REVIEW

Prognostic value of circular RNAs expression and their correlation with clinicopathological features in acute myeloid leukemia: a systematic review and meta-analysis

Yasin Mirazimi¹ · Amir Hossein Aghavan¹ · Amir Atashi² · Dayood Mohammadi³ · Mohammad Rafiee^{4,5}

Received: 25 August 2024 / Accepted: 1 March 2025 / Published online: 15 March 2025 © The Author(s) 2025

Abstract

Acute myeloid leukemia (AML) prognosis is affected by unique factors to each individual and studies have indicated that dysregulated expression of circRNAs may serve as prognostic biomarkers for AML. Therefore, we conducted this study to assess the prognostic value of circRNAs expression and it's correlation with clinicopathological features. Comprehensive search was conducted in WOS, Scopus, PubMed, Google Scholar, ProQuest, and grey literature. The certainty of evidence was assessed using the modified GRADE approach for prognostic and clinicopathological meta-analysis. The hazard ratio (HR) was employed to assess the prognostic value of dysregulated expression of circRNAs in patient survival, while the risk ratio (RR) was utilized to analyze the correlation between circRNAs and clinicopathological features. Our results demonstrated that dysregulation of circRNAs expression was associated with poor prognosis related to overall survival (OS) indicator (HR:2.05; 95%CI: 1.75-2.40) and also related to non-OS indicators such as (EFS, LFS, RFS, and DFS) (HR:2.09, 95%CI: 1.47–2.97). Priori and post-hoc subgroup analysis was conducted to describe variables that potentially affected heterogeneity and effect size. We also evaluated the association between dysregulated expression of circRNAs and 19 clinicopathological parameters. Our results show that there is significant relationship between the dysregulated expression of circRNAs and the mentioned parameters: type M6 vs. other types (RR:1.51, 95% CI:1.12–2.03), FLT3-ITD mutation (RR:1.17, 95%CI: 1.00-1.36), and risk status (RR:1.35, 95% CI: 1.13-1.60). This systematic review and metaanalysis suggest that the investigation of circRNAs expression changes can serve as valuable biomarkers for the assessment of prognosis in AML patients.

Keywords CircRNA · AML · Prognosis · Non-coding RNAs · Meta analysis · Survival · Treatment · Recommendation

Abbreviations

AML Acute myeloid leukemia

HR Hazard ratio RR Risk ratio OS Overall Survival

PFS Progression-free survival LFS Leukemia-free survival EFS Event-free survival

Yasin Mirazimi and Amir Hossein Aghayan contributed equally to this work

- Mohammad Rafiee M.rafiee911@gmail.com
- Student Research Committee, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran

DFS Disease Free Survival CIs Confidence intervals

Introduction

Leukemia is one of the major groups of hematological malignancies with malignant transformation of the cells in the bone marrow. Acute myeloid leukemia (AML) is the most common acute leukemia in adults [1, 2] and it is characterized by high and abnormal proliferation and incomplete differentiation of myeloid cells. Following these features, adverse outcomes such as clonal accumulation of blast cells in the peripheral blood, bone marrow and rarely in organs are observed in AML patients. This aberrant accumulation of blast cells prevents the production of healthy and normal white blood cells in the bone marrow. Bone marrow failure can result in leukocytosis with anemia and thrombocytopenia. Moreover, different clinical symptoms such as Fever, fatigue, headache and weight loss are possible in AML patients; ignoring the mentioned symptoms and neglecting the treatment can result in death in a few months by bleeding or infection as secondary complications [3, 4]. In most cases, AML occurs as a de novo malignancy in previously healthy people [3], but it can have other reasons, such as previous exposure to chemotherapy drugs, radiotherapy for the treatment of other cancers or history of underlying hematological disorders [5]. Genetic heterogeneity is one of the most important points about AML malignancy [6]. Chromosomal abnormalities such as inversion, translocation, and deletion are common in AML [6]. However, approximately 50% of patients exhibit a normal karyotype. In such cases, molecular changes, including mutations, play a crucial role in leukemogenesis and predicting prognosis [3]. Based mostly on cytogenetic data, the 5-year overall survival rate of AML patients is split into three groups: favorable (55%), intermediate (24–42%) and poor (11%) [7]. The presence of myeloid blasts in the peripheral blood or bone marrow, flow cytometry and immunophenotyping, extramedullary tissue infiltration, karyotype analysis ar and presence of specific genetic mutations, are diagnostic methods for AML. Despite significant progress in AML treatment, allogeneic stem cell transplantation in eligible patients and chemotherapy with cytarabine and anthracycline are the main methods of treatment. However in most cases, relapse and death of patients have been reported [3].

Advances in high throughput sequencing indicate that about 2% of the human genome is made up of coding DNA sequences; thus, the vast majority of the human genome could be transcripted into RNAs that remain untranslated and are called Non-coding RNAs(ncRNAs) [8]. Based on their functions, ncRNAs are divided into regulatory and

housekeeping groups which, the first of group includes long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) [9]. CircRNAs have covalently closed loop structure with phosphodiester bonds between the 3' and 5' ends and lack of 5'cap and 3' polyadenyl tail conserves them from ribonuclease (RNase) activity; thus, they are more stable compared to linear messenger RNAs (mRNAs) [8–11]. The four main biological functions of circRNAs consist of: First, circRNAs act as a protein adaptor for interaction with RNA binding proteins (RBPs) and their effect on gene regulatory functions. Second, circRNAs act as miRNA sponges. They can bind to miRNAs and regulate miRNA-mediated gene activity. Third, circRNAs act as protein translators. New researches show that circRNAs can encode proteins. For example, circ-ZNF609 could be translated into proteins and control myoblasts proliferation and fourth, circRNAs act as transcriptional regulators. Intron-containing circRNAs regulate RNA polymerase II and promote maternal gene expression [12]. CircRNAs can have tumor suppressor or oncogenic roles and their aberrant expression is effective in tumorigenesis, metastasis and drug resistance in various cancers [10]. The role of circRNAs in the pathogenesis of hematopoietic malignancies and leukemogenesis has been proven in various studies [13].

Continuous monitoring of AML patients, whether before or after treatment, leads to an improved prognosis, better treatment and finally higher survival rate. Therefore, according to the significant features and benefits of circular RNAs, it is possible to identify them as new prognostic factors. Many studies have investigated the role of circRNAs as new prognostic factors. For example, Yi et al. showed that circ-VIM can act as a prognostic marker and its high expression is associated with shorter leukemia-free survival and overall survival in AML patients [14]. Another study predicted that has-circ-0004520 modulates the expression of vascular endothelial growth factor A (VEGFA), which results in angiogenesis in AML-EMI [1]. Extramedullary Infiltration (EMI) in AML is associated with poor prognosis and is known by the accumulation of blasts in extramedullary places such as the liver, central nervous system, skin and spleen [12]. Furthermore, the study of Hongli Chen et al. indicated that circ-ANAPC7 sponging with the miR-181 family and dysregulated their biological functions, which finally worsens the prognosis in AML patients [15]. On the other hand, in AML the information provided by Clinicopathological parameters plays a key role in understanding the disease status and predicting treatment outcomes. It is important to consider the significance of these parameters when diagnosing AML and predicting treatment results, as it helps determine the appropriate strategies for patient care. By examining these parameters, we can improve the accuracy of diagnosis and identify suitable treatment approaches

and ultimately leading to better clinical outcomes for individuals with AML. The evaluation of Clinicopathological parameters encompasses factors like the patient's age, type of leukemic cells, blast cell ratio and chromosomal abnormalities, all of which contribute to predicting treatment outcomes and patient survival.

Finally, based on the mentioned examples and other reasons such as tissue-specific expression and abundance in blood and other body fluids, non-invasive and cost-effective examination can be considered for circRNAs as new suitable prognostic biomarkers in AML patients [8, 10, 11]. So, this study aims to investigate the role of circRNAs in the prognosis of AML patients and their correlation with their clinicopathological features.

Methods

Eligibility criteria

According to the registered protocol (PROSPERO ID: CRD42023399738), we accomplished a systematic review and meta-analysis. This study was carried out based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines [16]. The inclusion criteria were: (A) case-control and cohort study design; (B) confirmation of AML diagnosis was reported for all patients; (C) the studies have provided data (directly or indirectly extracted) relevant to the expression of circRNAs and prognostic and clinicopathological parameters of the patient with AML; (D) the studies that have analyzed the effects of circRNAs on the therapy response or progression of patients with AML. The exclusion criteria were: (A) studies without a complete paper, insufficient data, or just employing an insilico methodology were not accepted; (B) review studies; (C) studies that have worked on animals; (D) Considering the language limitations, only articles in English (at least in the abstract) were considered for this review.

Information sources

The WOS, Scopus, PubMed, Google Scholar, and ProQuest databases were searched, and studies were extracted up to March 2023. Also, grey literature sources such as all conferences.com, conferencealerts.com, and oatd.org were searched. Further, all references to the included studies were reviewed.

Search strategy

Using Medical Subject Headings (MeSH) and non-MeSH keywords, a strategy search formula was developed based

on our research question (PICO). The keywords were used: #1 "RNA, Circular" or "CircRNAs" or "Closed Circular RNA" or "Circular RNA*"; and #2 "Leukemia, Myeloid, Acute" or "Acute Myeloid Leukemia" or "Leukemias, Acute Myeloid". The strategy search formula was: (#1 AND #2) (the full text of search strategies for all databases can be found in supplementary data S1).

Selection process

Following the extraction of studies from databases, duplicate studies were removed. Initial screening of articles for inclusion or exclusion by using the title and abstract information was done by two researchers (A.A and Y.M). Then, the full text of the studies was independently assessed by two researchers to verify whether they qualified to be included according to the inclusion and exclusion criteria mentioned in Sect. 2.1. When researchers were uncertain whether to include the study, the project manager (M.R) consulted with the team to find a consensus. Initial screening was performed on the extracted articles using the webbased software Rayyan [17].

Data collection process

In order to extract data from the included articles, three researchers (A.A, Y.M and D.M) independently conducted their tasks, and if there were unresolvable disagreements, the final decision was made by fourth researcher (M.R). In order to indirectly extract the data from Kaplan Meier curves for prognostic meta-analysis, the WebPlotDigitizer 4.6 software was used and also the methods described by Tierney to indirectly calculate HR and 95% CI was used [18]. To obtain information, the corresponding authors of the included studies were contacted three times (by email) prior to the indirect extraction of data.

Data items

By using a pre-specified form, three researchers extracted the required data. The general data that were extracted were: (1) study characterization, including the first author's name, the name of the circRNAs, study date, country, and year; (2) sample type, sample size (patients and healthy people), the control gene, possible intervention, and follow-up criteria; (3) methods for circRNAs analysis (techniques); (4) Differences in circRNAs expression (upregulation or downregulation); (5) the effects of the circRNAs on the cell biology, microRNA sponging, and so on. (6) the effects of the circRNAs on survival indicators such as OS, LFS, RFS, and so on; (7) the effects of the circRNAs on the treatment response. The specific data that were extracted for

prognostic meta-analysis includes the following: hazard ratio (HR) with 95% confidence interval (CI) for survival indicators (if reported in the article), follow-up time, and survival outcome. Finally, for the meta-analysis of clinicopathological features, the specific data were extracted from the clinicopathologic characteristics tables and are as follows: Gender, risk status, French-American-British (FAB) classification, and different cytogenetic abnormalities and mutations.

Bias assessment

MESH words were used to ensure that no study was missed. Two reviewers (A.A. and Y.M.) reviewed the risk of bias, and discrepancies were resolved by consensus with the project manager (M.R.). The risk of bias assessment was done based on the Newcastle-Ottawa Scale (NOS) checklist for cohort and case-control articles [19] (see supplemental file S2, NOS bias assessment). According to the NOS checklist, each article receives a maximum of 9 points, and the NOS checklist evaluates three domains: selection, comparability, and outcome (cohort studies) or exposure (case-control studies). Each domain is awarded a maximum of one star within the selection and outcome/exposure categories. A maximum of two stars can be given for comparability.

In addition, the certainty of evidence was assessed for the results using the modified method of GRADE assessment for prognostic and clinicopathological meta-analysis [20]. Certainty of evidence shows more confidence than the effect size. The certainty of evidence includes several domains such as study design, risk of bias, indirectness, inconsistency, imprecision, and publication bias (see supplemental file S3 for description of the GRADE framework used). Based on the certainty of the evidence, our metaanalysis results are classified as high, moderate, low, or very low. High certainty means high confidence in the estimated effect, which indicates a close association between the true effect and the estimated effect. Moderate certainty means being moderately confident about the estimated effect, which shows that the estimate of the effect is likely to be close to the true effect, but there is also a possibility that it is substantially different. Low certainty means low confidence in the estimated effect; in fact, the true effect might be substantially different from the estimate of the effect. Very low certainty means little confidence in the estimated effect, meaning that the true effect is likely to be substantially different from the estimate of the effect [20, 21].

Statistical analysis

The data from studies that met the inclusion criteria were synthesized. For prognostic analysis, the hazard ratio (HR)

and 95% CIs were combined to investigate the effect of circRNAs on survival indicators. For clinicopathological meta-analysis, the risk ratio (RR) and 95% confidence intervals (CIs) were used to analyze the correlation between circRNAs and clinicopathological features in AML patients. As the primary study was methodologically heterogeneous, HR and RR values were combined by using the Random Effects Model (REM) [22]. It was determined that the magnitude of association between the study variables and the dysregulated expression of circRNAs and its interpretation area for the prognostic index (HR) and clinicopathologic characteristics index (RR) were the following: 1 to 1.21: trivial (inconsiderable); 1.22 to 1:85: small; 1:86 to 2:99: moderate; 3 or more: large [23]. In order to assess heterogeneity between studies, we used the chi-square test and the I² statistic. It was considered heterogeneous if the I² value was over 50%. For the purpose of assessing the potential sources of heterogeneity for prognostic meta-analysis, priori (as specified in the Prospero protocol, such as expression status, sample size, and follow-up time) and post-hoc subgroup analysis was performed based on the similarity between the included studies. Furthermore, sensitivity analysis of all the included articles were conducted in order to determine the influence of each article on the final effect of the meta-analysis. Publication bias was examined using the funnel plot, Egger's and Begg's tests, and the Trim and Fills method. STATA version 14.2 was used for the meta-analysis, and it was considered statistically significant if the p-value was less than 0.05.

Results

Study selection

The process of study selection based on the PRISMA flow diagram [16] is shown in Fig. 1. A total of 1049 studies were extracted from the mentioned database. Initially, 204 duplicate articles were removed. After two researchers initially screened 845 titles and abstracts, 768 were excluded because they were not compatible with the inclusion and exclusion criteria. Next. 77 studies were selected for full-text examination. 2 full-text studies could not be retrieved, and 17 studies were excluded as a result of the reasons outlined in Fig. 1. Finally, the number of articles included in the qualitative synthesis was 58 [14, 15, 24–79], and the number of articles included in the quantitative synthesis meta-analysis was 21 [14, 24, 26-33, 35, 36, 38-40, 42, 43, 49-52]. Of these, 20 articles were associated with the prognostic metaanalysis [14, 24, 26–33, 35, 38–40, 42, 43, 49–52] and 14 cohort articles were associated with the clinicopathological meta-analysis [14, 24, 26–33, 35, 36, 38, 39].

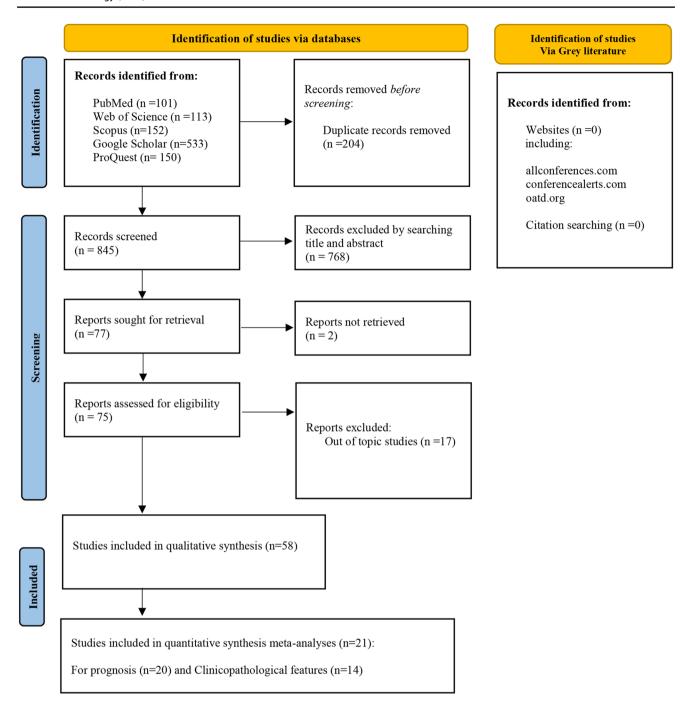


Fig. 1 The study selection processes based on the PRISMA flow diagram

Study characteristics

All the articles included in the qualitative synthesis were published between 2017 and 2023 and included 3243 patients with AML and 2188 controls. For prognostic meta-analysis, the study population was exclusively Chinese, and for clinicopathological meta-analysis, the majority of the study population was Chinese, with the exception of one article with an Egyptian population [36]. Table (1) indicates

the features of the 58 included studies for qualitative synthesis, such as the role of circRNAs in cell biology function and their relationship with various microRNAs, as well as the effect of circRNAs on survival, response to treatment, and so on. In some studies, changes in circRNAs expression were measured using microarrays and confirmed using qRT-PCR. In 45 studies, circRNAs had upregulation expression, and in 13 studies, circRNAs had downregulation expression. In cohort studies, the minimum follow-up period was

therapy resistance patients with high ferroptosis which therapy response onger than those on circ-0001947 nad no value for expression lived circ-0001947 in Foxo3 are more causes the over is a type of cell After standard level of Foxo3 predicting CR chemotherapy with low level Circ-0059706 death. Ferroptosis is widely chemotherapy chemotherapy, Protects AML expression of The effect of Patients with nigh level of CircZBTB46 Cells against the CR stage sensitive to involved in Impact on drugs. Impact on survival (OS², PFS³, LFS⁴, Patients with high of those with low longer LFS time EFS⁵, DFS⁶and longer than that expression had expression was level of foxo3 OS of patients than low level circ-0059706 significantly expression with high patients. so on) cell growth and increases sponge miR-326 as a cell apoptosis in leukemia by apoptotic factors such as (Bim/Bad), Fas and TNF Circ-0001947 sponging inhibits the proliferation Circ-ZBTB46 promotes and promotes apoptosis Circ-0059706 inhibits with miR-329-5p that low level of circfoxo3 down regulated foxo3 proliferation inhibitor and inhibits these pro cell proliferation by sponge miR-326 Mechanism Impact on functions of cells or biological role tumorigenesis / cell proliferation/ cell Cycle The of circrnas' role in the development of MM and the impact on survival and therapy response down regulation cells proliferation/ apoptosis progression/ ferroptosis down regulation cell growth/apoptosis down regulation apoptosis up regulation Expression status Chr^1 Chr 20 ZBTB46 Symbol Foxo3 $1D1^7$ Gen Circ- ZBTB46 Circ-0001947 Circ-0059706 Jiao Zhou Circ-Foxo3 CircRNAs Author's Fei Long Fengjiao Han [45] Jichun Ma [31] name 48

Table 1 (continued)	sontinued)							
Author's name	CircRNAs	Gen Symbol	Chr^1	Expression status	Impact on functions of cells or biological role	Mechanism	Impact on survival (OS ² , PFS ³ , LFS ⁴ , EFS ⁵ , DFS ⁶ and so on)	Impact on therapy response
Jichun Ma [30]	circ -0059707	1017		down regulated	cell growth/apoptosis	The Circ-0059707 inhibits cell growth and promotes apoptosis by up regulating miR-1287-5P	OS of patients in the high-circ-0059707 expression group is significantly longer than that of patients with low expression	There are no significant differences in CR rates between the high and the lowcirc-0059707 expression crouns
Leilei Lin [26]	Leilei Lin Circ-PLXNB2 [26] (Circ-00125)	PLXNB2	Chr22	Chr22 up regulation	cell proliferation/ migration/ apoptosis	Circ-PLXB2 increases the level of PLXNB2 and anti-apoptotic factors such as BCL2, cyclin D1 and decreases the level of apoptotic factors such as BAX	Patients with AML in the circPLXNB2 high group has a remarkably shorter OS and LFS than patients with AML in the circPLXNB2 low eroup	
Liang Guo [24]	Circ-0079480		Chr7	up regulation	fumor progression	Circ-0079480 promotes tumor progression through the miR-654-3p/HDGF regulatory axis	High serum circ-0079480 level is significantly associated with shorter OS and RFS in AML patient	Level of circ-0079480 is significantly lower among AML patients undergoing treatment, particularly in individuals that achieve CR, suggesting that serum circ-0079480 can be assesses as a biomarker associated with patient therapeutic responsiveness
Lifang Huang [46]	Circ-NFIX		1	up regulation	cell growth/ progression/ apoptosis	Circ-NFIX can be increase proliferation and apoptosis of AML cells by targeting the miR-876-3p/TRIM31 axis		

Table 1 (c	Table 1 (continued)							
Author's name	CircRNAs	Gen Symbol	Chr ¹	Expression status	Impact on functions of cells or biological role	Mechanism	Impact on survival (OS ² , PFS ³ , LFS ⁴ , EFS ⁵ , DFS ⁶ and so on)	Impact on therapy response
Ling Liu [28]	Circ- 0044907	1	1	up regulation	cell proliferation/ apoptosis	Circ-0044907 absorbs miR-186-5p to block the inhibiting impact of miR-186-5p on KIT, thus promoting AML progression.	AML patients with high expression of circ_0044907 in BM has a significantly shorter OS	1
Xiaodan Liu [29]	Circ-RNA220	RNA220	Chr 1	up regulation	cell proliferation/ apoptosis	Circ-RNA220 may function as an endogenous miR-30a sponge to inhibit its activity, which results in increased cell proliferation through targeting		Circ-RNA220 expression decreased dramatically in patients who achieve CR after treatment
Xiao-Yu Su [35]	circ-0002232	PTEN	Chr 10	down regulation			Circ-0002232 low group has signifi- cantly longer OS compared with circ-0002232 high group in whole AML	nificant discrepancies between the group with low expression of circ-0002232 and group with high expression of circ-0002232
Yi Ding [44]	Circ-ANXA2	ı		down regulation	down regulation cell proliferation/ apoptosis	circ-ANXA2 sponging with miR-23a-5p and miR-503-3p to promoting proliferation and decrees apoptosis in AML cell line	circ-ANXA2 high expression is correlated with shorter OS and EFS in AML	circ-ANXA2 knockdown increased che- mosensitivity to cytarabine and daunorubicin in AML cell line
Ying Shen [34]	Circ-ANAPC7 (Circ-101141)	ANAPC7	Chr 12	down regulation			The expression level of circ- ANAPC7 is not related to OS and DFS of AML	

Table 1 (continued)	ontinued)							
Author's name	CircRNAs	Gen Symbol	$\mathrm{Chr}^{\mathrm{l}}$	Expression status	Impact on functions of cells or biological role	Mechanism	Impact on survival (OS ² , PFS ³ , LFS ⁴ , EFS ⁵ , DFS ⁶ and so on)	Impact on therapy response
Yun-Yun Yi [14]	Circ-VIM	Vimentin	1	up regulation	tumor progression	Circ-VIM may accelerate the progression of AML by up regulating the expression of VIM genes through certain miRNAs and the Pol II transcription	Over expressed Circ-VIM is asso- ciated with shorter OS and LFS in whole-cohort AML	There is no significant difference in complete remission rate between Circ-VIM low patients and Circ-VIM high patients after induction
Safaa ITayel [36]	Circ-0075001	1	ı	up regulation		1	Group with high expression of circ-0075001 has significantly short OS	Univariate analysis revealed that over expression of circ-0075001 can predict CR
Tao Chen [43]	[43]	PVT1	Chr 8	up regulation			High expression of circ-PVT1 is correlated with shorter EFS and OS in AML	High expression of circ-PVT1may reduce the sensitivity of AML cell lines to chemotherany
Wei Li [47]	Circ-0004277	WDR37	Chr 10	down regulation		ı		Significant increase of circ-0004277 expression in CR stage compared with AML patient without prior treatment
Hong Li [61]	Circ-POLA2	1		up regulation	maturation/cells proliferation	Circ-POLA2 promotes cell proliferation by sup- pressing the production of mature miR-34a	The patients with higher expression levels of circ-POLA2 have lower OS rate	

Table 1(Fable 1 (continued)							
Author's name	CircRNAs	Gen Symbol	Chr^{1}	Expression status	Impact on functions of cells or biological role	Mechanism	Impact on survival (OS ² , PFS ³ , LFS ⁴ , EFS ⁵ , DFS ⁶ and so on)	Impact on therapy response
Lai Yi [75]	Circ-PTK2			up regulation	Cell proliferation/ Apoptosis	Circ-PTK2 promotes the proliferation and hampers the apoptosis of AML cells through targeting miR-330-5p/ FOXMI axis	AML patients with high expression of circ-PTK2 have shorter survival time compared with those with low expression of circ-PTK2	1
Lei Ping [32]	Circ-0009910	1	Chr 1	up regulation	cell proliferation/ apoptosis	knockdown of circ0009910 inhibits AML cell proliferation and induces apoptosis through increasing miR-20a-5p	the patients with high expression of circ-0009910 have shorter OS rate than those with low expression of circ-0009910	
Ting Xiong [51]	Circ-SP11 (Circ-0000303)				cell proliferation/ apoptosis/ differentiation		There is no correlation between EFS and circ-SPII expression at baseline, while low circ-SPII expression after induction therapy is linked with longer EFS in AML patient	Low circ-SPII expression at baseline shows a correlation trend with CR. Whereas reduced circ-SPII expression after induction therapy is associated with CR.
Wu Zijuan [40]	Circ-KEL	1		up regulation	Cell proliferation/ apoptosis	Circ-KEL sponging with miR-335-5p and regulate LRG1, which their association to cell proliferation and cell apoptosis	patients with high circ-KEL expres- sion have signifi- cantly worse OS	
Jinghan Wang [50]	Circ-0075451	GMDS 8	Chr 6	Chr 6 up regulation	a unique metabolic feature	Circ-0075451 can directly bind to miR-330-5p and miR-326, thereby affecting the expression of PRDM16	Circ-0075451 causes the poor survival	

lable I (continued)	(managed)							
Author's name	CircRNAs	Gen Symbol	Chr^1	Expression status	Impact on functions of cells or biological role	Mechanism	Impact on survival (OS ² , PFS ³ , LFS ⁴ , EFS ⁵ , DFS ⁶ and so on)	Impact on therapy response
Yuanyuan Lin [27]	Circ-TASP1 (Circ-406083)	TASP1	Chr 20	up regulation	cell proliferation/ apoptosis/ tumor progression	knockdown of circ- TASP1 inhibits pro- liferation and induces apoptosis by modulating miR-515-5p/HMGA2 pathway and Wnt/β- catenin signaling	high levels of circ-TASP1 leads to poor survival of patients with AM	knockdown of circ-TASP1 in mice can significantly reduce tumor growth, indicating that circTASP1 can be considered as a potential therapeutic target for children's AML and save more lives
Zhen Shang [33]	Circ-001215	RNF220	Chr 1	up regulation	cell proliferation/ apoptosis/	Circ-0012152 knockdown suppresses cell proliferation and promotes death by targeting SOX12 mediated by miR-625-5p in AML cells	the overall survival rate of high circ_0012152 group is significantly lower than that of low circ_0012152 group.	1
Yao Liu [67]	Circ-0004277	1		down regulation	down regulation tumor progression	Circ-0004277 suppresses the progression of AML via miR-134-5p/SSBP2 axis		1
Di Wang [37]	Circ-0009910		1	up regulation	cell proliferation/ apoptosis/ cell cycle	Circ-0009910 knock-down restricts AML cell proliferation, arrests cell cycle, and augments apoptosis by up regulating miR-5195-3p.	Circ-0009910 up regulation is also associated with shorter survival of AML patients	
Qinghua Li [62]	Circ-0005774		Chr 10	up regulation	cell proliferation/ apoptosis/ cell cycle	blocking circ-0005774 and/or over express- ing miR-192e5p can be enhance apoptosis or another mechanism	. 1	
D.M. YUAN [76]	Circ-0004136	ı	ı	up regulation	cell proliferation	Circ-0004136 promotes the proliferation of AML by sponging miR-142	ı	1
Hongli Chen [15]	Circ-ANAPC7 (Circ-101141)	ANAPC7		up regulation		Sponging with miR-181 family		

Table 1 (c	Table 1 (continued)							
Author's name	CircRNAs	Gen Symbol	Chr ¹	Expression status	Impact on functions of cells or biological role	Mechanism	Impact on survival (OS ² , PFS ³ , LFS ⁴ , EFS ⁵ , DFS ⁶ and so on)	Impact on therapy response
Hongqiong Fan [58]	Circ-100,290	1		up regulation	proliferation/ apoptosis	Circ-100,290 sponging with miR-203 and regulate the proliferation and apoptosis of AML cells and can accelerates cell proliferation and inhibits cell apoptosis by regulating cyclin D1, CDK4, Bcl-2		
Juan Tong [69]	Juan Tong Circ-0000005 [69]	ı	1	up regulation	Proliferation/migration/ invasion/apoptosis	Circ-0000005 sponging with miR-139-5p and repressing expression of miR-139-5p, and Tspan3 negatively regulates by miR-139-5p.		
Rong Zhang [78]	Circ-RNF13 (Circ-0001346)	RNF13 ⁹	chr3	up regulation	Proliferation/migration/ invasion/apoptosis	downregulation of cir- cRNF13 can inhibit the proliferation and promote the early apoptosis by activating Caspase 3/7 and miRNA- 1224-5p regulates the function of circRNF13		
Shan- shanGuo [59]	Circ-0012152	1	1	up regulation		Circ-0012152 can be modulating miR-491-5p/ EGFR/MAPK1 or miR-512-3p/EGFR/MAPK1 axis		
Yarong Wu [72]	Circ-ATAD1	1	1	up regulation	cell proliferation	As a nucleus specific circRNA in AML, modulates AML cell proliferation by downregulation miR-34b via methylation.		

Table 1 (c	Table 1 (continued)							
Author's name	CircRNAs	Gen Symbol	$\mathrm{Chr}^{\mathrm{l}}$	Expression status	Impact on functions of cells or biological role	Mechanism In (C EI	Impact on survival (OS ² , PFS ³ , LFS ⁴ , EFS ⁵ , DFS ⁶ and so on)	Impact on therapy response
Xiaoyan Hu [60]	Circ-KCNQ5 (Circ-0004136)	KCNQ5 ¹⁰	1	up regulation	cell proliferation/ apoptosis	Circ-KCNQ5 sponging - to miR-622 and inhibits miR-622 expression. miR-622 regulates RAB10 and circ-KCNQ5 bound to miR-622 to increase the expression of RAB10. MiR-622 inhibits AML cell proliferation and induces cell apontosis.		
Lingyan Zhang [77]	Circ-0000370	FLI-1	1	up regulation	cell viability/ apoptosis	Circ-0000370 increases cell viability and inhibits apoptosis of FLT3-ITD-positive acute myeloid leukemia cells by regulating miR-1299 and S100A7A		
Shifang Dong [57]	Shifang Circ-DLEU2 Dong [57] (Circ-0000488)		1	up regulation	proliferation/migration/ invasion/apoptosis	Increased expression of Circ-DLEU2 induces cell proliferation, migration and invasion, and induces cell apoptosis through the miR-582-5p/COX2 axis. Also, miR-582-5p leads to decreased expression of Bel-2 and increased level of Bax.		
Wei Chang [55]	Circ-SFMBT2 (Circ-0017639)	SFMBT2 ¹¹	1	up regulation	proliferation/ migration/invasion /glycolysis / induced apoptosis	circ-SFMBT2 sponging with miR-582-3p, and miR-582-3p targets ZBTB20-Also, circ-SFMBT2 leads to decreased levels of in Cyclin D1 and MMP9 and a significant increase in Bax level		ı
Wen Liu [66]	Circ-CRKL	CRKL ¹²	1	Downregulation proliferation	proliferation	Circ-CRKL inhibits AML - cells proliferation by sponging miR-196a-5p/ miR-196b-5p to affect p27 expression.		

Table 1(Table 1 (continued)							
Author's name	CircRNAs	Gen Symbol	Chr ¹	Expression status	Impact on functions of cells or biological role	Mechanism	Impact on survival (OS ² , PFS ³ , LFS ⁴ , EFS ⁵ , DFS ⁶ and so on)	Impact on therapy response
Zewen Zhang [41]	CircRNF220 (Circ-0012152)	RNF220 ¹³	chrl	up regulation	cell development/ apoptosis	Circ-RNF220 effects on miR-330-5p/SOX4 axis. glucose consumption and lactate production suppress by circRNF220 level inhibition, means that circRNF220 might block the glycolytic process in AML cell	_	1
Yi Xiao [73]	Circ-0002483	PTK2 ¹⁴	1	up regulation	proliferation/ apoptosis	Circ 0002483 interacts with miR-758-3p/MYC axis and also, down-regulation of circ 0002483 induces reduction of Bcl-2 and elevation of Bx and C-caspase 3/Pro-assas 3		
Yanyan Wang [71]	Circ-RAD18		1	up regulation	cell progression/ apoptosis	Circ-RAD18 positively modulated PRKACB expression via targeting miR-206 in AML cells. Down regulation of Circ-RAD18 also induces the apoptosis of AML cells, along with the elevation of Bax and e-caspase-3 and the reduction of B61-2		

Table 1 (c	Table 1 (continued)							
Author's name	CircRNAs	Gen Symbol	Chr^1	Expression status	Impact on functions of cells or biological role	Mechanism	Impact on survival E (OS ² , PFS ³ , LFS ⁴ , th EFS ⁵ , DFS ⁶ and so on)	Impact on therapy response
Xiaoling Wang [70]	Circ-SPI1	SPII	chr11	up regulation	myeloid differentiation/proliferation/apoptosis	Circ-SPII contributes to myeloid differentiation of AML cells by interacting with the translation initiation factor eIF4AIII to antagonize expression of PU.1 at the translation level. And also, circSPII induces the proliferation and apoptosis by interacting with miR-1307-3p, and miR-38-2p, and miR-767-5p. BCL2, CDK6, and p-ERK1/2, which involves in apoptosis, decreased upon circSPII knockdown	Expression of HSPA8 is positively correlates with circSPII expression. HSPA8 is essential for the survival of AML cells	
Yingwei Wu [39]	Circ-0009910		1	up regulation	proliferation/ sphere formation/ autophagy/ apoptosis	Circ-0009910 can be modulating expression of B4GALT5 and activating the P13K/AKT signaling pathway via sponging miR-491-5p in AML	the overall survival rate of high circ-0009910 group is distinctly lower than that of low circ-0009910 group.	
Ting Zhang [79]	Circ-0058058	1	1	up regulation	cell proliferation/migration/ / invasion/ apoptosis	Circ 0058058 interacts with miR-4319/EIF5A2 axis. miR-4319 has an anticancer role by inhibiting the expression of EIF5A2	, ,	
Qidong Ye [52]	Circ-0003602 (Circ-SMARCC1)		chr3	up regulation	Proliferation/migration/ invasion/ apoptosis	Circ-0003602 interacts with miR-502-5p/ IGF1R axis. miR-520-5p inhibitor leads to a significant increase in IGF1R protein levels	patients with high expression of circo003602 shows shorter survival time compared to those with low expression of circ-0003602	

Table 1 (continued)	ontinued)							
Author's name	CircRNAs	Gen Symbol	Chr^1	Expression status	Impact on functions of cells or biological role	Mechanism	Impact on survival (OS ² , PFS ³ , LFS ⁴ , EFS ⁵ , DFS ⁶ and so on)	Impact on therapy response
Jing Liu [65]	Circ-0003256	CIT ¹⁵	1	up regulation	cell Proliferation/ apoptosis	Circ-0003256 Contains Functional Binding Sites for miR-582-3p. Protein kinase cAMP-activated catalytic subunit beta (PRKACB) is a function- ally downstream target of miR-582-3n		1
Jing Bi [53]	Circ-0004136	KCNQ5 ¹⁰	1	up regulation	cell viability/ cell cycle progression/ migration / invasion/ apoptosis	Exosomal circ-0004136 enhances the progression of pediatric acute myeloid leukemia depending on the regulation of miR-570-3p/tetraspanin 3/TSPAN3) axis		
Nianxue Wang [38]	Circ-0040823			Downregulation	egulation cell Proliferation / apoptosis	sponging with miR-516b, thereby diminishing the regulatory effect of miR-516b on PTEN. circ-0400823 induces cell apoptosis and G0/G1 arrest in leukemia cells so High Circ-0400823 level also leads to markedly reduce expressions of cyclins and Bcl-2, and unregulated Bax and cleaved castnage 3 in AMI cells	high expression of circ-0040823 shows significantly improved overall and disease-free survival compared with the "low circ-0040823" group	
Shufen Li [63]	Shufen Li Circ-HIPK2 [63]	нгрк2	ı	Downregulation differentiation	differentiation	Circ-HIPK2 might contribute to APL differentiation by sponging miR-124- 3p to restore the protein level of CEBPA		circ- HIPK2 is require for ATRA- induced differen- tiation of APL cells.

Table 1 (continued)	ontinued)							
Author's name	CircRNAs	Gen Symbol	$\mathrm{Chr}^{\mathrm{l}}$	Expression status	Impact on functions of cells or biological role	Mechanism	Impact on survival (OS ² , PFS ³ , LFS ⁴ , EFS ⁵ , DFS ⁶ and so on)	Impact on therapy response
Jiufang Cao [54]	Circ-0094100			up regulation	cell viability / cell cycle /apoptosis	Circ-0094100 positively modulates ATP1B1 expression by sponging miR-217		Rapamycin inhibits AML cell viability and cell cycle process and induces apoptosis via regulation of the circ-0094100/miR-217/ATP1B1 axis. Rapamycin treatment markedly reduces circ_0094100 expression in AML cell.
JIE DING [56]	Circ-NPM1 (Circ-0075001)			up regulation	cell proliferation/migration/ invasion / cell cycle arrest	Circ-NPM1 modulates miR-345-5p/ FZD5 axis.		circNPM1 might be an effective regulator of ADM chemoresistance in AML cells. circNPM1 silence can be strengthen the effects of ADM, leading to further cell proliferation, migration and invasion inhibition, apoptosis promotion and cell excle arrest
Feng Xue [74]	Circ-0035381	PIGB		up regulation	proliferation, Apoptosis//Mitochondrial Damage/autophagy	Circ-0035381 regulating miR-582-3p/ YWHAZ axis. Circ-0035381 knockdown evidently suppresses autophagy by decreasing the value of LC3II/I and the protein level of Beclin1 and also represses cell proliferation and promoted cell apoptosis and mitochondrial damage.		

idea (commence)	,							
Author's CircRNAs	NAs	Gen Symbol	Chr ¹	Expression status	Impact on functions of cells or biological role	Mechanism	Impact on survival (OS ² , PFS ³ , LFS ⁴ , EFS ⁵ , DFS ⁶ and so on)	Impact on therapy response
Guoqiang Circ-0C	Circ-0003420		1	Downregulation	igulation replication/ apoptosis	Circ-0003420 targets the mRNA of insulinlike growth factor 2 mRNA-binding protein 1 (IGF2BP1). downerghuist to circ-0003420 overexpression induces cell apoptosis and suppressed the expression of HOXB1, MYB, and ALDHA1A1		1
Susanne Circ-Bd Lux [68]	Circ-BCL11B	BCL11B ¹⁶	1	up regulation	cell proliferation	Knockdown of circ-BCL1IB has a negative effect on leukemic cell proliferation and result to in increased cell death of leukemic cells.		
Hong Li Circ-EHBP1 [25]	SHBP1		1	up regulation	apoptosis	High expression of CircEHBP1 increased premature miR-129 level but decreased mature miR-129 Level.		Altered gene expression is more obvious in ADR resistant group than in ADR sensitive group. CircE-HBP1 suppresses ADR-induced cell apoptosis and attenuates the enhancing effects of miR-129 on cell apoptosis.
Xian-Fu Circ-PVT1 Sheng [49]	VT1	PVT1	chr8	up regulation	Cell viability/ migration/ apoptosis	CircPVT1 may exert an oncogenic role by stabilizing the expression of c-Myc protein and its downstream target CXCR4 expression.	Higher expression of circPVT1 is related to shorter OS and RFS in AML patients	ı

¹Chromosome; ²Overall survival; ³Progression-free survival; ⁴Leukemia-free survival; ⁵ event-free survival; ⁵Disease Free Survival; ⁷Inhibitor of DNA binding 1; ⁸GDP-mannose 4,6-dehydratase; ⁹RING finger protein 13; ¹⁰ Potassium Voltage-Gated Channel Subfamily Q Member 5; ¹¹Scm like with four mbt domains 2; ¹²V-Crk Avian Sarcoma Virus CT10 Oncogenic Homolog-Like; ¹³Ring Finger Protein 220; ¹⁴Protein tyrosine kinase 2; ¹⁵ Citron rho-interacting serine/threonine kinase; ¹⁶T-cell transcription factor gene B cell CLL/lymphoma 11B; ¹⁷Plasmacytoma Variant Translocation 1

50 months, and the maximum was 100 months. In the study of Safaa I Tayel [36], three circRNAs were measured along with different expression levels and varied clinicopathological characteristics; therefore, to avoid multiplicity [80], only one circRNA (Circ-0075001) was chosen for clinicopathological meta-analysis.

Results of syntheses

Prognostic value of circrnas in AML patients

In the prognostic meta-analysis, 1758 AML patients from 20 primary studies were included, and the main features of these studies are shown in Table 2. 18 studies reported an overall survival (OS) indicator, and the pooled results related to the OS indicator demonstrated that dysregulation of circRNAs expression were associated with a poor prognosis (HR=2.05; 95% CI: 1.75 to 2.40) in patients with AML (Fig. 2A). Also, $I^2 = 15.7\%$ in the OS indicator showed that heterogeneity between studies was non-considerable. In addition, 8 studies reported non-OS indicators such as (EFS, LFS, RFS, and DFS). The pooled results related to non-OS indicators revealed that dysregulation of circRNAs expression were associated with shorter EFS/LFS/RFS/ DFS than the normal expression of circRNAs (HR=2.09, 95% CI=1.47–2.97) (Fig. 2B). Also, I^2 =59.7% in non-OS indicators showed that heterogeneity between studies was considerable.

Subgroup analysis The results of subgroup analysis for both OS and non-OS indicators are shown in Table 3. Subgroup analysis for the OS indicator was performed based on expression status (Upregulation vs. Downregulation), gene control (GAPDH vs. non-GAPDH), follow-up time (<=60 vs. >60), sample size distribution (<=60 vs. >68), and extraction method (Direct vs. Indirect) (Fig. 3A-E). According to subgroup analysis results, an obvious difference was observed in the results of sample size and control gene that seems to have been overestimated. Also, subgroup analysis for non-OS indicators was conducted based on sample size (<74 vs. >=74) and extraction method (Direct vs. Indirect) (Table 3) (Fig. 4A-C). The result of HR in studies with sample size $\geq = 74$ was 2.69 (95% CI: 1.22–5.94) whereas the result of HR in studies with a sample size < 74 was 1.79 (95% CI: 1.26-2.56). Studies with direct extraction indicated a higher HR (2.71 vs. 1.81) than studies with indirect extraction.

The clinicopathological significance of circrnas in AML patients

For clinicopathological meta-analysis, in 14 cohort primary studies, the association between dysregulated expression of circRNAs and clinicopathological parameters such as Gender, Risk status, French-American-British (FAB) classification, Different Cytogenetic abnormalities and Mutations were investigated (Table 4). Parameters with at least five studies were included in the clinicopathological meta-analvsis. In the French-American-British (FAB) classification. type M6 vs. other types showed significant associations with dysregulated expression of circRNAs (RR: 1.51, 95%CI: 1.12–2.03) (Fig. 5A), while other types of this classification weren't related to dysregulated expression of circRNAs. The results for different cytogenetic abnormalities and mutations showed a relationship between dysregulated expression of circRNAs and the FLT3-ITD mutation (RR: 1.17, 95%CI: 1.00-1.36) (Fig. 5B), while there was no significant relationship between dysregulated expression of circRNAs and other mutations. Furthermore, a significant relationship was observed between dysregulated expression of circRNAs and Risk status (RR: 1.35, 95%CI: 1.13–1.60) (Fig. 5C). Also, dysregulated expression of circRNAs wasn't linked to Gender (RR: 1.03, 95%CI: 0.93-1.14) (Fig. 5D) (Figures related to other parameters are available in supplementary data S4/ Figs. 1 and 2).

Publication bias evaluation

The funnel plot, Egger's and Begg's tests, and trim and fill method were performed to assess publication bias. For prognostic meta-analysis, the results of the funnel plot pattern (asymmetric distribution) (Fig. 6A), Begg's test (P-value=0.001), Egger's test (P-value=0.005) (Fig. 6B), as well as the results of the trim and fill method (Fig. 6D), indicated considerable publication bias for the OS indicator. Also, the results of Begg's test (P-value=0.009), Egger's test (P-value=0.006) (Fig. 6C), and the results of the trim and fill method (Fig. 6E) showed considerable publication bias for non-OS indicators. As is shown in Table 4, for clinicopathological meta-analysis, Begg's and Egger's tests showed that type of M2 (FAB classification), CEBPA mutation, DNMT3A mutation, and NPMI mutation had obvious publication bias, and also that only Egger's tests for type of M6 (FAB classification) showed publication bias. Meanwhile, other clinicopathological parameters had low publication biases.

 NOS^{e} ∞ ∞ 6 ∞ ∞ 6 00 00 1 00 00 ∞ × × × × Fol-*dn low 901 9 9 09 09 9 80 20 9 99 80 9 2 80 84 Extraction Indirect Direct Direct Direct Direct Direct Direct Direct Direct Direct Æ 0.0364 0.0002 0.0315 0.0438 0.0393 < 0.05 < 0.05 0.003 0.029 < 0.05 0.043 0.042 < 0.01 0.873 0.059 0.078 0.027 0.020 value 0.065 0.003 0.021 0.047 0.027 0.041 0.001 0.001 ۵. 7.023 (2.69–18.28) 5.749 (1.21–27.10) 1.706 (1.19-2.43) Survival indicator .890 (0.97–3.66) .817 (1.02–3.22) 3.206 (1.83-5.60) .039 (0.65 - 1.66)1.379 (1.01–1.88) 2.698 (1.03–7.03) 1.878 (0.93–3.78) 3.43 (1.15–10.24) .93 (1.22–3.03) 2.62 (1.01-6.80) 3.57 (1.53-8.26) 2.60 (1.06-6.35) 2.56 (1.04-6.26) 1.76 (1.27–2.39) 2.18 (1.20-4.33) 4.50 (2.03-9.95) 2.43 (1.08-5.44) 2.45 (1.02–5.83) 2.27 (1.08-4.74) 2.28 (1.13-4.57) 2.38 (1.13-4.97) 2.0 (0.95-4.16) HR° (95% CI^d) 1.34 (1-1.78) outcome Survival EFS^k LFS^h RFS RFS EFS **SFS** LFS OS_p SO SO SO SO SO OS SO SO OS SO OS SO SO SO OS SO microarray microarray microarray microarray microarray microarray qRT-PCR Detection qRT-PCR qRT-PCR qRT-PCR RT-PCR qRT-PCR RT-PCR aRT-PCR qRT-PCR method Sample type BM^{f} BM BM BM BM BM BM BM PB BM BM BM BM BM BM BM PB^g BM BM ЬB PB AML^apatiens 218 116 size 122 236 113 149 28 45 89 23 57 20 40 88 9 9 50 37 GAPDH β-actin Control β-actin β-actin Gene ABL ABL ABL ABL ABL up regulation Expression regulation egulation regulation regulation egulation Down Down Down Down Down status (Circ-0001257) (Circ-0075451) Circ-PLXNB2 (Circ-0012152) Circ 0059707 Circ-0009910 Circ-RNF220 Circ-0002232 Circ-0003602 Circ-0009910 Circ-0040823 Circ-0059706 Circ-0012152 Circ-0079480 Circ-0044907 Circ-GMDS able 2 Main characteristics of the prognostic studies 2019 Circ-Foxo3 Circ-TASP1 CircRNAs Circ-PVT1 Circ-PVT1 Circ-SPI1 Circ-VIM Circ-KEL Year 2018 2022 2022 2019 2022 2023 2020 2021 2022 2021 2022 2022 2021 2021 2021 2021 2021 2021 2021 Country China Xian-Fu Sheng [49] Nianxue Wang [38] Jinghan Wang [50] Yuanyuan Lin [27] Xiaodan Liu [29] Yingwei Wu [39] Xiao-Yu Su [35] Zhen Shang [33] Fing Xiong [51] Wu Zijuan [40] Qidong Ye [52] Author's name Jichun Ma [31] Jichun Ma [30] Liang Guo [24] Jiao Zhou [42] Leilei Lin [26] Tao Chen [43] Ling Liu [28] Lei Ping [32] Yun-Yun Yi [14]

a Acute myeloid leukemia; b Overall survival; c Hazard ratio; d 95% confidence interval; c Newcastle-Ottawa Scale; f Bone marrow; B Peripheral blood H Leukemia-free survival; I relapse-free survival; k event-free survival; m Disease Free Survival

Months

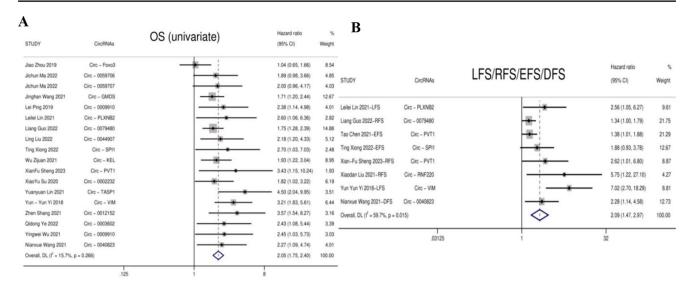
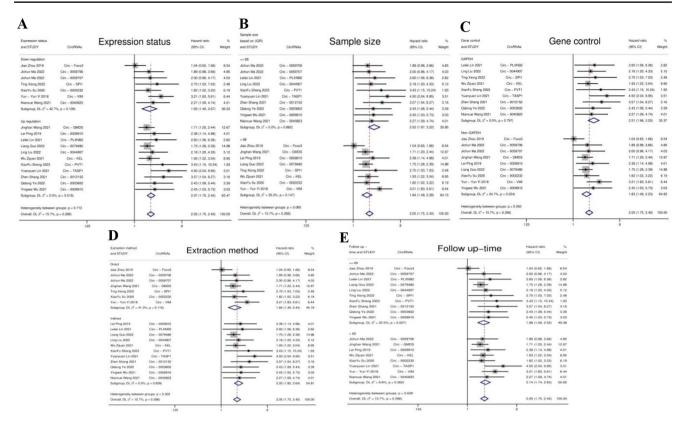


Fig. 2 Forest plots for the prognostic value of circRNAs in AML patients. Prognostic value of circRNAs related to overall survival (OS) indicator (A) and Prognostic value of circRNAs related to non-OS indicators (B)

Table 3 The subgroup analysis for OS indicator and non-OS indicators


Subgroups For OS indicator	No. of studies	Hazard Ratio (95% CI)	I ² %	Subgroups For Non-OS indicators	No. of studies	Hazard Ratio (95% CI)	I ² %
Total study included	18	2.05(1.75–2.40)	15.7	Total study included	8	2.09 (1.47–2.97)	59.7
Expression status:	7	2.07 (1.75–2.45)	0.0	Non-OS indicator:	2	4.18 (1.56–11.22)	56.1
Up regulation	11	1.93 (1.40–2.67)	42.7	LFS	3	2.10 (0.98-4.50)	58.4
Down regulation				RFS	2	1.45 (1.09–193)	0.0
				EFS DFS	1	2.28 (1.14–4.58)	
Sample size:	10	2.52 (1.97–3.22)	0.0	Sample size:	4	1.79 (1.26–2.56)	24.0
<=68	8	1.84 (1.48–2.28)	35.3	<74	4	2.69 (1.22–5.94)	77.7
>68		,		>=74		,	
Extraction method:	7	1.84 (1.39–2.76)	41.3	Extraction method:	4	2.71 (1.25–5.88)	76.2
Direct	11	2.20 (1.82–2.64)	0.0	Direct	4	1.81 (1.23–2.67)	34.1
Indirect		,		Indirect		,	
Gene Control:	9	2.51 (1.96–2.44)	0.0				
GAPDH	9	1.83 (1.49–2.23)	24.7				
Non - GAPDH		,					
Follow up- time:	10	1.98 (1.56–2.53)	23.5				
<=60	8	2.14 (1.74–2.63)	8.8				
>60		,					

Sensitivity analysis

The one-out remove method was used for sensitivity analysis, which evaluates the influence of individual studies on the effect size. The one-out remove method showed that removing any of the primary studies had no significant effect on the pooled results (Fig. 7A). Furthermore, for non-OS indicators, the trim and fill method indicated that four studies were added, whereas publication bias had no impact on the results (Fig. 6E). Also, the one-out remove method showed that the study of Yun-Yun YI [14] can change the overall effect of circRNAs on the combination of HRs but has no significant impact (Fig. 7B). Also, sensitivity analysis for

clinicopathological parameters demonstrated that the study of Yuanyuan Lin [27] in the CEBPA mutation parameter and the study of Xiao-Yu Su [35] in the t (15;17) parameter can have an effect on the pooled results. Further analysis revealed that the exclusion of the Xiao-Yu Su [35] study doesn't change the pooled results of the t (15;17) parameter, but the exclusion of the Yuanyuan Lin [27] study makes the CEBPA mutation parameter significant with (RR=1.21 95%CI: 1.04–4) and reduced heterogeneity between studies (I²=0%) (Figures related to sensitivity analysis for clinicopathological parameters are available in supplementary data S4/Figs. 3 and 4, and 5).

Fig. 3 Forest plots of subgroup analysis for overall survival (OS) indicator. Subgroup analysis based on expression status (A), subgroup analysis based on Sample size (B), subgroup analysis based on Gene

control (C), subgroup analysis based on Extraction method (D), subgroup analysis based on Follow up—time (E)

GRADE assessment

The modified method of GRADE assessment was used to appraise the certainty of evidence for prognostic and clinicopathological meta-analysis [20]. According to the results of the GRADE assessment for prognostic meta-analysis, moderate certainty of evidence related to pooled results of OS and non-OS indicators was observed (the scoring method and the results are shown in Table 5). In addition, the results of the GRADE assessment for clinicopathological meta-analysis are shown in Table 4. For significant clinicopathological parameters, high certainty of evidence for results of FLT3-ITD and risk status parameters and low certainty of evidence for type of M6 were obtained (the scoring method and the results of GRADE assessment for clinicopathological meta-analysis are available in supplementary data S5).

Discussion

Acute myeloid leukemia (AML) is a heterogeneous disease with a highly variable prognosis [81]. Despite the advances in research into blood cancer and treatment, patients with AML still experience a poor overall survival rate [82]. The

5-year survival rate for AML patients is still below 50% in adults and is drastically lower in elderly individuals [83]. For example, the typical survival of patients aged 65 and over is less than 12 months [84]. For patients with acute myeloid leukemia, selecting appropriate prognostic factors is essential for predicting the course of the disease, selecting the treatment, and monitoring the response to treatment [85]. An assessment of the prognosis of patients with AML is based on their cytogenetic abnormalities, gene mutations, age, white blood cell count and etc [81]. Recent studies have gradually explored non-coding RNA's role in AML. As is demonstrated in Table 1, circRNAs have various functions in intracellular processes (proliferation, apoptosis, metastasis, cell cycle regulation, and so on) by sponging with miRNAs and other ways. Due to their impact on the survival rate, trend of treatment, and their circular structure (highly stable in tissues and bodily fluid), circRNAs can be considered novel prognostic biomarkers in AML. So, our attention in this systematic review and meta-analysis was to investigate the prognostic value of circRNAs in AML and to find the correlation between circRNAs and patients clinicopathological features, which can finally be useful in the prognosis and treatment process of AML patients. From 58 primary studies, we extracted descriptive information

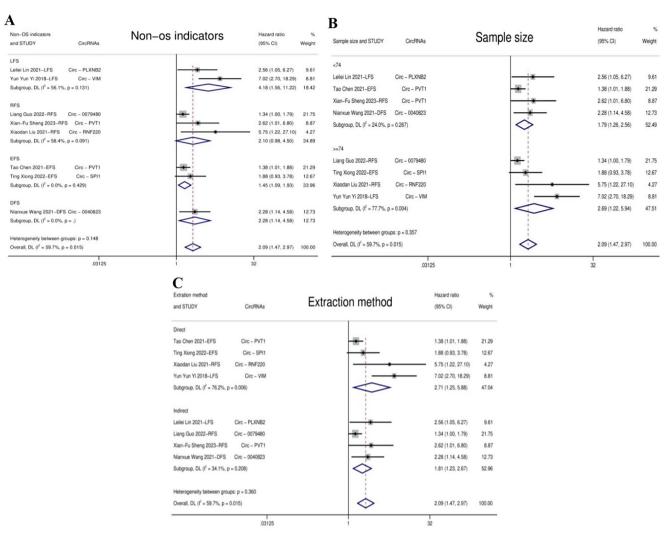


Fig. 4 Forest plots of subgroup analysis for non-OS indicators. Subgroup analysis based on non-OS indicators (A), subgroup analysis based on Sample size (B), subgroup analysis based on Extraction method (C)

regarding circRNAs function for our systematic review and meta-analysis. Among the primary studies, 20 studies provided prognostic information, and 14 cohort studies provided clinicopathological information. The results of our study indicated that dysregulation of circRNAs expression in AML patients is associated with poor prognosis related to OS indicator as well as non-OS indicators (HR=2.05 and HR=2.09, respectively). The interpretation areas [23] suggest that these relationships are moderate, and based on the GRADE assessment [20, 21], the relationships are moderately certain. The results of our study emphasize, as in other articles [9, 10, 86, 87], the prognostic role of circRNAs in blood cancers such as AML. As well, other systematic reviews and meta-analysis (like our previous study) demonstrate the prognostic value of circRNAs in variety of diseases [87–90]. Moreover, based on Tables 1 and 2 and HR data, over-expressed circTASP1, and under-expressed Circ-0040823 are significantly correlated with poor OS and dysregulated expression of these circRNAs are associated with the greatest the HR in AML patients.

Although we conducted a comprehensive search that included various databases as well as grey literature, publication bias still exists within our article, and language limitations or negative results bias (studies with negative results that weren't published) might contribute to this bias [91]. In order to reduce heterogeneity in the prognostic metaanalysis and to identify relationships between subgroups for both OS and non-OS, subgroup analysis was conducted. There was no significant difference between the subgroups in terms of expression status, follow-up time, and extraction method in terms of OS indicator. Based on subgroup analysis for the OS indicator, it was determined that studies with <=68 patients overestimated the hazard ratio results. On the other hand, overestimation of the result in the GAPDH subgroup related to the OS indicator was due to the use of this control gene in studies with small sample sizes, so choosing

		1	1 1	.1 1 1 1	C . C . A S. CT
Iania 4	A ccociation	hetween circri	nas and clinica	anathalagical	features of AML

Clinicopathologic parameter	No. of studies	No. of patients	Effect size			I2 (%)	Publication bias		Certainty of
parameter	studies	patients	Risk Ratio	95%CI	P-value	-	Begg's test	Egger's test	evidence
Gender	13	1211	1.03	0.93-1.14	0.628	0.0	0.669	0.844	High
FAB classification:	12	897	1.15	0.98 - 1.35	0.079	0.0	0.373	0.391	High
M1 vs. non-M1	12	897	0.87	0.70 - 1.08	0.215	57.8	0.034*	0.002*	Moderate
M2 vs. non-M2	11	857	1.10	0.96 - 1.25	0.163	0.0	0.119	0.051	High
M3 vs. non-M3	12	897	1.08	0.91-1.29	0.383	34.6	0.837	0.687	High
M4 vs. non-M4	12	897	1.19	0.96 - 1.48	0.110	47.8	0.537	0.358	High
M5 vs. non-M5 M6 vs. non-M6	12	469	1.51	1.12-2.03	0.006*	0.0	0.386	0.043*	low
Risk status (Poor/Good)	11	1034	1.35	1.13-1.60	0.001*	50.0	0.436	0.391	High
Cytogenetic Abnormalities	7	564	1.01	0.88 - 1.15	0.932	0.0	0.368	0.280	High
and Mutations:	7	564	1.05	0.81 - 1.35	0.723	17.0	0.764	0.730	Moderate
Normal cytogenetic	8	572	1.03	0.79 - 1.34	0.841	35.2	0.035*	0.058*	low
Complex cytogenetic	6	439	1.01	0.79 - 1.29	0.926	0.0	0.060*	0.029*	low
CEBPA	8	570	1.17	1.00-1.36	0.050*	0.0	0.386	0.465	High
DNMT3A	6	425	1.18	0.84 - 1.67	0.339	0.0	0.260	0.320	Moderate
FLT3-ITD	5	429	1.07	0.79 - 1.45	0.682	0.0	0.462	0.259	Moderate
IDH 1 / 2	5	383	0.98	0.71 - 1.34	0.877	0.0	0.462	0.530	Moderate
KIT	7	491	1.08	0.93 - 1.26	0.318	0.0	0.072*	0.013*	Moderate
N/K RAS	6	504	1.18	0.99 - 1.42	0.066	0.0	0.452	0.408	High
NPMI t (8; 21) t (15; 17)	5	465	1.10	0.85-1.40	0.472	29.4	0.221	0.027*	low

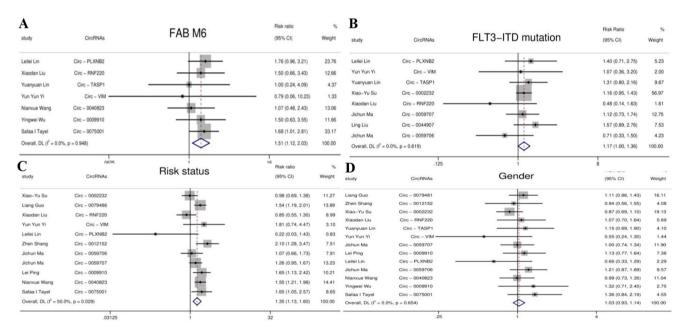


Fig. 5 Forest plots of FAB M6 (A), FLT3-ITD mutation (B), Risk status (C), Gender (D) in the clinicopathological features association analysis with circRNAs in AML patients

a larger sample size for more reliable results was recommended. Also, based on the results of subgroup analysis for the non-OS indicators, we can say that the circRNAs' prognostic power can be increased when the information is directly extracted from the study and when the sample size is >=74 people.

In the clinicopathological meta-analysis, the risk ratio index was used as a more reliable indicator than the odds ratio, so only cohort studies were included in the meta-analysis [92]. Among the clinicopathological parameters, M6 type (FAB classification), FLT3-ITD mutation, and risk status were associated with dysregulation of circRNA expression, whereas others were not. The significant association of

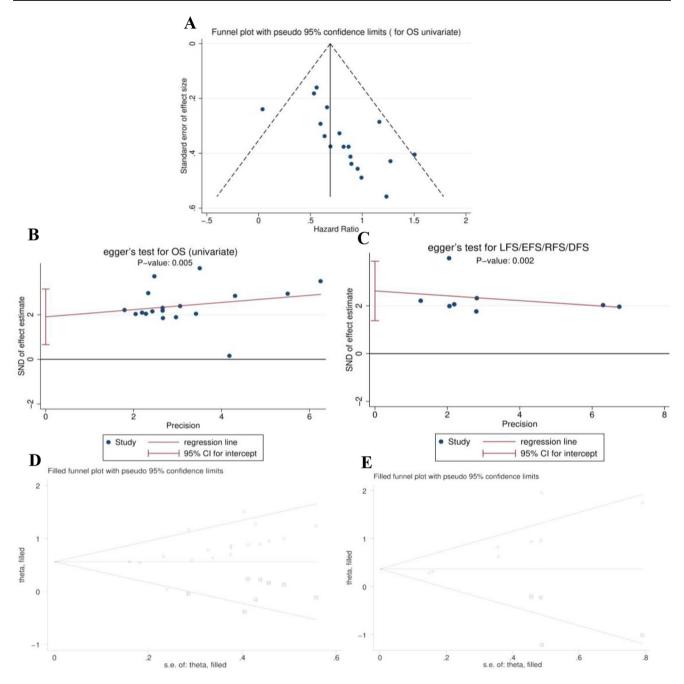


Fig. 6 Publication bias evaluation for prognostic studies. Funnel plot (A), Egger's test (B) and Trim and fill method (D) for overall survival (OS) indicator. Egger's test (C) and Trim and fill method (E) for non-OS indicators

FLT3-ITD with dysregulated expression of circRNAs can be attributed to the distinct role of FLT3-ITD mutation (is a well-established driver mutations and leading to abnormal cell proliferation and resistance to apoptosis) in the pathogenesis of AML. Indeded unlike to the other mutations in this study, FLT3-ITD mutation in AML can be have a more pronounced effect on dysregulated expression of circRNAs. Therefore, due to the importance of FLT3-ITD mutation and the various treatment methods based on FLT3-ITD mutation

targeting, future studies can more accurately evaluate the relationship between FLT3-ITD mutation and dysregulated expression of circRNAs. According to the areas of interpretation [23], the results of M6 (classified by FAB), risk status, and FLT3 mutation, respectively, demonstrated small, small, and trivial associations with circRNA expression dysregulation. Also, based on the GRADE assessment [20, 21], the results indicated a high level of certainty regarding

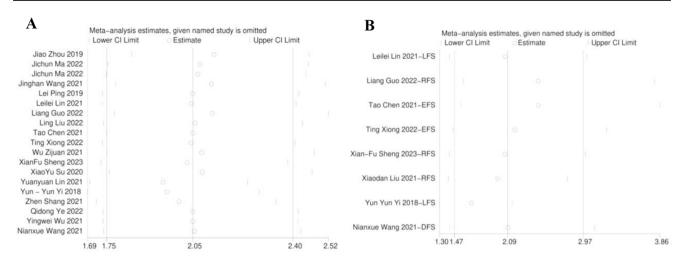


Fig. 7 One-out remove method Sensitivity analysis. Sensitivity analysis for overall survival (OS) indicator (A) and Non-OS indicators (B)

Table 5 GRADE assessment for prognostic meta-analysis

Domain of	Study	Risk of	Indirectness	inconsistency	imprecision	Publication	Summary of finding	
Grade	design	bias				Bias		
assessment								
							Hazard Ratio	Certainty of
							(95% CI)	evidence
prognostic								
parameters:								
(No of studies)								
Overall	Cohort	No	No	No	No	Serious	2.05	
Survival	Conort					Schous		
(18 studies)		Problem	Problem	Problem	Problem		(1.75 - 2.40)	Moderate
								~ ~~~
Non- Overall	Cohort	No	No	No	No	Serious	2.09	$\oplus \oplus \oplus \bigcirc$
Survival		Problem	Problem	Problem	Problem		(1.47 - 2.97)	Moderate
indicators								
(8 studies)								

FLT3-ITD mutations and risk status, while the M6 subtype (FAB classification) exhibited a low level of evidence certainty.

Future perspectives and strategies

This study focuses on the prognostic value of dysregulated expression of circRNAs. While well-established cytogenetic

abnormalities along with common mutations like FLT3, NPM1, and others, continue to be central to prognosis assessment, our findings highlight that circRNAs can also demonstrate significant prognostic properties. These dysregulated expression of circRNAs could serve as valuable components in prognostic models alongside other established factors and contributing to a more accurate and comprehensive evaluation of AML patient prognosis. Similar to how genetic

mutations and cytogenetic abnormalities are incorporated into clinical practice to predict patient outcomes, circRNAs due to their stability in bodily fluids and their regulation of key cellular processes, could be integrated into clinical models for early diagnosis and treatment monitoring. Evaluating the expression of circRNAs in clinical settings could help identify high-risk patients, allowing for more tailored and effective treatments. Moreover, expression of circRNAs could be explored for the development of novel therapeutic strategies, such as circRNA-targeted therapies, to improve outcomes for AML patients.

Recommendation

Our advice to the authors of prognostic studies is to report HR in order to improve the quality of their work and not rely solely on survival analysis based on Kaplan-Meier. Also, the authors of primary studies that investigate the role of clinicopathological features should not only report P-value; thay can also report OR or RR indices for better understanding based on the type of study.

Conclusion

The spread of AML in different societies, incidence at different ages, and diverse pathophysiology lead to the complexity of treating patients. Therefore, determining the factors that are related to the prognosis of patients can play a significant role in the management of the treatment and survival of patients. Therefore, in this systematic review and meta-analysis, we showed the value of circRNAs in patients with AML as novel prognostic factors. And also, it was indicated that dysregulation of circRNAs expression can be associated with some clinicopathological features of patients with AML and can be used as new biomarkers for the investigation of treatment effectiveness.

Limitations of the review

This study faced the following limitations: First, some primary studies did not report clear data for prognostic meta-analysis, despite sending emails three times to the corresponding authors to receive information. The necessary data was extracted from the Kaplan-Meier curve, which may have caused bias. Second, for meta-analysis, studies were mostly from China, which may limit the generalizability of these findings and lead to bias. Third, heterogeneity is still a vital issue, although to explore possible sources, various subgroup analysis were carried out. Fourth, rather than focusing on the clinical significance of circRNAs in AML, the majority of the studies included focused on the functions of circRNAs, and for this reason, the inclusion

and exclusion criteria of patients, treatment procedures, and follow-up procedures are not clearly specified in the text of the article.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00277-025-06300-6.

Acknowledgements This research was financially supported by Student Research Committee, Zanjan University of Medical Sciences under with code of SAMAT of A-10-1757-7 and ethics code of IR.ZUMS.REC.1402.181. Registry and the Registration No. of the study/trial: Prospero (ID: CRD42023399738).

Author contributions YM, AHA: searching, selection process, quality control of studies, data collecting, statistical software, and writing, DM: data collecting and writing, MR: quality control of studies, data collecting, validation, and final editing, AT: quality control of studies, data collecting, validation, and final editing.

Funding Zanjan University of Medical Sciences.

Data availability No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

- de Perez O, Rossi M, Gorospe M (2020) Circular RNAs in blood malignancies. Front Mol Biosci 7:109
- Handschuh L (2019) Not only mutations matter: molecular picture of acute myeloid leukemia emerging from transcriptome studies. J Oncol 2019:7239206
- De Kouchkovsky I, Abdul-Hay M (2016) Acute myeloid leukemia: a comprehensive review and 2016 update. Blood cancer J 6(7):e441

- Thomas D, Majeti R (2017) Biology and relevance of human acute myeloid leukemia stem cells. Blood 129(12):1577–1585
- Liccardo F, Iaiza A, Śniegocka M, Masciarelli S, Fazi F (2022) Circular RNAs activity in the leukemic bone marrow microenvironment. Non-coding RNA.;8(4)
- Gasic V, Karan-Djurasevic T, Pavlovic D, Zukic B, Pavlovic S, Tosic N (2022) Diagnostic and therapeutic implications of long Non-Coding RNAs in leukemia. Life (Basel Switzerland).;12(11)
- Li Q, Liu L, Li W (2014) Identification of Circulating MicroR-NAs as biomarkers in diagnosis of hematologic cancers: a metaanalysis. Tumour Biology: J Int Soc Oncodevelopmental Biology Med 35(10):10467–10478
- Jamal M, Song T, Chen B, Faisal M, Hong Z, Xie T et al (2019) Recent progress on circular RNA research in acute myeloid leukemia. Front Oncol 9:1108
- Liu Y, Cheng Z, Pang Y, Cui L, Qian T, Quan L et al (2019) Role of MicroRNAs, circrnas and long noncoding RNAs in acute myeloid leukemia. J Hematol Oncol 12(1):51
- Singh V, Uddin MH, Zonder JA, Azmi AS, Balasubramanian SK (2021) Circular RNAs in acute myeloid leukemia. Mol Cancer 20(1):149
- Tang X, Ren H, Guo M, Qian J, Yang Y, Gu C (2021) Review on circular RNAs and new insights into their roles in cancer. Comput Struct Biotechnol J 19:910–928
- 12. Ji T, Chen Q, Tao S, Shi Y, Chen Y, Shen L et al (2019) The research progress of circular RNAs in hematological malignancies. Hematol (Amsterdam Netherlands) 24(1):727–731
- Kristensen LS, Hansen TB, Venø MT, Kjems J (2018) Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 37(5):555–565
- Yi YY, Yi J, Zhu X, Zhang J, Zhou J, Tang X et al (2019) Circular RNA of vimentin expression as a valuable predictor for acute myeloid leukemia development and prognosis. J Cell Physiol 234(4):3711–3719
- Chen H, Liu T, Liu J, Feng Y, Wang B, Wang J et al (2018) Circ-ANAPC7 is upregulated in acute myeloid leukemia and appears to target the MiR-181 family. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and Pharmacology. 47(5):1998–2007
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clinical Res ed) 372:n71
- Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A (2016) Rayyan-a web and mobile app for systematic reviews. Syst Reviews 5(1):210
- Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR (2007) Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 8:16
- Wells GSB, O'Connell D, Peterson J, Welch V, Losos M, Tugwell P (2013) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. http://www.o hri.ca/programs/clinical epidemiology/oxford.asp
- Schünemann H, Brożek J, Guyatt G, Oxman A (2013) GRADE handbook
- Hultcrantz M, Rind D, Akl EA, Treweek S, Mustafa RA, Iorio A et al (2017) The GRADE working group clarifies the construct of certainty of evidence. J Clin Epidemiol 87:4–13
- 22. Al Khalaf MM, Thalib L, Doi SA (2011) Combining heterogenous studies using the random-effects model is a mistake and leads to inconclusive meta-analyses. J Clin Epidemiol 64(2):119–123
- Olivier J, May WL, Bell ML (2017) Relative effect sizes for measures of risk. Commun Stat Theory Methods 46(14):6774

 –6781
- Guo L, Kou R, Song Y, Li G, Jia X, Li Z et al (2022) Serum Hsa_circ_0079480 is a novel prognostic marker for acute myeloid leukemia. J Clin Lab Anal 36(4):e24337

- Li H, Bi K, Feng S, Wang Y, Zhu C (2022) CircRNA CircEHBP1 regulates the maturation of MiR-129 to increase the chemoresistance of Cancer cells to adriamycin in acute myeloid leukaemia. Mediterranean J Hematol Infect Dis 14(1):e2022062
- Lin L, Wang Y, Bian S, Sun L, Guo Z, Kong D et al (2021) A circular RNA derived from PLXNB2 as a valuable predictor of the prognosis of patients with acute myeloid leukaemia. J Translational Med 19(1):123
- Lin Y, Huang Y, Liang C, Xie S, Xie A (2021) Silencing of circ-TASP1 inhibits proliferation and induces apoptosis of acute myeloid leukaemia cells through modulating miR-515-5p/ HMGA2 axis. J Cell Mol Med 25(15):7367-7380
- Liu L, Qiang X (2022) Hsa_circ_0044907 promotes acute myeloid leukemia progression through upregulating oncogene KIT via sequestering miR-186-5p. Hematol (Amsterdam Netherlands) 27(1):960–970
- Liu X, Liu X, Cai M, Luo A, He Y, Liu S et al (2021) CircRNF220, not its linear cognate gene RNF220, regulates cell growth and is associated with relapse in pediatric acute myeloid leukemia. Mol Cancer 20(1):139
- 30. Ma J, Wen X, Xu Z, Xia P, Jin Y, Lin J et al (2022) The Down-Regulation of circ_0059707 in acute myeloid leukemia promotes cell growth and inhibits apoptosis by regulating miR-1287-5p. Curr Oncol (Toronto Ont) 29(9):6688-6699
- Ma J, Wen X, Xu Z, Xia P, Jin Y, Lin J et al (2022) Predicting the influence of circ_0059706 expression on prognosis in patients with acute myeloid leukemia using classical statistics and machine learning. Front Genet 13:961142
- Ping L, Jian-Jun C, Chu-Shu L, Guang-Hua L, Ming Z (2019) Silencing of circ_0009910 inhibits acute myeloid leukemia cell growth through increasing miR-20a-5p. Blood Cells Mol Dis 75:41-47
- 33. Shang Z, Ming X, Wu J, Xiao Y (2021) Downregulation of circ_0012152 inhibits proliferation and induces apoptosis in acute myeloid leukemia cells through the miR-625-5p/SOX12 axis. Hematol Oncol 39(4):539–548
- Shen Y, Jia Y, Zhang R, Chen H, Feng Y, Li F et al (2022) Using Circ-ANAPC7 as a novel type of biomarker in the monitoring of acute myeloid leukemia. Acta Haematol 145(2):176–183
- 35. Su XY, Zhao Q, Ke JM, Wu DH, Zhu X, Lin J et al (2020) Circ_0002232 acts as a potential biomarker for AML and reveals a potential CeRNA network of Circ_0002232/miR-92a-3p/ PTEN. Cancer Manage Res 12:11871-11881
- Tayel SI, Soliman SE, Ahmedy IA, Abdelhafez M, Elkholy AM, Hegazy A et al (2022) Deregulation of CircANXA2, Circ0075001, and CircFBXW7 gene expressions and their predictive value in Egyptian acute myeloid leukemia patients. Application Clin Genet 15:69–85
- Wang D, Ming X, Xu J, Xiao Y (2021) Circ_0009910 shuttled by exosomes regulates proliferation, cell cycle and apoptosis of acute myeloid leukemia cells by regulating miR-5195-3p/GRB10 axis. Hematol Oncol 39(3):390–400
- 38. Wang N, Yang B, Jin J, He Y, Wu X, Yang Y et al (2022) Circular RNA circ_0040823 inhibits the proliferation of acute myeloid leukemia cells and induces apoptosis by regulating miR-516b/ PTEN. J Gene Med 24(3):e3404
- Wu Y, Zhao B, Chen X, Geng X, Zhang Z (2022) Circ_0009910 sponges miR-491-5p to promote acute myeloid leukemia progression through modulating B4GALT5 expression and PI3K/AKT signaling pathway. Int J Lab Hematol 44(2):320–332
- Wu ZJ, Sun Q, Gu DL, Wang LQ, Li JY, Jin H (2021) [Expression of circ-KEL in acute myeloid leukemia and its regulatory mechanisms in leukemic cells]. Zhonghua Xue ye Xue Za zhi=zhonghua Xueyexue Zazhi. 42(3):230–237
- Zhang Z, Lin S, Yin J, Yu W, Xu C (2022) CircRNF220 plays a pathogenic role to facilitate cell progression of AML in vitro

- via sponging miR-330-5p to induce upregulation of SOX4. Histol Histopathol 37(10):1019–1030
- 42. Zhou J, Zhou LY, Tang X, Zhang J, Zhai LL, Yi YY et al (2019) Circ-Foxo3 is positively associated with the Foxo3 gene and leads to better prognosis of acute myeloid leukemia patients. BMC Cancer 19(1):930
- 43. Chen T, Chen F (2021) The role of circular RNA plasmacy-toma variant translocation 1 as a biomarker for prognostication of acute myeloid leukemia. Hematol (Amsterdam Netherlands) 26(1):1018–1024
- 44. Ding Y, Dong Y, Lu H, Luo X, Fu J, Xiu B et al (2020) Circular RNA profile of acute myeloid leukaemia indicates circular RNA Annexin A2 as a potential biomarker and therapeutic target for acute myeloid leukaemia. Am J Translational Res 12(5):1683–1699
- Han F, Zhong C, Li W, Wang R, Zhang C, Yang X et al (2020) hsa_circ_0001947 suppresses acute myeloid leukemia progression via targeting hsa-miR-329-5p/CREBRF axis. Epigenomics 12(11):935–953
- Huang L, Huang L, Ming X, Wu J, Liu W, Xiao Y (2022) Circ-NFIX knockdown inhibited AML tumorigenicity by the miR-876-3p/TRIM31 axis. Hematol (Amsterdam Netherlands) 27(1):1046–1055
- 47. Li W, Zhong C, Jiao J, Li P, Cui B, Ji C et al (2017) Characterization of Hsa_circ_0004277 as a new biomarker for acute myeloid leukemia via circular RNA profile and bioinformatics analysis. Int J Mol Sci.;18(3)
- 48. Long F, Lin Z, Long Q, Lu Z, Zhu K, Zhao M et al (2023) Circ-ZBTB46 protects acute myeloid leukemia cells from ferroptotic cell death by upregulating SCD. Cancers.;15(2)
- 49. Sheng XF, Hong LL, Fan L, Zhang Y, Chen KL, Mu J et al (2023) Circular RNA PVT1 regulates cell proliferation, migration, and apoptosis by stabilizing c-Myc and downstream target CXCR4 expression in acute myeloid leukemia. Turkish J Haematology: Official J Turkish Soc Haematol 40(2):82–91
- Wang J, Pan J, Huang S, Li F, Huang J, Li X et al (2021) Development and validation of a novel circular RNA as an independent prognostic factor in acute myeloid leukemia. BMC Med 19(1):28
- Xiong T, Xia L, Song Q, Circular (2023) RNA SPI1 expression before and after induction therapy and its correlation with clinical features, treatment response, and survival of acute myeloid leukemia patients. J Clin Lab Anal 37(3):e24835
- Ye Q, Li N, Zhou K, Liao C (2022) Homo sapiens circular RNA 0003602 (Hsa_circ_0003602) accelerates the tumorigenicity of acute myeloid leukemia by modulating miR-502-5p/IGF1R axis. Mol Cell Biochem 477(2):635–644
- Bi J, Pu Y, Yu X (2021) Exosomal circ_0004136 enhances the progression of pediatric acute myeloid leukemia depending on the regulation of miR-570-3p/TSPAN3 axis. Anticancer Drugs 32(8):802-811
- Cao J, Huang S, Li X (2022) Rapamycin inhibits the progression of human acute myeloid leukemia by regulating the circ_0094100/ miR-217/ATP1B1 axis. Exp Hematol.;112–113:60–9.e2.
- Chang W, Shang Z, Ming X, Wu J, Xiao Y (2022) Circ-SFMBT2 facilitates the malignant growth of acute myeloid leukemia cells by modulating miR-582-3p/ZBTB20 pathway. Histol Histopathol 37(2):137–149
- Ding J, Zhang X, Xue J, Fang L, Ban C, Song B et al (2021) CircNPM1 strengthens adriamycin resistance in acute myeloid leukemia by mediating the miR-345-5p/FZD5 pathway. Central-European J Immunol 46(2):162–182
- Dong S, Zhong H, Li L (2023) Circ_DLEU2 knockdown represses cell proliferation, migration and invasion, and induces cell apoptosis through the miR-582-5p/COX2 pathway in acute myeloid leukemia. Histol Histopathol 38(2):171–183

- Fan H, Li Y, Liu C, Liu Y, Bai J, Li W (2018) Circular RNA-100290 promotes cell proliferation and inhibits apoptosis in acute myeloid leukemia cells via sponging miR-203. Biochem Biophys Res Commun 507(1–4):178–184
- 59. Guo S, Li B, Chen Y, Zou D, Yang S, Zhang Y et al (2020) Hsa_circ_0012152 and Hsa_circ_0001857 accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Front Oncol 10:1655
- Hu X, Yin J, He R, Chao R, Zhu S (2022) Circ_KCNQ5 participates in the progression of childhood acute myeloid leukemia by enhancing the expression of RAB10 via binding to miR-622. Hematol (Amsterdam Netherlands) 27(1):431–440
- Li H, Bi K, Feng S, Wang Y, Zhu C (2021) CircRNA circ_POLA2 is upregulated in acute myeloid leukemia (AML) and promotes cell proliferation by suppressing the production of mature miR-34a. Cancer Manage Res 13:3629–3637
- Li Q, Luan Q, Zhu H, Zhao Y, Ji J, Wu F et al (2021) Circular RNA circ_0005774 contributes to proliferation and suppresses apoptosis of acute myeloid leukemia cells via circ_0005774/miR-192-5p/ULK1 CeRNA pathway. Biochem Biophys Res Commun 551:78-85
- 63. Li S, Ma Y, Tan Y, Ma X, Zhao M, Chen B et al (2018) Profiling and functional analysis of circular RNAs in acute promyelocytic leukemia and their dynamic regulation during all-trans retinoic acid treatment. Cell Death Dis 9(6):651
- Lin G, Fei Y, Zhang Y (2021) Hsa-circ_0003420 induces apoptosis in acute myeloid leukemia stem cells and impairs stem cell properties. Immunopharmacol Immunotoxicol 43(5):622–631
- Liu J, Qiu B (2023) Identification of circular RNA circ_0003256 as a novel player in pediatric acute myeloid leukemia. J Pediatr Hematol Oncol 45(1):29–37
- Liu W, Cheng F (2021) Circular RNA circcrkl inhibits the proliferation of acute myeloid leukemia cells via the miR-196a-5p/miR-196b-5p/p27 axis. Bioengineered 12(1):7704–7713
- Liu Y, Chen X, Liu J, Jin Y, Wang W (2022) Circular RNA circ_0004277 inhibits acute myeloid leukemia progression through MicroRNA-134-5p / Single stranded DNA binding protein 2. Bioengineered 13(4):9662–9673
- Lux S, Blätte TJ, Gillissen B, Richter A, Cocciardi S, Skambraks S et al (2021) Deregulated expression of circular RNAs in acute myeloid leukemia. Blood Adv 5(5):1490–1503
- Tong J, Liu H, Zheng C, Zhu X, Wan X, Tang B et al Circ_0000005 facilitates proliferation, apoptosis, migration and invasion of acute myeloid leukemia cells via modulating miR-139-5p/Tspan3 Axis2020
- Wang X, Jin P, Zhang Y, Wang K (2021) CircSPI1 acts as an oncogene in acute myeloid leukemia through antagonizing SPI1 and interacting with MicroRNAs. Cell Death Dis 12(4):297
- Wang Y, Guo T, Liu Q, Xie X (2020) CircRAD18 accelerates the progression of acute myeloid leukemia by modulation of miR-206/PRKACB Axis. Cancer Manage Res 12:10887–10896
- 72. Wu Y, Gao B, Qi X, Bai L, Li B, Bao H et al (2021) Circular RNA ATAD1 is upregulated in acute myeloid leukemia and promotes cancer cell proliferation by downregulating miR-34b via promoter methylation. Oncol Lett 22(5):799
- Xiao Y, Ming X, Wu J (2021) Hsa_circ_0002483 regulates miR-758-3p/MYC axis to promote acute myeloid leukemia progression. Hematol Oncol 39(2):243–253
- Xue F, Li M, Liu Y, Xu C, Li H, Liu H (2023) Circ_0035381 regulates acute myeloid leukemia development by modulating YWHAZ expression via adsorbing miR-582-3p. Biochem Genet 61(1):354–371
- Yi L, Zhou L, Luo J, Yang Q (2021) Circ-PTK2 promotes the proliferation and suppressed the apoptosis of acute myeloid leukemia cells through targeting miR-330-5p/FOXM1 axis. Blood Cells Mol Dis 86:102506

- Yuan DM, Ma J, Fang WB (2019) Identification of non-coding RNA regulatory networks in pediatric acute myeloid leukemia reveals circ-0004136 could promote cell proliferation by sponging miR-142. Eur Rev Med Pharmacol Sci 23(21):9251–9258
- 77. Zhang L, Bu Z, Shen J, Shang L, Chen Y, Wang Y (2020) A novel circular RNA (hsa_circ_0000370) increases cell viability and inhibits apoptosis of FLT3-ITD-positive acute myeloid leukemia cells by regulating miR-1299 and S100A7A. 122:109619 Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
- Zhang R, Li Y, Wang H, Zhu K, Zhang G (2020) The regulation of circrna RNF13/miRNA-1224-5p Axis promotes the malignant evolution in acute myeloid leukemia. Biomed Res Int 2020:5654380
- Zhang T, Zhou Y, Guan J, Cheng H (2021) Circ_0058058 knockdown inhibits acute myeloid leukemia progression by sponging miR-4319 to regulate EIF5A2 expression. Cancer biotherapy & radiopharmaceuticals
- López-López JA, Page MJ, Lipsey MW, Higgins JPT (2018)
 Dealing with effect size multiplicity in systematic reviews and meta-analyses. Res Synthesis Methods
- 81. Liersch R, Müller-Tidow C, Berdel WE, Krug U (2014) Prognostic factors for acute myeloid leukaemia in adults-biological significance and clinical use. Br J Haematol 165(1):17–38
- Shallis RM, Wang R, Davidoff A, Ma X, Zeidan AM (2019) Epidemiology of acute myeloid leukemia: recent progress and enduring challenges. Blood Rev 36:70–87
- 83. Percival ME, Estey E (2017) Emerging treatments in acute myeloid leukemia: current standards and unmet challenges. Clin Adv Hematol Oncology: H&O 15(8):632–642

- 84. Estey EH (2006) General approach to, and perspectives on clinical research in, older patients with newly diagnosed acute myeloid leukemia. Semin Hematol 43(2):89–95
- Tallman MS, Wang ES, Altman JK, Appelbaum FR, Bhatt VR, Bixby D et al (2019) Acute myeloid leukemia, version 3.2019, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Network: JNCCN 17(6):721–749
- 86. de Perez O, Rossi M, Gorospe M (2020) Circular RNAs Blood Malignancies.;7
- 87. Mirazimi Y, Aghayan AH, Keshtkar A, Mottaghizadeh Jazi M, Davoudian A, Rafiee M (2023) CircRNAs in diagnosis, prognosis, and clinicopathological features of multiple myeloma; a systematic review and meta-analysis. Cancer Cell Int 23(1):178
- 88. Zhong J, Zhang G, Yao W (2021) Clinicopathologic significance and prognostic value of circrnas in osteosarcoma: a systematic review and meta-analysis. J Orthop Surg Res 16(1):578
- Wang W, Xie S, Yuan D, He D, Fang L, Ge F (2022) Systematic review with Meta-Analysis: diagnostic, prognostic and clinicopathological significance of circrna expression. in Ren Cancer.;11
- 90. Chen H, Liang C, Wang X, Liu Y, Yang Z, Shen M et al (2020) The prognostic value of circrnas for gastric cancer: A systematic review and meta-analysis. 9(23):9096–9106
- Nair AS (2019) Publication bias Importance of studies with negative results! Indian J Anaesth 63(6):505–507
- 92. Viera AJ (2008) Odds ratios and risk ratios: what's the difference and why does it matter? South Med J 101(7):730–734

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

