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Abstract: Standard feature engineering involves manually designing measurable descriptors based on
some expert knowledge in the domain of application, followed by the selection of the best performing
set of designed features for the subsequent optimisation of an inference model. Several studies have
shown that this whole manual process can be efficiently replaced by deep learning approaches which are
characterised by the integration of feature engineering, feature selection and inference model optimisation
into a single learning process. In the following work, deep learning architectures are designed for the
assessment of measurable physiological channels in order to perform an accurate classification of different
levels of artificially induced nociceptive pain. In contrast to previous works, which rely on carefully
designed sets of hand-crafted features, the current work aims at building competitive pain intensity
inference models through autonomous feature learning, based on deep neural networks. The assessment
of the designed deep learning architectures is based on the BioVid Heat Pain Database (Part A) and
experimental validation demonstrates that the proposed uni-modal architecture for the electrodermal
activity (EDA) and the deep fusion approaches significantly outperform previous methods reported in
the literature, with respective average performances of 84.57% and 84.40% for the binary classification
experiment consisting of the discrimination between the baseline and the pain tolerance level (T0 vs.
T4) in a Leave-One-Subject-Out (LOSO) cross-validation evaluation setting. Moreover, the experimental
results clearly show the relevance of the proposed approaches, which also offer more flexibility in the
case of transfer learning due to the modular nature of deep neural networks.
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1. Introduction

Conventional machine learning approaches are built upon a set of carefully engineered
representations, which consist of measurable parameters extracted from raw data. Based on some expert
knowledge in the domain of application, a feature extractor is designed and used to extract relevant
information in the form of a feature vector from the preprocessed raw data. This high level representation
of the input data is subsequently used to optimise an inference model. Although such approaches have
proven to be very effective and can potentially lead to state-of-the-art results (given that the set of extracted
descriptors is suitable for the task at hand), the corresponding performance and generalisation capability
is limited by the reliance on expert knowledge as well as the inability of the designed model to process
raw data directly and to dynamically adapt to related new tasks.
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Meanwhile, deep learning approaches [1] automatically generate suitable representations by applying
a succession of simple and non-linear transformations on the raw data. A deep learning architecture
consists of a hierarchical construct of several processing layers. Each processing layer is characterised
by a set of parameters that are used to transform its input (which is the representation generated by the
previous layer) into a new and more abstract representation. This specific hierarchical combination of
several non-linear transformations enables deep learning architectures to learn very complex functions
as well as abstract descriptive (or discriminative) representations directly from raw data [2]. Moreover,
the hierarchical construct characterising deep learning architectures offers more flexibility when it comes
to adapting such approaches to new and related tasks. Hence, deep learning approaches have been
outperforming previous state-of-the-art machine learning approaches, especially in the field of image
processing [3–7]. Similar performances have been achieved in the field of speech recognition [8,9] and
natural language processing [10,11].

A steadily growing amount of work has been exploring the application of deep learning approaches on
physiological signals. Martinéz et al. [12] were able to significantly outperform standard approaches built
upon hand-crafted features by using a deep learning algorithm for affect modelling based on physiological
signals (two physiological signals consisting of Skin Conductance (SC) and Blood Volume Pulse (BVP)
were used in this specific work). The designed approach consisted of a multi-layer Convolutional Neural
Network (CNN) [13] combined with a single-layer perceptron (SLP). The parameters of the CNN were
trained in an unsupervised manner using denoising auto-encoders [14]. The SLP was subsequently
trained in a supervised manner using backpropagation [15] to map the outputs of the CNN to the target
affective states. In [16], the authors proposed a multiple-fusion-layer based ensemble classifier of stacked
auto-encoder (MESAE) for emotion recognition based on physiological data. A physiological-data-driven
approach was proposed in order to identify the structure of the ensemble. The architecture was able to
significantly outperform the existing state-of-the-art performance. A deep CNN was also successfully
applied in [17] for arousal and valence classification based on both electrocardiogram (ECG) and
Galvanic Skin Response (GSR) signals. In [18], a hybrid approach using CNN and Long Short-Term
Memory (LSTM) [19] Recurrent Neural Network (RNN) was designed to automatically extract and
merge relevant information from several data streams stemming from different modalities (physiological
signals, environmental and location data) for emotion classification. Moreover, deep learning approaches
have been applied on electromyogram (EMG) signals for gesture recognition [20,21] or hand movement
classification [22,23]. Most of the reported approaches consist of first transforming the processed EMG
signal into a two dimensional (time-frequency) visual representation (such as a spectrogram or a scalogram)
and subsequently using a deep CNN architecture to proceed with the classification. A similar procedure
was used in [24] for the analysis of electroencephalogram (EEG) signals. These are just some examples of
an increasingly growing field of experimentation for deep neural networks. A better overview of deep
learning approaches applied to physiological signals can be found in [25,26]. However, there are few
related works that focus specifically on the application of deep neural networks on physiological signals for
pain recognition. The authors of [27] recently proposed a classification architecture based on Deep Belief
Networks (DBNs) for the assessment of patients’ pain level during surgery, using photoplethysmography
(PPG). The proposed architecture consists of a bagged ensemble of DBNs, built upon a set of manually
engineered features, extracted from the recorded and preprocessed PPG signals. It is important to note
that, in this specific study, the ensemble of bagged DBNs was trained on a set of carefully designed
hand-crafted features. Therefore, an expert knowledge in this specific area of application is still needed in
order to generate a set of relevant descriptors, since the whole classification process is not performed in an
end-to-end manner.

Nonetheless, there is a constantly growing amount of works that focus specifically on pain recognition
based on physiological signals, and categorised by the nature of the pain elicitations. There is a huge
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variety of statistical methods that have been proposed, most of them based on more traditional machine
learning approaches such as decision trees or Support Vector Machines (SVMs) [28]. In [29], the authors
proposed a continuous pain monitoring method using an Artificial Neural Network (ANN), based on
hand-crafted features (wavelength (WL) and root mean square (RMS) features) extracted from several
physiological signals consisting of heart rate (HR), breath rate (BR), galvanic skin response (GSR) and facial
surface electromyogram (sEMG). The proposed approach was assessed on a dataset collected by inducing
both thermal and electrical pain stimuli. In [30], the authors proposed a pain detection approach based
on EEG signals. Relevant features are extracted from the EEG signals using the Choi–Williams quadratic
time–frequency distribution and subsequently used to train a SVM in order to perform the classification
task. Pain in this specific work is elicited throughout tonic cold. Most recently, Thiam et al. [31,32]
provided the results for a row of pain intensity classification experiments based on the SenseEmotion
Database (SEDB) [33], by using several fusion architectures to merge hand-crafted features extracted from
different modalities, including physiological, audio and video channels. Thereby, the combination of
the features extracted from the recorded signals was compared for different fusion approaches, namely
the fusion at feature level, the fusion at the classifiers’ output level and the fusion at an intermediate
level. Random Forests [34] were used as the base classifiers. In [35], the authors combined camera PPG
input signals with ECG and EMG signals in order to proceed with a user-independent pain intensity
classification using the same dataset. The authors used a fusion architecture at the feature level with
Random Forests and SVMs as base classifiers.

In [36–38], the authors performed different pain intensity classification experiments based on the
BioVid Heat Pain Database [39] (BVDB). All the conducted experiments were based on a carefully selected
set of features extracted from both physiological and video channels. The classification was also performed
using either Random Forests or SVMs. In [40], Kächele et al. performed a user-independent pain intensity
classification evaluation based on physiological input signals, using the same dataset. The authors used
the whole data from all recorded pain levels in a classification, as well as a regression setting with Random
Forests as the base classifiers. Several personalisation techniques were designed and validated, based on
meta information from the test subjects, distance measures and machine learning techniques. The same
authors proposed an adaptive confidence learning approach for personalised pain estimation in [41]
based on both physiological and video modalities. Thereby, the authors applied the fusion at feature
level. The whole pain intensity estimation task was analysed as a regression problem. Random Forests
were used as the base regression models. Moreover, a multi-layer perceptron (MLP) was applied to
compute the confidence for an additional personalisation step. One recent work included the physiological
signals of both datasets (SEDB and BVDB) [42]. The authors analysed different fusion approaches with
fixed aggregating rules based on their merging level for the person-independent multi-class scenario
using all available pain levels. Thereby, three of the most popular decision tree based classifier systems,
i.e., Bagging [43], Boosting [44] and Random Forests, were compared.

The current work focuses on the application of deep learning approaches for nociceptive heat-induced
pain recognition based on physiological signals (EMG, ECG and electrodermal activity (EDA)). Several
deep learning architectures are proposed for the assessment of measurable physiological parameters
in order to perform an end-to-end classification of different levels of artificially induced nociceptive
pain. The current work aims at achieving state-of-the-art classification performances based on feature
learning (the designed architecture autonomously extracts relevant features from the preprocessed raw
signals in an end-to-end manner), therefore removing the reliance on expert knowledge for the design
and optimisation of reliable pain intensity classification models (since most of the previous works on pain
intensity classification involving autonomic parameters rely on a carefully designed set of hand-crafted
features). The remainder of the work is organised as follows. The proposed deep learning approaches
as well as the dataset used for the validation of the approaches are described in Section 2. Subsequently,
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a description of the results corresponding to the conducted assessments specific to each presented approach
is provided in Section 3. Finally, the findings of the conducted experiments are discussed in Section 4,
followed by the description of potential future works and a conclusion.

2. Materials and Methods

2.1. BioVid Heat Pain Database (BVDB)

The BioVid Heat Pain Database [39] (BVDB) was collected at Ulm University. It includes multi
modal data recordings from healthy subjects subjected to different levels of artificially induced pain
stimuli under strictly controlled conditions. The pain elicitation in the form of heat was conducted
through the professionally designed PATHWAY (http://www.medoc-web/products/pathway) thermode
attached to the participants’ right forearm. Before the data were recorded, a personalised calibration
step was undertaken for each participant to determine individual levels for the pain threshold, as well
as the tolerance threshold. Therefore, starting at a temperature of 32 ◦C (global pain free level T0 for
all participants), the temperature was slowly increased until, first, the participant felt a change from
heat to pain (pain threshold T1), and, second, the pain became hardly bearable (tolerance threshold T4).
In addition, two in-between pain elicitation levels T2 and T3 were calculated, making the four individual
pain levels T1, T2, T3, T4 equidistant. After the initial calibration steps, starting at the baseline temperature
T0, each of the four individual pain levels was applied randomly 20 times. Each of the pain levels was
held for a total of 4 s. Each pain stimulation was followed by a rest period during which the baseline
temperature was held for a random duration of 8–12 s. Ninety subjects were recruited for the experiments.
The participants covered three age groups, i.e., 18–35 years, 36–50 years and 51–65 years. Each group
was equally distributed, including 15 male and 15 female subjects. In the current study, the designed
approaches were assessed on the BioVid Heat Pain Database (Part A) since most of the related works were
conducted based on this specific database. The database is publicly available and consists of a total of
87 participants. Due to technical issues during the recordings, some of the data specific to three participants
are missing [36]. Those participants were therefore discarded and the remaining 87 participants, for which
all data are available, constitute the BioVid Heat Pain Database (Part A).

During the experiments, three different physiological signals were recorded, namely electrodermal
activity (EDA), electrocardiogram (ECG) and electromyogram (EMG) (a sample of the recorded
physiological signals is depicted in Figure 1). The EDA is an indicator of the skin conductance level
and was measured at both, the participants’ index and ring fingers. The ECG signals measure the
participants’ heart activity, such as the heart rate, the interbeat interval and the heart rate variability.
The EMG signal is an indicator of the muscle activity. The EMG signal of the current dataset consists
of the muscle activities of the trapezius muscles, which are located at the back, in the shoulder area.
In addition to the biopotentials, different video signals were recorded. Since in the current work we only
consider the physiological signals, interested readers are referred to [39] to get further details on the whole
dataset. Having 20 elicitations for each level of pain elicitation, every subject is represented by a total of
20× 5 = 100 sequences of numerical data points (time series). Therefore, the unprocessed dataset consists
of 87× 100 = 8700 samples, each labelled with its corresponding level of nociceptive pain elicitation (T0,
T1, T2, T3 or T4).

http://www.medoc-web/products/pathway
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Figure 1. Recorded physiological data. From top to bottom: Series of artificially induced pain elicitation
(T1, pain threshold temperature; T2, first intermediate elicitation temperature; T3, second intermediate
elicitation temperature; T4, pain tolerance temperature); EDA (µS); EMG (µV); and ECG (µV).

2.2. Data Preprocessing

Prior to the classification experiments, the sampling rate of the recorded physiological modalities was
reduced to 256 Hz, in order to reduce the computational requirements. Subsequently, the amount of noise
and artefacts within the recorded data was significantly reduced by applying different signal preprocessing
techniques on each specific modality. A third-order low-pass Butterworth filter with a cut-off frequency of
0.2 Hz was applied on the EDA signals. The EMG signals were filtered by applying a fourth-order bandpass
Butterworth filter with a frequency range of [20, 250] Hz. Finally, a third-order bandpass Butterworth
filter with a frequency range of [0.1, 250] Hz was applied on the ECG signals. Furthermore, the data
were segmented as proposed in [37], but rather than using 5.5 s windows with a shift of 3 s from the
elicitations’ onset, the preprocessed signals were segmented into windows of length 4.5 s, with a shift
from the elicitations’ onset of 4 s (see Figure 2a), as recently proposed in [31]. Each signal extracted within
this window constitutes a 1D array of size 4.5× 256 = 1152 and was later used in combination with the
corresponding level of nociceptive pain elicitation to optimise and assess the designed deep classification
architectures. Thus, each physiological modality specific to each single participant is represented by a
tensor with the dimensionality 100× 1152× 1. After some close analysis of the preprocessed physiological
signals, a clear baseline wandering of the ECG signal, which is characterised by a strong correlation
with the shape of the EDA signal, was observed (see Figure 2b). Therefore, the segmented ECG signals
were additionally detrended by subtracting a fifth-degree polynomial least-squares fit from the filtered
signals. This step was carried out to remove the aforementioned artefacts from the ECG signals, since these
artefacts could potentially bias the classification performance of the corresponding deep classification
model (instead of using information stemming uniquely from the ECG signal, the designed system would
end up extracting information stemming from a non-linear combination of both the ECG signal and a
noisy signal related to the EDA signal). Finally, data augmentation was performed by shifting the 4.5 s
window of segmentation backward and forward in time with small shifts of length 250 ms and a maximal
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total window shift of 1 s in each direction, starting from the initial position of the window depicted in
Figure 2a. The signals extracted within these windows were subsequently used as training material for the
optimisation of the classification architectures.
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Figure 2. Data preprocessing. (a) Signal Segmentation. The classification experiments are performed
on windows of length 4.5 sec with a temporal shift of 4 sec from the elicitations’ onset. (b) The ECG
signal is further detrendet by subtracting a least-squares polynomial fit from the preprocessed signal.

Figure 2. Data preprocessing. (a) Signal Segmentation. The classification experiments were performed on
windows of length 4.5 s with a temporal shift of 4 s from the elicitations’ onset. (b) The ECG signal was
further detrended by subtracting a least-squares polynomial fit from the preprocessed signal.

2.3. Uni-modal Deep Model Description

As mentioned above, the goal of the current work is to apply feature learning to alleviate the
reliance on domain specific expert knowledge that occurs when relevant and adequate features are to be
manually designed (hand-crafted features) in order to achieve state-of-the-art classification performances.
Therefore, multi-layer CNNs were designed and fed with the preprocessed physiological signals in order
to automatically compute relevant signal representations and at the same time optimise the classification
architectures. In the following sections, c depicts the number of classes of the classification task.

CNNs [45,46] constitute a distinct category of biologically inspired neural networks, which are
characterised by a hierarchical structure of several processing layers. The input to a CNN is sequentially
and progressively transformed by each specific layer and the back-propagated information stemming
from the error computed between the network’s output and the expected output (ground-truth) is used to
optimise the whole structure of the architecture in order to efficiently and effectively solve a classification
or regression task. The basic processing layers of CNNs are convolutional layers, pooling layers and fully
connected layers. Convolutional layers are characterised by a set of neurons (or kernels), whereby each specific
neuron extracts a specific pattern of information from a patch of the layer’s input. Each neuron consists of
a set of trainable weights, the size of which is determined by the patch’s size (or kernel size). The output
of each neuron is calculated by applying a non-linear activation function (e.g., sigmoid function) on the
weighted sum of the neuron’s input. Each neuron scans the layer’s input sequentially and the aggregation
of the resulting local information extracted at each specific patch constitutes a feature map. Thus, the
output of a convolutional layer is a set of feature maps generated by the convolution of each neuron
across the layer’s input. Pooling layers reduce the spatial resolution of the generated feature maps by
merging semantically similar features. Max Pooling is a commonly used pooling approach and consists of
computing the maximum value of a defined local patch (the size of the patch related to a specific pooling
layer is referred in the current work as “pool size”) of each feature map. Fully connected layers are basically
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single-layer feed-forward networks that perform the classification or regression task based on the learned
deep representations.

Several challenges emerge when it comes to optimising such architectures. One of those challenges
is the so-called vanishing or exploding gradients problem, which is caused by the internal covariate shift
(constant fluctuations in layers’ input distributions) occurring in deep architectures during the training
process. In [47], the authors proposed a technique called Batch Normalisation to address this specific issue.
Batch Normalisation consists of automatically learning the optimal scaling and shifting parameters of each
layer’s input, so that each layer’s input is dynamically normalised, thus significantly reducing the effects
of the internal covariate shift and therefore stabilising the training process. Another common challenge
occurring when training CNNs is the overfitting problem caused by the large amount of parameters
that have to be consistently and effectively optimised. Applying regularisation techniques can help to
significantly reduce this issue. The authors of [48] introduced the dropout approach, which is one of the
most commonly used regularisation techniques for deep neural networks. The dropout approach consists
of randomly and temporarily removing a set of neurons (or units) from the neural network during each
training step, each neuron having a fixed probability p ∈ [0, 1] of being retained. The resulting model is
therefore more robust against overfitting and generalises better.

In the current work, the designed architectures are regularised using both techniques and the dropout
rate is fixed at 25%. Moreover, the Exponential Linear Unit (ELU) function [49] defined in Equation (1)

eluα(x) =

{
α (exp(x)− 1) if x < 0

x if x ≥ 0
(1)

is used as activation function for both convolutional layers and fully connected layers (with α = 1),
except for the last fully connected layer of each architecture where a softmax function defined in Equation (2)

s(yi) =
exp(yi)

∑
j

exp(yj)
(2)

is used as activation function, where yi = eluα

(
n
∑

k=1
wi,kxk + bi

)
(
{

wi,k
}n

k=1 represents the set of weights

of the ith neuron, bi represents the bias term of the ith neuron and x = (x1, . . . , xk, . . . , xn) represents the
output of the precedent fully connected layer). The designed architectures for each physiological signal
are based on 1D convolutional layers and are described in Table 1. The architectures are similar and were
inspired by the architecture presented in [50] for the classification of ECG signals. The unique difference
between the architectures is the usage of a dropout layer after each convolutional layer in the architecture
specific to both modalities EMG and ECG.
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Table 1. Deep classification architectures for each of the recorded physiological modality.

EDA EMG & ECG

Layer Name No. Kernels (Units) Kernel (Pool) Size Stride Layer Name No. Kernels (Units) Kernel (Pool) Size Stride

Convolution 16 3 1 Convolution 16 11 1

Batch Normalisation - - - Batch Normalisation - - -

Max Pooling - 2 2 Max Pooling - 2 2

Convolution 16 3 1 Dropout - - -

Batch Normalisation - - - Convolution 16 11 1

Max Pooling - 2 2 Batch Normalisation - - -

Convolution 32 3 1 Max Pooling - 2 2

Batch Normalisation - - - Dropout - - -

Max Pooling - 2 2 Convolution 32 11 1

Convolution 32 3 1 Batch Normalisation - - -

Batch Normalisation - - - Max Pooling - 2 2

Max Pooling - 2 2 Dropout - - -

Convolution 64 3 1 Convolution 32 11 1

Batch Normalisation - - - Batch Normalisation - - -

Max Pooling - 2 2 Max Pooling - 2 2

Convolution 64 3 1 Dropout - - -

Batch Normalisation - - - Convolution 64 11 1

Max Pooling - 2 2 Batch Normalisation - - -

Convolution 128 3 1 Max Pooling - 2 2

Batch Normalisation - - - Dropout - - -

Max Pooling - 2 2 Convolution 64 11 1

Flatten - - - Batch Normalisation - - -

Fully Connected 1024 - - Max Pooling - 2 2

Dropout - - - Dropout - - -

Fully Connected 512 - - Convolution 128 11 1

Dropout - - - Batch Normalisation - - -

Fully Connected c - - Max Pooling - 2 2

Flatten - - -

Dropout - - -

Fully Connected 1024 - -

Dropout - - -

Fully Connected 512 - -

Dropout - - -

Fully Connected c - -

ELU is used as activation function in both convolutional and fully connected layers, except for the last
fully connected layer where a softmax activation function is used. The networks are further regularised
by using dropout layers with a fixed dropout rate of 25%.

2.4. Multi-Modal Deep Model Description

To further investigate the compatibility of the recorded physiological data, several fusion approaches
based on CNNs are proposed. The information stemming from each modality is aggregated at different
levels of abstraction.

The first approach depicted in Figure 3 consists of an early fusion method, where the aggregation
is done at the lowest level of abstraction, which consists of the preprocessed raw signals (input data).
A 2D representation of the input data is generated by concatenating the three physiological modalities
along the temporal axis, resulting in a tensor with the dimensionality 3× 1152× 1. The resulting data
are subsequently fed into a network consisting of 2D convolutional layers. The motivation behind such
an approach is to enable the architecture to dynamically learn an appropriate set of weights, which will
generate feature maps consisting of relevant and compatible information extracted simultaneously from
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the recorded modalities, when applied to the 2D data representation. The designed fusion architecture is
described in Table 2.

Table 2. Early fusion deep CNN architecture.

Layer Name No. Kernels (Units) Kernel (Pool) Size Stride

Convolution 16 2× 11 1× 1

Convolution 16 2× 11 1× 1

Batch Normalisation - - -

Max Pooling - 1× 2 1× 2

Dropout - - -

Convolution 32 1× 11 1× 1

Batch Normalisation - - -

Max Pooling - 1× 2 1× 2

Dropout - - -

Convolution 32 1× 11 1× 1

Batch Normalisation - - -

Max Pooling - 1× 2 1× 2

Dropout - - -

Convolution 64 1× 11 1× 1

Batch Normalisation - - -

Max Pooling - 1× 2 1× 2

Dropout - - -

Convolution 64 1× 11 1× 1

Batch Normalisation - - -

Max Pooling - 1× 2 1× 2

Flatten - - -

Dropout - - -

Fully Connected 1024 - -

Dropout - - -

Fully Connected 512 - -

Dropout - - -

Fully Connected c - -

The architecture is based on 2D convolutional layers. A 2D representation of the input data is generated by
concatenating the three physiological modalities resulting in a tensor with the dimensionality 3× 1152× 1. Similar
to the previous architectures (see Table 1), ELU is used as activation function in both convolutional and fully
connected layers, except for the last fully connected layer where a softmax activation function is used. The network
is further regularised by using dropout layers with a fixed dropout rate of 25%.
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Figure 3. Early Fusion Architecture. A 2D representation of the input data is generated by concatenating
the three physiological modalities and is subsequently fed into the designed deep architecture.

Furthermore, two additional late fusion approaches are proposed (see Figure 4). Both approaches
are based on the uni-modal CNN architectures described earlier (see Section 2.3). The first approach
described in Figure 4a performs the aggregation of the information at the mid-level since it involves using
intermediate representations of the input data. It consists of concatenating the outputs of the second
fully connected layer of each modality specific architecture and feeding the resulting representation to
an output layer with a softmax activation function. The second approach depicted in Figure 4b performs
the aggregation at the highest level of abstraction, since it involves using the respective softmax layers’
outputs of each modality specific architecture. An additional layer consisting of a set of trainable positive
parameters (α1, α2, α3) ∈ R3

≥0 with a linear activation function is directly connected to the outputs of each
uni-modal architecture.
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Figure 4. Late Fusion Architectures. (a) The features extracted by the second fully connected layer are
concatenated and fed into the output layer. (b) The final output consists of a weighted average of the
outputs of each uni-modal model.
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For each modality specific architecture i ∈ {1, 2, 3} (since we are dealing with three physiological
modalities), let {θi,j ∈ [0, 1] : 1 ≤ j ≤ c} be the output values of the respective softmax layers. The output
of the aggregation layer is computed by using the following formulas:

ej =
1
3

(
3

∑
i=1

αiθi,j

)
, with the constraint:

3

∑
i=1

αi = 1 (3)

s(ej) = ej (4)

First, a weighted average output of the class probabilities stemming from the uni-modal architectures
is computed (see Equation (3)), and the corresponding class probabilities of the fusion architecture are
subsequently deducted by applying a linear activation function on the previously computed scores (see
Equation (4)). Furthermore, the whole architecture is trained by using the loss function defined in
Equation (5),

L =
3

∑
i=1

λiLi + λaggLagg (5)

where L1, L2 and L3 are the loss functions of each modality specific architecture and Lagg is the loss function
of the aggregation layer. The parameters λ1, λ2, λ3 and λagg are the corresponding weights for each of
the loss functions. Once the architecture has been trained, unseen samples are classified based uniquely
on the output of the aggregation layer. All described fusion approaches are subsequently trained in
an end-to-end manner, which means that the fusion parameters are optimised at the same time as the
parameters of each modality specific classification architecture. Furthermore, the parameters of each
described architecture (uni-modal as well as multi-modal) are optimised using the cross entropy loss
function defined in Equation (6),

Loss = −
c

∑
j=1

yj log(ŷj) (6)

where yj is the ground-truth value of the jth class and ŷj is the jth output value of the softmax function.
Concerning the second late fusion architecture, the cross entropy loss function is used for each uni-modal
architecture as well as for the aggregation layer (L1 = L2 = L3 = Lagg = Loss).

3. Results

All previously described deep architectures are trained using the Adaptive Moment estimation
(Adam) [51] optimisation algorithm with a fixed learning rate set empirically to 10−5. The training process
consisted of 100 epochs with the batch size set to 100. The weights of the loss function for the second
late fusion architecture (see Figure 4b) were empirically set as follows: λ1 = λ2 = λ3 = 0.2, λagg = 0.4.
The weight corresponding to the aggregation layer (λagg) was set higher than the others to push the network
to focus on the weighted combination of the single modality architectures’ outputs, and therefore to
evaluate an optimal set of the weighting parameters {α1(EDA), α2(EMG), α3(ECG)}. The implementation
and evaluation of the described algorithms was done with the libraries Keras [52], Tensorflow [53] and
Scikit-learn [54]. The evaluation of the architectures was performed in a Leave-One-Subject-Out (LOSO)
cross-validation setting, which means that 87 experiments were conducted. During each experiment,
the data specific to a single participant were used to evaluate the performance of the trained deep model
and were never seen during the optimisation of this specific deep model. The data specific to each single
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participant were therefore used once as an unseen test set, and the results depicted in this section consist
of averaged performance metrics from a set of 87 performance values.

A performance evaluation of the designed architectures in a binary classification task consisting
of the discrimination between the baseline temperature T0 and the pain tolerance temperature T4 is
reported in Table 3. The achieved results based on CNNs are also compared to the state-of-the-art
results reported in previous works. At a glance, the designed deep learning architectures outperform the
state-of-the-art results in every setting, except for the ECG modality. Regarding the aggregation of all
physiological modalities, the second late fusion architecture performs best and sets a new state-of-the-art
fusion performance with an average accuracy of 84.40%, which even outperforms the best fusion results
reported in [41], where the authors could achieve an average classification performance of 83.1% by using
both physiological and video features.

Table 3. Performance comparison to early work on the BVDB (Part A) for the classification task T0 vs. T4 in
a LOSO cross-validation setting.

Method ECG EMG EDA Fusion

Werner et al. [36] 62.00 57.90 73.80 74.10

Kächele et al. [40,41] 53.90 58.51 81.10 82.73

Our Approaches (CNNs) 57.04± 11.58 58.65± 13.82 84.57± 14.13

Early Fusion: 82.79± 15.22
Late Fusion (a): 83.39± 15.54
Late Fusion (b): 84.40± 14.43

The performance metric consists of the average accuracy (in %) over the LOSO cross-validation evaluation
(the standard deviation of the cross-validation results for the proposed approaches is also provided). The best
performing approach for each modality and the aggregation of all modalities is depicted in bold.

The deep architecture based on the EDA modality significantly outperforms all previously reported
classification results with an average accuracy of 84.57%.

Based on these findings, further classification experiments were conducted, based on each
physiological modality and also the best performing fusion architecture (Late Fusion (b)). The performance
evaluation of the conducted experiments consisting of several binary classification experiments and a
multi-class classification experiment is summarised in Table 4.

EDA significantly outperforms both EMG and ECG in all conducted classification experiments and
constitutes the best performing single modality, which is consistent with the results reported in previous
works. Both EMG and ECG depict similar classification performances and also perform poorly for
almost all classification experiments. The discrimination between the baseline temperature T0 and the
pain threshold temperature T1, as well as the two intermediate temperatures T2 and T3, constitute very
difficult classification experiments that both modalities are unable to perform successfully. However,
the classification performances of both modalities for the classification tasks T0 vs. T4 and T1 vs. T4 are
significantly above chance level, which shows that higher temperatures of elicitation cause observable and
measurable responses in the recorded physiological signals, that can be used to perform the classification
tasks at a certain degree of satisfaction. However, the overall performance of the fusion architecture is
greatly affected by the significantly poor performance of both ECG and EMG in comparison to EDA.
As can be seen in Table 4, the EDA classification architecture outperforms the fusion architecture in
almost all classification experiments (but not significantly), except for the classification task T1 vs. T4 and
the multi-class classification task (the performance improvement of the fusion architecture is however
not significant).
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Table 4. CNN Classification performance on the BVDB (Part A) in a LOSO cross-validation setting (the
multi-class classification task corresponds to the five-class classification task T0 vs. T1 vs. T2 vs. T3 vs. T4).

Task ECG EMG EDA Late Fusion (b)

T0 vs. T1 49.71± 06.90 49.71± 02.77 61.67± 12.54 † 61.15± 12.22 a,b

T0 vs. T2 50.72± 07.30 50.29± 03.60 66.93± 16.19 † 66.81± 15.92 a,b

T0 vs. T3 52.87± 09.32 53.25± 08.93 76.38± 14.70 † 76.29± 14.62 a,b

T0 vs. T4 57.04± 11.58 58.65± 13.82 84.57± 14.13 † 84.40± 14.43 a,b

T1 vs. T4 58.07± 12.36 58.79± 12.08 76.61± 15.38 76.72± 15.02 a,b,†

Multi-Class 23.23± 05.62 22.85± 05.65 36.25± 09.01 36.54± 08.55 a,b,†

The performance metric consists of the average accuracy (in %) over the LOSO cross-validation evaluation (the
standard deviation of the cross-validation results is also provided). The best performing approach for each
classification task is depicted in bold. We also performed a significance test between the fusion approach and each
single modality, using a Wilcoxon signed rank test with a significance level of 5%: (a) indicates a significant
performance improvement between EMG and the fusion approach; (b) indicates a significant performance
improvement between ECG and the fusion approach; and (†) indicates no significant improvement between
EDA and the fusion approach.

The information stemming from both modalities EMG and ECG harms the optimisation process of the
fusion architecture due to its inconsistency. However, it can be seen in Figure 5 that the fusion architecture
is able to detect the sources of inconsistent information and dynamically adapt by systematically assigning
higher weight values to EDA, while both ECG and EMG are assigned significantly lower weight
values for all conducted classification tasks, and therefore improving the generalisation ability of the
fusion architecture.

α1 α2 α3 α1 α2 α3 α1 α2 α3 α1 α2 α3 α1 α2 α3 α1 α2 α3
0

0.2

0.4

0.6

0.8

1

T0 vs. T1 T0 vs. T2 T0 vs. T3 T0 vs. T4 T1 vs. T4 Multi-Class

α1(EDA) α2(EMG) α3(ECG)

Figure 5. Box plots of the weighting parameters α1, α2 and α3 for the late fusion architecture (Late
Fusion (b)), computed during the LOSO cross-validation evaluation of each conducted classification
experiment. Within each box plot, the mean and median values of the performed LOSO cross-validation
evaluation are depicted with a dot and a horizontal line, respectively.

Subsequently, the performance of both EDA and late fusion architectures were further evaluated
using different performance measures. In the case of binary classification experiments, true positives
(tp) correspond to the number of correct acceptances, false positives (fp) correspond to the number of
false acceptances, true negatives (tn) correspond to the number of correct rejections and false negatives (fn)
correspond to the number of false rejections. These four values stem from the confusion matrix of an
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evaluated inference model and are used to define different performance measures. Those used for the
current evaluation of the designed classification architectures are defined in Table 5.

The performance evaluation of the EDA architecture is depicted in Figure 6, while the performance
evaluation of the fusion architecture is depicted in Figure 7. Considering binary classification experiments,
both architectures are able to consistently discriminate between the baseline temperature T0 and the
other temperatures of pain elicitation. However, the performance of both architectures with regards to
the five-class classification experiment suggests that the discrimination between all five levels of pain
elicitation is a very challenging classification task. While the overall accuracy of each architecture is
significantly above random performance (which is 20% in the case of a five-class classification task),
the discrimination of the intermediate levels of pain elicitation remains very difficult, as can be seen in
Figure 8. Both baseline and pain tolerance temperatures T0 and T4 can be classified with a relatively good
performance. The classification performance of T2 is barely above random performance and both T1 and
T3 are mostly confused with T0 and T4, respectively. These results are however consistent with previous
works on the same dataset.

Table 5. Classification performance measures.

Measure Binary Classification Multi-Class Classification

Accuracy
tp + tn

tp + tn + f p + f n
1
c

c
∑

i=1

tpi + tni
tpi + tni + f pi + f ni

Precision
tp

tp + f p
1
c

c
∑

i=1

tpi
tpi + f pi

Recall
tp

tp + f n
1
c

c
∑

i=1

tpi
tpi + f ni

F1 score
2× Precision× Recall

Precison + Recall
In the case of multi-class classification experiments: tpi corresponds to true positives, tni corresponds to true
negatives, f pi corresponds to false positives and f ni corresponds to false negatives in the confusion matrix
associated with the ith class. Furthermore, since the dataset used for the evaluation of the performance of the
designed architectures is balanced, we use the macro-averaged F1 score in the case of multi-class classification.

T0 vs. T1 T0 vs. T2 T0 vs. T3 T0 vs. T4 T1 vs. T4 Multi-Class
0

0.2

0.4

0.6

0.8

1
Accuracy Precision Recall F1

Figure 6. EDA classification performance. Within each box plot, the mean and median values of the
respective performance evaluation metrics are depicted with a dot and a horizontal line, respectively.
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T0 vs. T1 T0 vs. T2 T0 vs. T3 T0 vs. T4 T1 vs. T4 Multi-Class
0

0.2

0.4

0.6

0.8

1
Accuracy Precision Recall F1

Figure 7. Late fusion classification performance (Late Fusion (b)). Within each box plot, the mean and
median values of the respective performance evaluation metrics are depicted with a dot and a horizontal
line, respectively.
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Figure 8. Multi-class classification performance (confusion matrix) of the fusion architecture
(Late Fusion (b)). The darker the color the higher the corresponding performance.

Table 6. EDA performance comparison to early work on the BVDB (Part A) in a LOSO cross-validation setting.

Method T0 vs. T1 T0 vs. T2 T0 vs. T3 T0 vs. T4

Werner et al. [36] 55.40 60.20 65.90 73.80

Lopez-Martinez et al. [55] 56.44 59.40 66.00 74.21

Our Approach (CNN) 61.67± 12.54 66.93± 16.19 76.38± 14.70 84.57± 14.13

The performance metric consists of the average accuracy (in %) over the LOSO cross-validation evaluation. The best
performing approach for each classification task is depicted in bold.
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We therefore compared the performance of the EDA and proposed late fusion approach to early
works. For the sake of fairness, we considered the related works performed on the exact same dataset,
using the exact same evaluation settings (LOSO with all 87 participants). The results depicted in Table 6
clearly show that the designed CNN architecture specific to EDA is able to consistently and significantly
outperform previous approaches in all binary classification settings. Moreover, the authors of [56,57]
reported overall accuracy performances of, respectively, 74.40% and 81.30% for the binary classification
task T0 vs. T4 based uniquely on EDA. These approaches are also based on carefully designed hand-crafted
features and are also significantly outperformed by the proposed CNN architecture specific to EDA.

Furthermore, we also compared the proposed late fusion approach with other fusion approaches
proposed in early works. The results depicted in Table 7 show that the proposed fusion approach
outperforms previous approaches for the binary classification task T0 vs. T4. Concerning the multi-class
classification task, the proposed fusion approach also outperforms early approaches with an overall
accuracy of 36.54%. The authors of [41] reported an overall accuracy of 33% with a classification model
based on physiological modalities, while Werner et al. [58] reported an overall accuracy of 30.8% with a
classification model based on head pose and facial activity descriptors.

Table 7. Fusion performance comparison to early work on the BVDB (Part A) in a LOSO cross-validation
setting for the classification task T0 vs. T4.

Approach Description Performance

Werner et al. [58] Early Fusion with Random Forests (Head Pose and Facial Activity Descriptors) 72.40

Werner et al. [36] Early Fusion with Random Forests (EDA, EMG, ECG, Video) 77.80

Kächele et al. [56] Early Fusion with Random Forests (EDA, ECG, Video) 78.90

Kächele et al. [57] Late Fusion with Random Forests and Pseudo-inverse (EDA, EMG, ECG, Video) 83.10

Our Approach (CNN) Late Fusion (b) with CNNs (EDA, EMG, ECG) 84.40± 14.43

The performance metric consists of the average accuracy (in %) over the LOSO cross-validation evaluation. The best
performing approach is depicted in bold.

Moreover, the designed fusion architecture was tested on the BioVid Heat Pain Database (Part
B). The database was generated using the same exact procedure as Part A. However, it consists of
86 participants and two additional EMG signals (from the corrugator and the zygomaticus muscles) were
recorded. In this evaluation, we used the same signals as in Part A (EMG of the trapezius muscle, ECG and
EDA), and used the same fusion architecture (Late fusion (b) depicted in Figure 4b). The computed results
were subsequently compared with those of previous works. The corresponding results are depicted in
Table 8.

Table 8. Fusion performance comparison to early work on the BVDB (Part B) in a LOSO cross-validation
setting for the classification task T0 vs. T4.

Approach Description Performance

Kächele et al. [56]
Late Fusion with SVMs and Mean Aggregation (EMG (zygomaticus),

EMG (corrugator), EMG (trapezius), ECG, EDA, Video) 76.60

Walter et al. [37]
Early Fusion with SVM (EMG (zygomaticus),

EMG (corrugator), EMG (trapezius), ECG, EDA) 77.05

Our Approach (CNN) Late Fusion (b) with CNNs (EMG (trapezius), ECG, EDA) 79.48± 14.96

The performance metric consists of the average accuracy (in %) over the LOSO cross-validation evaluation. The best
performing approach is depicted in bold.
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The methods reported in previous works consist of fusion approaches involving all the recorded
signals and based on hand-crafted features [37,56]. Although the fusion approach proposed in the current
work (late fusion (b)) is based only on three of the recorded physiological signals, it is still able to
outperform the previously proposed approaches, as depicted in Table 8. Therefore, it is believed that
the performance of the architecture can be further improved by including the remaining signals (EMG
corrugator, EMG zygomaticus, and Video) in the proposed architecture.

4. Discussion and Conclusions

This work explored the application of deep neural networks for pain intensity classification based
on physiological data including ECG, EMG and EDA. Several CNN architectures, based on 1D and
2D convolutional layers, were designed and assessed based on the BioVid Heat Pain Database (Part
A). Furthermore, several deep fusion architectures were also proposed for the aggregation of relevant
information stemming from all involved physiological modalities. The proposed architecture specific to
EDA significantly outperformed the results presented in previous works in all classification settings. For the
classification task T0 vs. T4, EDA achieved a state-of-the-art average accuracy of 84.57%. The proposed
late fusion approach based on a weighted average of each modality specific model’s output also achieved
state-of-the-art performances (average accuracy of 84.40% for the classification task T0 vs. T4), but was
unable to significantly outperform the deep model based uniquely on EDA.

Moreover, all designed architectures were trained in an end-to-end manner. Therefore, it is believed that
the pre-training and fine tuning at different levels of abstraction of the CNN architectures, as well as the
combination with recurrent neural networks (in order to include the temporal aspect of the physiological
signals in the inference model), could potentially improve the performance of the current system, since
such approaches have been successfully applied in other domains of application such as facial expression
recognition [59–61]. Finally, the recorded video data provide an additional channel that can be integrated
into the fusion architecture in order to improve the performance of the whole system. Therefore, the video
modality should also be evaluated and assessed in combination with the physiological modalities.

In summary, the performed assessment suggests that deep learning approaches are relevant for the
inference of pain intensity based on 1D physiological data, and such methods are able to significantly
outperform traditional approaches based on hand-crafted features. Domain expert knowledge could
be bypassed by enabling the designed deep architecture to learn relevant features from the data. In the
future iterations of the current work, approaches consisting of combining both learned and hand-crafted
features should be addressed. In addition, the designed architectures should be also assessed by replacing
the classification experiments by regression experiments. Additionally, several data transformation
approaches applied to the recorded 1D physiological data in order to generate 2D visual representations
(e.g., spectrograms) should also be investigated in combination with established deep neural network
approaches, specifically designed for this type of data representation.
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