow aortic valve open-
ing and switching to alternative cardiac mechanical sup-
port is not desired or possible.21,26-28 Moreover, clinical 
studies focusing on beneficial effects of the adjunct 
IABP on LV filling pressures have reported reduced cen-
tral venous pressure, pulmonary capillary wedge pres-
sure (PCWP), smaller LV dimensions and less 
pulmonary edema on chest x-ray.24,29,30 This may not 
only have a beneficial effect on pulmonary edema, 
which is thought to complicate at least 30% of VA ECMO 
treatments, but translate into improved prognosis, even 
after successful bridge-to-bridge long-term LVAD strat-
egies.5,6,29 In summary, the LV unloading effect of an 
IABP during VA ECMO is rather limited and the PCWP 
decrease has been reported to reach maximally 5 mmHg, 
which is supported by clinical experience and computer 
simulations (Supplemental data/file 2).7,17,24

Figure 1.  a. LV pressure-volume loops in normal physiology (red), severe systolic left heart failure (dark red) and when systemic 
circulation is supported by VA ECMO 4 L/min (black). Right shift of the loop indicates dilatation, which is worsened with VA 
ECMO, mainly due to an increase in afterload. b. LV pressure-volume loops in severe left heart failure supported by VA ECMO 4 
L/min (black) in conjunction with different support modalities aimed at LV unloading. Intra-aortic balloon pumping (blue) results 
in increasing stroke volumes, with a modest unloading effect, while LV venting into the ECMO system (dark red) achieves better 
unloading. Atrial septostomy (red) achieves efficient LV unloading, but results in smaller stroke volumes, while the most effective 
unloading is seen with the Impella® (green). For further details, see main text.
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Percutaneous trans-aortic LV assist device 
Impella® combined with VA ECMO

The Impella® (Abiomed, Danvers, MA) is a trans-aortic 
LV assist device designed as a catheter-based, micro-
axial impeller pump that provides continuous blood 
flow from the LV into the ascending aorta. The 2.5 
device provides up to 2.5 L/min blood flow and is 
intended for percutaneous short-term mechanical sup-
port in cardiogenic shock,31 but may lack sufficient 
blood flow in patients presenting with profound cardio-
genic shock, when multi-organ failure is impending and 
mechanical ventilation is required.32,33

The Impella® 2.5 and the larger CP device have been 
reported in a number of adult cases (n=151 cases, sup-
plemental Table 1 and supplemental Figure 1) as adjunct 
to peripheral VA ECMO in order to unload the LV,34,35 
representing the second largest clinical experience as LV 
unloading intervention during VA ECMO following the 
IABP. All available Impella® devices for LV support, i.e., 
2.5, CP and the surgical 5.0 device have been combined 
with VA ECMO and revealed a clear reduction of right 
atrial pressure, PCWP, LV volumes and pulmonary 
edema in adults (Figure 1b) and, also, increased pulmo-
nary blood flow and right-ventricular performance34–36 
in children.37 Moreover, a large retrospective analysis 
suggested a survival benefit and improved bridging to 
recovery or additional support therapy when combining 
the Impella® with VA ECMO.35 The Impella® device 
should, therefore, be considered as a powerful LV 
unloading device during VA ECMO, which is also sup-
ported by simulation experiments, indicating a maxi-
mum reduction of PCWP of 10 mmHg and LV volume 
of 20% as a function of Impella® flow (Supplemental 
data/file 2).7

Atrial septostomy during VA ECMO

With an atrial septum bulging from left to right, as visu-
alized on the echocardiogram and indicating higher left-
sided than right-sided filling pressures, it is tempting to 
unload the LV by creating an atrial septal defect.38–40 The 
favorable effect of such a left-to-right shunt on LV 
decompression and LV loading conditions has been 
reported to be significant in neonates,41 children38–40,42 
and adults,40,43 as supported by experimental data7 
(Figure 1b). Yet, it can be technically difficult to create an 
appropriately sized defect, which may critically impact 
on LV unloading and potentially even result in a non-
ejecting LV, cavity and aortic root thrombosis 
(Supplemental data/file 2). Alternatively, a dedicated 
percutaneous device can be used to create well-defined 
sizes of the atrial septal defect,44,45 allowing trans-cathe-
ter exchange of the device as well as replacement with a 
definite closure device when not needed any longer.46  
It should be realized that atrial septostomy has been 

reported as one of the first LV unloading techniques dur-
ing VA ECMO, but remains technically demanding and 
experience is largely confined to specialized centers and 
pediatric patients41 (supplemental Table 1 and supple-
mental Figure 1).

Percutaneous trans-septal left atrial 
pulmonary artery and trans-aortic LV 
venting during VA ECMO

A percutaneous approach to vent the LV by cannulation 
via the interatrial septum has successfully been applied 
in children42,45,47–49 and adults48,50–52 and has, as the 
atrial septostomy, already been reported in the 1990s53 
(supplemental Table 1 and supplemental Figure 1). It is 
understandable that the LV venting effect of a cannula 
in the left atrium is very comparable to an atrial septos-
tomy, as described above. Yet, the blood flow drained to 
the venous side of the ECMO circuit importantly 
depends on the sizing of the cannula and tubing48,51 and 
flow can potentially be controlled by a separate pump 
and, also, temporarily be clamped during weaning. In 
practice, it seems that using a 22F cannula can offer a 
potent, yet variable degree of LV unloading with a 
PCWP reduction ranging between 4 mmHg and 17 
mmHg.52 If the draining cannula is advanced through 
the mitral valve into a non-ejecting LV, ventricular 
drainage will assure circulation of blood in the LV cavity 
and decrease the risk of flow stagnation and cavity 
thrombosis. Alternatively, the percutaneous route can 
also be used to access the LV via a trans-aortic catheter, 
as proposed in experimental and clinical studies in a 
very limited number of cases via an axillary or femoral 
artery approach54–56 (supplemental  Table 1 and supple-
mental Figure 1). An indirect technique using a trans-
pulmonary artery catheter can be adopted for LV 
venting, which is based on experimental findings57,58 
and clinical studies in children and adults.59–61 It is 
important to realize that pulmonary artery venting may, 
theoretically, result in decreased flow in the pulmonary 
circulation, resulting in ischemia of the lung and, there-
fore, implicates close monitoring of pulmonary artery 
flow and/or end-tidal CO2.62

Direct surgical LV, LA and pulmonary artery 
venting during VA ECMO

A direct surgical approach to unloading the LV requires 
an apical vent or a venting cannula introduced via the 
right superior pulmonary vein or, exceptionally, the pul-
monary artery, which requires sternotomy or thoracot-
omy, although minimally invasive approaches have been 
suggested.42,63–67 Although, the experience reported in 
the literature is relatively limited (supplemental Table 1 
and supplemental Figure 1), this might not hold for the 



Donker et al.	 101

regular practice of the technique in selected cardiotho-
racic surgical centers.

Surgical venting techniques use larger-sized cannulae 
compared to percutaneous approaches, which, in turn, 
allow improved venous drainage and substantial LV 
unloading, as supported by clinical experimental data 
(Figure 1b)(supplemental Table 1 and supplemental 
Figure 1),7 yet remain to carry substantial risks of bleed-
ing.68 In addition, patient care and mobilization in the 
ICU is challenging.68 Short-term use of venting post-
cardiotomy as an adjunct to central arterial cannulation 
is supported by some authors, despite considerable mor-
tality and complication rates.42,67

Alternatively, it has been proposed to anticipate tem-
porary LV assist-device implantation upon initiation of 
VA ECMO, including adequate LV venting.66,69 In this 
sense, it can be considered to use a large-sized LV apical 
vent with a minimum of a 32-F drainage cannula. 
Venous drainage of the VA ECMO circuit can be accom-
plished by percutaneous venous drainage, while aortic 
access is obtained with a 10-mm Dacron graft on the 
ascending aorta. This configuration allows tailoring of 
LV venting and RV drainage, using adjustable clamps 
and blood flow meters mounted on the circuit tubing. 
When right ventricular and pulmonary function have 
recovered sufficiently, this VA ECMO setup can easily 
be converted at the bedside to a more sustainable tem-
porary LV assist device by simply removing the drainage 
cannula in the femoral vein.66,70

Practical implications for clinical 
decision making

Peripheral VA ECMO remains the fastest and most reli-
able method to institute systemic rescue perfusion in 
life-threatening cardiac low-output states.1 This extra-
corporeal support strategy provides immediate restitu-
tion of organ perfusion and oxygenation and, therefore, 
enables clinicians to establish a bridge to decision, 
recovery or alternative therapies in a variety of settings. 
Yet, it should be realized that outcome is less favorable 
beyond a few weeks of support due to inherent limita-
tions and the invasiveness of VA ECMO.

Bridging cardiac failure with VA ECMO is challeng-
ing and the potential for short-term myocardial recov-
ery will largely depend on the underlying disease and its 
individual manifestation. Yet, optimal clinical manage-
ment remains a mainstay of VA ECMO support. 
Therefore, it should be realized that LV overload during 
VA ECMO has an estimated incidence of up to 70% of 
cases and may significantly impact on survival.6,35,71 
Clinically, LV overload may initially present as mildly 
elevated filling pressures, pulmonary edema and 
increased left-sided cardiac dimensions. Here, the  

initiation of an adjunct IABP can be considered, based 
on a large body of practice experience, when aiming to 
reduce a PCWP of 20 mmHg or less by maximally 5 
mmHg7,24 (Figure 1b). When more potent unloading is 
required, a percutaneous Impella® should be added to 
the VA ECMO as increasingly reported recently.35,72 The 
unloading effect of the Impella® is comparable to more 
technically demanding percutaneous procedures, i.e. 
atrial septostomy and trans-septal left atrial venting and 
surgical unloading interventions7 (Figure 1b)(supple-
mental Table 1 and supplemental Figure 1). In this con-
text, surgical adjunct interventions are especially 
opportune when patients undergo surgical intervention, 
i.e. thoracotomy or sternotomy, while the role of percu-
taneous pulmonary artery or trans-aortic LV venting is 
unclear, as the reported experience is very limited so far 
(supplemental Table 1 and supplemental Figure 1).

This LV overload situation may also deteriorate into 
a life-threatening accumulation of interrelated cardio-
pulmonary complications, cumulating in pulmonary 
hemorrhage,65 increasing spontaneous echo contrast 
“smoke” and LV thrombosis.5,6,26–28,73 An over-distended 
LV exposed to high myocardial stress, strain, work and 
oxygen consumption, as well as reduced coronary blood 
flow, will likely be unable to recover. Pulmonary edema 
may primarily occur as a consequence of high LV filling 
pressures, but systemic inflammation mediated by 
shock and impending multi-organ failure, as well as 
blood contact to artificial extracorporeal surfaces, may 
contribute. In this context, acute lung injury has been 
shown to significantly impact on prognosis in patients 
receiving VA ECMO, even after successful bridge-to-
bridge therapy.6

Detailed clinical assessment of LV overload may be 
cumbersome, since its biomechanical impact on the fail-
ing myocardium may not be well-represented by stand-
ard clinical diagnostics.3,4,71,74,75 In general, repeated 
echocardiograms, assessment of intra-cardiac filling 
pressures and monitoring of pulmonary edema are 
imperative on a daily basis. Yet, the exact indication, 
timing and LV unloading strategy, i.e. percutaneous or 
surgical, should further be clarified in clinical studies.  
In addition, it has recently been demonstrated that  
the acute hemodynamic effects of all interventions 
detailed in this review can be simulated in computer  
models2,4,7,76 (Figure 1ab, Supplemental animation 
material - animation of heart failure with VA ECMO 
and unloading interventions). So far, these models, i.e. 
Aplysia CardioVascular Lab, Harvi and Basel Heart 
Simulator are scarce and have mainly been used for 
illustrations and educational purposes when simulating 
cardiac mechanical support modalities.2,4,7,31,76 These 
models await further clinical validation and it remains 
to be determined whether clinical decision-making in 
individual patients on VA ECMO can be improved by 
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patient-specific cardiovascular computer modeling 
incorporating VA ECMO and other cardiac mechanical 
support modalities in real time and at the bedside, 
which is technically already possible.2,4,7,76

Conclusion

VA ECMO can provide rapid and adequate cardiovascu-
lar support in patients with severe cardiogenic shock. 
Yet, the occurrence of LV overload during VA ECMO 
support frequently threatens its clinical success and 
should, therefore, be treated promptly. Here, we review 
the whole spectrum of adjunct percutaneous and surgi-
cal interventions that have successfully been used in 
clinical practice to unload the LV. It remains a clinical 
challenge to foresee which patients will benefit from 
adjunct interventions as they carry inherent procedural 
risks and it can be extremely cumbersome to predict the 
expected degree of LV unloading when intervening in 
an individual patient.
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