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Abstract

Motivation: A synoptic view of the human genome benefits chiefly from the application of nucleic

acid sequencing and microarray technologies. These platforms allow interrogation of patterns

such as gene expression and DNA methylation at the vast majority of canonical loci, allowing

granular insights and opportunities for validation of original findings. However, problems arise

when validating against a “gold standard” measurement, since this immediately biases all

subsequent measurements towards that particular technology or protocol. Since all genomic

measurements are estimates, in the absence of a ”gold standard” we instead empirically assess

the measurement precision and sensitivity of a large suite of genomic technologies via a consen-

sus modelling method called the row-linear model. This method is an application of the American

Society for Testing and Materials Standard E691 for assessing interlaboratory precision and sour-

ces of variability across multiple testing sites. Both cross-platform and cross-locus comparisons

can be made across all common loci, allowing identification of technology- and locus-specific

tendencies.

Results: We assess technologies including the Infinium MethylationEPIC BeadChip, whole genome

bisulfite sequencing (WGBS), two different RNA-Seq protocols (PolyAþ and Ribo-Zero) and five dif-

ferent gene expression array platforms. Each technology thus is characterised herein, relative to

the consensus. We showcase a number of applications of the row-linear model, including correl-

ation with known interfering traits. We demonstrate a clear effect of cross-hybridisation on the sen-

sitivity of Infinium methylation arrays. Additionally, we perform a true interlaboratory test on a set
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of samples interrogated on the same platform across twenty-one separate testing laboratories.

Availability and implementation: A full implementation of the row-linear model, plus extra func-

tions for visualisation, are found in the R package consensus at https://github.com/timpeters82/

consensus.

Contact: t.peters@garvan.org.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The reproducibility of scientific results from multiple sources is crit-

ical to the establishment of scientific doctrine (Fisher, 1971; Popper,

2005). The spread of these sources can occur over various domains,

including temporal, geographical, and technological. From each of

these domains, one can expect a degree of variation in results, attrib-

utable to the ambient laboratory environment or intrinsic qualities

of the measurement device. In many cases, the degree of this vari-

ation exceeds that of what is expected, leading to a “crisis of

reproducibility” (Baker 2016; Begley and Ellis, 2012; Nosek and

Errington 2017) in science. These sources of variation are commonly

known as the batch effect, particularly in genomics, and ameliorat-

ing methods exist for when it confounds the biological effect of

interest across samples (Johnson et al., 2007; Leek and Storey,

2007; Oytam et al., 2016). However, an additional and less studied

source of variation is that which occurs when an attempt is made to

recapitulate results from a given technological platform on a subse-

quent platform, on the same set of samples and target loci. Platform-

specific effects exist, and cross-platform studies (Holik et al., 2017;

Irizarry et al., 2005; Li et al., 2014; Nazarov et al., 2017; SEQC/

MAQC-III Consortium, 2014; Wang et al., 2005; 2014; ) have been

undertaken in order to characterise them. However, evaluation of

concordance in these studies is mostly geared towards assessing

relative performance of the technologies in question, and this is

exemplified by associative metrics such as Venn diagrams of differ-

entially expressed genes or pairwise coefficients of correlation.

While informative, very little attention is given to evaluating the

more fundamental trait of measurement quality. The reliability of a

measurement not only influences the performance of the technology

that occasioned it for scientific ends, but more practically it gives

confidence to its operator of its fealty to the quantum of interest. A

governing framework for the assessment of measurement robustness

for a given suite of genomic technologies is absent from the current

literature.

Since the turn of the 21st century, genomic science has presented

researchers with a choice of platforms on which to interrogate their

biological samples, chief among them microarrays and sequencing

technologies. The microarray revolutionised whole-genome science,

especially in the field of transcriptomics, where the relative expres-

sion levels of most known genes could be profiled using high-

throughput hybridisation techniques (Kevil et al., 1997). Later,

microarrays such as the Illumina Infinium HumanMethylation450

(Bibikova et al., 2011) and MethylationEPIC (Pidsley et al., 2016)

were introduced to measure the levels of DNA methylation in

human samples. The intensity of the fluorescent dye (indicating hy-

bridisation levels) on RNA expression and DNA methylation micro-

array chips serves as the metric by which the genomic feature is

measured. This is an analogue reading, and hence follows a continu-

ous distribution.

In the last decade, high-throughput sequencing has replaced the

microarray as the assay of choice for many researchers. Sequencing

technologies such as RNA-Seq (Lister et al., 2008) and whole

genome bisulfite sequencing (WGBS, Lister et al., 2008, 2009) pro-

vide a richer set of biological information than microarrays, espe-

cially on anomalous features such as single nucleotide variations

(SNVs) and alternative splicing events. In contrast to the analogue

measurements of microarrays, sequencing measurements are repre-

sented digitally as a pileup of molecule counts per feature of interest.

However, these still will not be an exact measure of the true level of

the quantum of interest, since the shearing and subsequent sequenc-

ing of nucleic acid molecules produces a non-exhaustive sample

from the population. Nucleic acid fragments compete for amplifica-

tion within the assay, thus there is a stochastic component of the

measurement for a given genomic feature (such as transcript abun-

dance or methylation level of a CpG site).

Following the maxim of scientific reproducibility, genomic stud-

ies nevertheless aim to recapitulate the results derived from one tech-

nology on those from a subsequent platform. But what if this

doesn’t happen? To what do we ascribe the discrepancy? When con-

fronted with a discordant result such as a low coefficient of correl-

ation or a Venn diagram with poor overlap, the first instinct is to

define a gold standard to which each deviant measurement can be

compared. However, this is a dubious strategy in a number of ways.

If the gold standard is chosen from one of the available platforms or

protocols, a bias is immediately incurred, since error will be present

in every measurement, regardless of its source.

Targeted approaches such as quantitative PCR (qPCR) and ampli-

con sequencing are accepted as more reliable, yet are impractical to

assess from a genome-wide perspective due to constraints on time,

reagents and nucleic acid yield. Furthermore, qPCR is still susceptible

to amplification biases relating to sequence composition (Aird et al.,

2011; Warnecke et al., 1997). Most alarmingly, thorough quality-

control studies such as SEQC and MAQC (SEQC/MAQC-III

Consortium, 2014; Shi et al., 2006) reveal systematic biases across

assay sites for microarrays, qPCR and RNASeq, even with molecular-

level quality control measures via ERCC spike-ins (Baker et al., 2005;

Jiang et al., 2011) taken for the latter. As such, the SEQC study con-

cludes there is no single “gold standard” technology or strategy to

which gene expression measurements ought to conform, and biases

remain despite the best efforts made to standardise them.

Instead of defining a gold standard from existing or further la-

boratory work, we present an alternative by building a consensus on

existing data, based upon non-additive linear modelling. The

method described forthwith was elucidated by the late American

statistician John Mandel (Mandel, 1984; Mandel and Lashof,

1969), in order to characterise both within-laboratory and cross-

laboratory traits from a suite of manufactured products. It is now

recognised as a standard by the American Society for Testing and

Materials (ASTM International) (Mandel, 1994) for the identifica-

tion of sources of variation and outliers from interlaboratory stud-

ies. Many variations on the interlaboratory test procedure exist

(mostly summarised by Iyer et al., 2004), but we restrict the applica-

tion to that described in the ASTM standard, in particular the final

equation in that publication (see Section 2).
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The method described here is applied to the cross-platform case,

with measurements from each platform represented by those from

separate “laboratories”. By finding common loci across a minimum

of three platforms, we can characterise per-locus, per-platform sen-

sitivity and precision, and compare the resulting distributions. In

addition, we perform a true interlaboratory study measuring DNA

fragment abundance using digital PCR (dPCR) (Whale et al., 2017),

that evaluates measurement quality across testing sites. Given add-

itional information from existing literature and platform annota-

tion, we are then able to make valuable inferences about the

susceptibility to bias of each platform that has contributed to the

consensus.

2 Materials and methods

2.1 Approach
We applied the row-linear model to four distinct genomic data sets:

two measuring gene expression levels, one measuring DNA methyla-

tion levels and one measuring DNA fragment abundance. An indi-

vidual row-linear model was fitted to each locus k ¼ 1; . . . ;G for

the G loci common to all platforms/conditions in each dataset. For

some of these datasets G is in the order of hundreds of thousands,

resulting in over half a million row-linear models being fit for this

study. A complete summary of the samples and platforms used, and

loci tested, can be found in Figure 1. In order for values to be made

comparable, we use appropriate normalisations and transformations

on each dataset (see Sample Sources and Preprocessing section in the

Supplementary Material).

Dataset T1 allows us to assess the genewise measurement quality

of four platforms (three microarray platforms and one RNA-Seq)

using 27 samples from The Cancer Genome Atlas glioblastoma mul-

tiforme (GBM) study (Verhaak et al., 2010).

Dataset T2 is an in-house dataset with eight samples assessed

over two more recently developed microarray platforms, and two

separate RNA-Seq protocols. T2 was modelled at the gene locus

(coding sequence) level, and then for T2A and T2B split into

“probeset” levels according to annotation of the HuGene2.0st

(HuGene) array and Human Transcriptome Array 2.0 (HTA) re-

spectively. This was done for two reasons: firstly to fully interrogate

the utility of these array platforms, and secondly to test whether a

more granular summarisation of the datasets evinces subgenic

trends. Both HuGene and HTA have targets summarising exonic or

sub-exonic regions, over given genomic coordinates. These are char-

acterised by the manufacturer as “probeset” level targets, whereas

the gene-level summarisation is characterised as the “core” level.

HuGene probeset targets are predominantly sub-exonic, whereas

HTA targets are predominantly whole-exon.

Dataset M1 assesses the CpG-wise measurement quality of three

DNA methylation platforms: two versions of Illumina’s Infinium

BeadChips (the discontinued HumanMethylation450 and its succes-

sor, the MethylationEPIC) and whole genome bisulfite sequencing

(WGBS) across 11 samples, including those from Pidsley et al.

(2016, 2018).

Lastly, Dataset IL1 represents a true interlaboratory study where

the same six biological samples are tested for KRAS fragment abun-

dance of wild type (WT) and mutant (G12D) loci at twenty-one sep-

arate laboratories (Whale et al., 2017) using dPCR. For this dataset,

the labwise sensitivity and precision is calculated.

Coloured text in Figure 1 sets the shorthand convention for tech-

nology platform/condition i for the remainder of this paper. For ex-

ample, bRNA�Seq means the sensitivity bi of RNA-Seq from dataset

T1 when platform i is RNA-Seq, dwholeRNA means the estimate of

precision di for RiboZero Whole RNA-Seq from dataset T2, and so

on. Preprocessing and data accessibility for all data in this study can

be found in the Sample Sources and Preprocessing section in the

Supplementary Material.

2.2 The row-linear model
We derive our method of cross-platform assessment from the de-

scription of ASTM standard E691 (Mandel, 1994), intended for the

design and analysis of interlaboratory studies on a testing method.

Consider a matrix Zij of measurements at the same genomic

locus, where the row index i ¼ 1; . . . ;p labels the whole-genome

platforms (e.g. microarrays or sequencing assays) used and the col-

umn index j ¼ 1; . . . ; n labels the biological samples that are interro-

gated at that locus on each of the p platforms.

The row-linear model of the ASTM standard is

Zij ¼ ai þ biðxj � �xÞ þ dij (1)

where xj ¼ p�1RiZij is the average of the entries in the jth column,

ai ¼ n�1RjZij, the average of the entries in the ith row is the inter-

cept, and bi is the slope of the linear regression of ðZij; j ¼ 1; . . . ;nÞ
on (xj � �x; j ¼ 1; . . . ;nÞ. Further, dij is the residual at xj about the ith

regression line, and the residual mean square about the ith fitted line

is di ¼ ðn� 2Þ�1Rjd
2
ij.

Simply put, for each platform, the method regresses a set of

measurements made on the n samples by that platform against the

set of averages across the platforms of the p measurements on the

samples.

We will refer to the parameters ai, bi and di as the average, the

sensitivity and the precision of the ith platform at the locus in

Fig. 1. Description of biological samples used in this study. Datasets are

named T1 and T2(A, B) for transcription, M1 for methylation and IL1 for inter-

laboratory testing
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question, noting that higher precision corresponds to smaller values

of di. Also, because the response variable is the sample mean of the

predictor variables, we have the constraint Ribi ¼ p, hence �b ¼ 1.

For most linear regressions, the residual term dij is informative about

the suitability of the fit, but in the case of row-linear model it has

more direct value in that it tells us about the precision of the group

of measuring devices or strategies as a whole.

A minimum of three platforms is needed to fit a row-linear

model, since two degrees of freedom are needed to calculate the indi-

vidual di from the residual sum of squares. Additionally, there must

be true variation in each row i of Zij. Hence rows with, say, majority

zero counts from RNA-Seq or fully methylated or unmethylated

from whole genome bisulfite sequencing (WGBS) will produce triv-

ial or artefactual results. Filtering steps for loci such as these are

described in the Sample Sources and Preprocessing section in the

Supplementary Material.

Informative extensions to the row-linear model (Mandel,

1984) include VðaÞ ¼ ðp� 1Þ�1Riðai � �aÞ2 and VðbÞ ¼ ðp� 1Þ�1

Riðbi � 1Þ2. (In the 1984 Mandel monograph, the method is not

referred to as the row-linear model, but instead an interlaboratory

study of test methods. Also, the parameters a, b and d are instead

represented by l, b and g respectively). These give per-locus esti-

mates of concordance (low values) or discordance (high values) over

all technologies assessed. Given enough platforms, further sources

of inter-platform variation could be explored such as the average

precision VðdÞ ¼ ðp� 1Þ�1Ridi, the scatter about the regression line

when bi is plotted against ai, or an estimate of z0, a point along the

dynamic range of the measurement at which (for some loci)

the measurements converge. However, these extensions are beyond

the scope of this study.

Independence between platforms is, in fact, not assumed for the

row-linear model. Since the outputs are purely descriptive, any de-

pendence between platforms will be reflected in the estimated

parameters ai, bi and di. In this sense, the row-linear model should

be seen as a summarising, rather than an inferential device.

All analyses performed in this paper, and the extensions men-

tioned above, are easily implemented using the R package consensus

(https://github.com/timpeters82/consensus). The package performs

multiple locus-wise row-linear fits per dataset. Plotting functions are

available to visualise individual fits, marginal distributions of ai, bi

and di, and heatmaps of the most discordant loci.

3 Results

3.1 Assessment of the measurement quality of RNA

expression platforms
3.1.1 Dataset T1

Varying levels of concordance between gene expression levels are

found from the glioblastoma data. Graphical representations of

row-linear fits for two gene loci can be found in Figure 2a and b,

taken from dataset T1. Gene NUBP1 (Fig. 2a) shows high concord-

ance between samples, with the bundle of regression lines from the

fit almost parallel, each with slope �1 (recalling the model con-

straint �b ¼ 1), and the points falling close to their corresponding

lines. By contrast, gene HCN4 (Fig. 2b) shows much more discord-

ance between the slopes bi, with bRNA�Seq in particular explaining a

disproportionate share of the change in expression, as well as notice-

ably larger residuals dij for three out of the four platforms repre-

sented, indicating decreased precision.

Broadening the perspective to all 9519 genes assayed by these

four platforms, we are able to see marginal and joint distributions

for ai, bi, and di (Fig. 2c–h). The platform-wise intercepts from the

row-linear model ai are directly interpretable in the gene expression

space; hence the distribution of ai serves as a dynamic range for the

ith platform (Fig. 2c). Joint distributions (Fig. 2d) show Huex and

RNA-Seq are the most correlated, U133A shows little correlation

with the other platforms at lower levels of its dynamic range, and

the custom Agilent microarray has quite a different dynamic range,

which is a consequence of it being a two-channel array. RNA-Seq is

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Graphical depictions of row-linear fits for genes (a) NUBP1 and (b) HCN4 from Dataset T1. (c) Marginal and (d) joint distributions for parameter ai, (e) mar-

ginal and (f) joint distributions for parameter bi, (g) marginal and (h) joint distributions for parameter di, for the entirety of Dataset T1
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the platform with the greatest mean sensitivity to differences in gene

expression (Fig. 2e), and the insensitivity of U133A to expression

change at lower values suggested in Figure 2d shows as a secondary

mode bU133A ¼ 0 in Figure 2e. For the other three platforms, sensi-

tivity to expression change bi is centred around 1 (Fig. 2f), indicating

unimodal concordance, but with a substantial number of discordant

loci. Correlations between the different bis tend to be (but not al-

ways) negative, as the natural constraint �b ¼ 1 renders sensitivity

between platforms competitive. As the variation V(b) increases—

that is, as the cross-platform sensitivity becomes more discordant—

the RNA-Seq begins to explain a disproportionate share of the

cumulative bi (Supplementary Fig. S1). Cross-platform precision d

shows similar marginal means for RNA-Seq, Agilent and Huex, but

lower for that of U133A, indicating higher precision for this plat-

form (Fig. 2g). However, given that U133A also shows the lowest

sensitivity (Fig. 2e), from a platform design perspective there may

have been a trade-off between risk and reward in detecting changes

in gene expression that has now been surmounted by more recent

technologies. Given its greater overall sensitivity and competitive

precision, RNA-Seq is the superior platform from dataset T1.

In addition to comparing distributions of platform sensitivity

and precision to each other, we also examined whether these plat-

forms showed any relative gene-specific biases by plotting CDS

length (SFs 2a and 2b) and GC content (SFs 2c and 2d) against bi

and di. All effects of CDS length are mild to non-existent, including

from the remaining transcription datasets (data not shown). There is

a slight suggestion of relatively decreased precision of Huex and

RNA-Seq at short CDSs (SF 2b). GC content has a greater effect,

with mild to moderate relative decrease in sensitivity on the microar-

rays, offset by an increase for RNA-Seq (SF 2c). In addition, the

three array platforms, especially Huex, struggle with maintaining

relative precision assaying genes with low GC-content, with RNA-

Seq proving to be the most robust (SF 2d).

3.1.2 Datasets T2, T2A and T2B

Similar to dataset T1, RNA-Seq has greater sensitivity than microar-

rays, this time with both strategies (PolyAþ and WholeRNA) clus-

tering together, and the two microarray platforms also doing so at a

lower bi (Fig. 3a). While the HuGene array shows similar precision

to the distributions from RNA-Seq, the Human Transcriptome

Array shows a clearly superior precision (Fig. 3b). Remaining mar-

ginal and joint distributions for ai, bi, and di for dataset T2 can also

be found in SF 3, and those for datasets T2A and T2B can be found

in SFs 4 and 5 respectively. When the HuGene array and HTA are

broken down into their exonic and sub-exonic features in datasets

T2A and T2B, the superior precision of HTA to RNA-Seq is main-

tained (SF 5e), but the HuGene array shows both inferior sensitivity

and precision to RNA-Seq (SFs 4c and 4e).

Turning to gene-specific biases from dataset T2, we see the same

loss of sensitivity with increasing GC content on the microarray

platforms, with the compensatory increase from RNA-Seq (SF 6a),

as we saw in dataset T1. We also see the same increased robustness

to this domain of the precision estimate for RNA-Seq, whereas

precision is slightly lower for low GC content loci in microarrays

(SF 6b).

For both genewise (dataset T2) and exon/sub-exon (dataset T2B)

target levels, HTA annotation lists targets that are either coding or

noncoding, and we observe effects (calculated using Cohen’s D: the

difference of means divided by the pooled standard deviation)

(a) (b) (c)

(d) (e) (f)

Fig. 3. Marginal distributions of (a) bi and (b) di for dataset T2. Boxplots separating loci into coding and noncoding targets over all platforms for (c) dataset T2 sen-

sitivity, (d) dataset T2 precision, (e) dataset T2B sensitivity and (f) dataset T2B precision
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between these locus types. Here (and for the rest of the paper) we

use Cohen’s D to report effect size, capitalising to avoid confusion

with precision di. The R package “effsize” (Torchiano, 2017) was

used for all calculations. At the gene level, microarray sensitivity is

greater for coding loci than for noncoding, and the opposite is true

for RNA-Seq (Fig. 3c). Precision is superior at coding loci on all

platforms, except for HuGene, which evinces no effect (Fig. 3d).

However, for dataset T2B, these effects are reversed on sensitivity

and precision across all three platforms, albeit to a smaller magni-

tude in all cases (Fig. 3e and f). For example, noncoding loci show

greater sensitivity than coding loci when assayed on HTA for dataset

T2B (Fig. 3e).

3.2 Assessment of the measurement quality of DNA

methylation platforms
3.2.1 Dataset M1

As with the previous two datasets, we were able to apply a row-

linear model to a suite of DNA methylation platforms containing

both microarrays and sequencing assays. Perhaps unsurprisingly, the

distributions of ai, bi and di (Fig. 4) for 450 K and EPIC are extreme-

ly similar, owing to identical probe chemistry. (Joint distributions of

these can be found in SF 7. The shrunk hypomethylated mode in

Figure 4a is due to the filtering of CpG sites as outlined in the

Sample Sources and Preprocessing section of the Supplementary

Material, where CpG loci were discarded if they had at least 8 out

of 11 samples completely unmethylated in WGBS.). However, there

are a very small number of probes for which the signal is highly dis-

crepant between the two platforms, and in the majority of these

cases WGBS can provide clues as to which platforms measurements

are more accurate. Two extreme examples, one for each array plat-

form, are shown in Figure 4d and e. These were discovered by filter-

ing for large values of V(a) for this dataset. However, WGBS is

unable to do this in a general way across all CpG sites with respect

to sensitivity, showing little favour to either platform in the

DeFinetti plot in Figure 4f. WGBS itself is superior to the arrays in

sensitivity (Fig. 4b and f), but has lower precision (Fig. 4c). This is

expected, however, given that WGBS is clearly the odd platform

from a consensus highly influenced by very similar arrays.

To explore the effects of array normalisation, we also fit a separ-

ate set of row-linear models to the raw data, calculating methylation

“beta” ratios from the raw array signal and transforming them to

M-values as outlined for WGBS in the Sample Sources and

Preprocessing section in the Supplementary Material. Illumina

arrays have two separate probe types with different biochemistries,

with Type I probes assuming a uniform methylated epitype across

the length of the 50 base hybridisation locus, and Type II probes

using a single-base extension at the 3’ end to circumvent this as-

sumption (Bibikova et al., 2011). A clear decrease in precision (in-

crease in di) is seen in the non-normalised Type I probes, compared

to Type II on both 450 K and EPIC (Fig. 5a). Similarly, a consider-

able increase in precision is apparent with an increase of the total

raw intensity (MþU) from Type II probes (Fig. 5b). The normalisa-

tion procedure preprocessFunnorm() (Fortin et al., 2014) does

an excellent job at correcting these discrepancies in di, as shown in

Figure 5c and d.

Elements particular to the human genome may interfere with

the methylation measurement of CpG loci. For example, a small

(a) (b) (c)

(d) (e) (f)

Fig. 4. Marginal distributions for (a) parameter ai, (b) parameter bi and (c) di, for the entirety of Dataset M1. Graphical depictions of row-linear fits for array-

discordant CpG sites for which WGBS data favours (d) the EPIC array and (e) the 450K array. (f) DeFinetti diagram showing the proportions of bi described by the

three platforms in Dataset M1. We show backtransformed axes to the more interpretable methylation domain (0, 1) in (a), (d) and (e)
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decrease in sensitivity is noted for when probe hybridisation over-

laps a repeat region (Fig. 6a), as per Naeem et al. (2014). Hence it is

likely that the methylation state of the repeated CpG locus is non-

uniform. Additionally, cross-hybridisation is a known confounder

of microarray technology, where probes designed to hybridise to an

intended genomic site instead hybridise to an off-target site with

high homology (Casneuf et al., 2007; Chen et al., 2013). It is known

that Illumina array signals are prone to potential cross-hybridising

events, based on in silico alignment of probe sequences to the human

reference (Chen et al., 2013; Pidsley et al., 2016). Unlike the expres-

sion arrays in dataset T2, the hybridisation is intended to have one

target only (as opposed to a composite set of targets over a gene

locus), and so we are able to elucidate the off-target effects more

precisely. A subset of these probes for which homology is 47/50 base

pairs or higher is listed in Pidsley et al. (2016). We find that the sen-

sitivity these of probes is blunted in comparison to probes for which

no high-level homology was found (Fig. 6b), and this effect is more

severe on the EPIC array (D¼0.73) than it is on the 450 K array

(D¼0.43). To further characterise the degree of off-target hybrid-

isation, we then posited that the signal from these genomically pro-

miscuous probes could be expressed as a linear combination of the

methylation levels from the off-target sites, as well as the target site.

This would simulate the competitive homology between all potential

binding sites for the given probe. The WGBS data is useful for this

since its measurements do not have a cross-reactive bias, and that

we have methylation measurements for the off-target CpG sites that

are not assayed by the array technology. For each individual CpG

site flagged as having a potentially cross-reactive probe on both

450 K and EPIC arrays, we fit two individual LASSO (Tibshirani,

1996) sparse regression models with response either yi ¼ Z450K or

yi ¼ ZEPIC from the measurement matrix Zij, and set the predictor

matrix xi ¼ ðZWGBS;A1; . . . ;AmÞT where A is a mxn matrix of

WGBS methylation measurements from the corresponding CpG loci

of the off-target hybridisation sites. The corresponding estimated re-

gression coefficients b̂ ¼ ðb̂target; b̂off�target1
; . . . ; b̂off�targetm

Þ were

calculated. Figure 6c plots array sensitivities b450K and bEPIC against

b̂target for all known cross-reactive probes/CpG loci. Non-zero target

coefficients correlate well with the sensitivity of the array, indicating

that b450K and bEPIC serve as reasonable predictors of the degree of

target homology. However, many coefficients are at or very close to

zero. For these probes, this means that the entirety of their signals

can be explained by a linear combination of the methylation values

from their cross-hybridising genomic sites, and thus are unlikely to

be measuring the target site at all. To check this was not an artefact

of the LASSO fits themselves, we then randomly selected an identi-

cal number (n¼11 646) of non-cross-hybridising probes from data-

set M1 and also fit a LASSO model for each one, substituting their

matching WGBS values for the original ZWGBS but retaining the

(a) (b)

(c) (d)

Fig. 5. Effect of array normalisation on Dataset M1. Precision of raw 450K and EPIC data (a) split by Type I and Type II probes and (b) total intensity (methylated þ
unmethylated channel) of Type II probes, and (c and d) the same values post-normalisation

566 T.J.Peters et al.

Deleted Text: )
Deleted Text: )
Deleted Text: )
Deleted Text: )
Deleted Text: )


same list of A matrices used for the cross-hybridising LASSO

fits. The resulting b̂targets are higher than those from the cross-

hybridising probes (Fig. 6d), providing strong evidence for competi-

tive homology having a detrimental effect on Infinium probe

sensitivity. A complete list of the LASSO coefficients for the target

site, and sum of coefficients from the off-target sites for cross-

hybridising probes can be found in Supplementary Table S1, for

both 450 K and EPIC arrays.

Returning to datasets T2 and T2A, the HuGene annotation also

describes targets that potentially cross-hybridise to off-target sites.

However, there are negligible differences in sensitivity between these

targets and the remainder (SFs 8a and 8b). One explanation for this

is that the measurements on the HuGene arrays are composite, con-

taining a mixture of probes that potentially cross-hybridise, and

those that don’t. It may be that the cross-hybridising component of

the signal is too weak to evince any systematic bias for this particu-

lar dataset.

Lastly, the question of minimum WGBS sequencing coverage for

detection of methylation differences is a practical consideration for

many labs, and estimates at characterising this figure for a given

methylation shift size have been made (Ziller et al., 2015). Under bi-

nomial assumptions of simulated data, higher coverage results in a

lower variability of the estimate when the methylation level is

known. In other words, the measurement is more precise. This is

reflected in mildly decreasing di as the mean WGBS coverage

increases (Fig. 6e). Notably, the loess curve carries on decreasing at

higher levels of coverage, even up to 1000x, evincing no “point of

saturation”, even though the data points are sparse.

3.3 An interlaboratory test on DNA abundance

measurements
3.3.1 Dataset IL1

Finally, to demonstrate the utility originally intended for the row-

linear model, we perform a true interlaboratory test that assesses

measurement quality not across technologies, but across geographic-

al testing sites. The measurements used are log-transformed frag-

ment concentrations (copies/lL in reaction) of 2 genotypic forms of

(a) (b)

(d) (e)

(c)

Fig. 6. Effect of (a) repeat regions and (b) cross-hybridisation on array sensitivity from dataset M1. (c) Sensitivity of cross-hybridising probes against the LASSO

coefficient b̂ target of target WGBS values from sparse linear modelling. (d) Effect of cross-hybridisation on the predictive capacity of WGBS measurements for

their matched microarray measurements, via LASSO. (e) Precision of WGBS against mean coverage of the samples, for individual CpG loci
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human KRAS assayed using digital PCR (dPCR) on 6 biological

samples from Whale et al. (2017).

To test whether a site effect was indeed present, independent of

biological variation, we constructed row-linear fits using the set of

i 2 f1; 2; . . . ;21g as numbered candidate laboratories to be com-

pared. Deviant testing sites include laboratories 17 and 21 with re-

spect to sensitivity (Fig. 7a), and laboratories 5 and 21 with respect

to lower precision (Fig. 7b), with laboratories 1 and 4 showing the

greatest measurement precision when compared to the consensus.

These results are somewhat consonant with the reproducibility ana-

lysis in the original manuscript, in that laboratories 17 and 21 (as

well as laboratory 2) are singled out for likely droplet misclassifica-

tion. In addition, laboratory 21 has the greatest number of deviant

analysis parameters of all testing sites (i.e., laboratory conditions,

Supplementary Table S3 from Whale et al., 2017) including unique

models of the PCR plate sealer and thermal cycler, potentially

explaining its position as the most outlying laboratory.

4 Discussion

We have shown the row-linear model has the ability to empirically

assess the sensitivity and precision of genomic platforms, given a suf-

ficient corpus of variable samples. This model is highly versatile in

that it not only allows direct comparisons of platforms with each

other, but can be used to assess locus-specific biases and characteris-

tics particular to both the platforms themselves and the genome they

are measuring. Importantly, it assesses the measurement quality of

each platform independent of the biological variation in the data. In

addition, it can be used as a screening procedure to identify plat-

forms with deviant measurements, and subsequently remove them

prior to using applications that leveraging cross-platform informa-

tion for biological purposes (Thompson et al., 2016; Uziela and

Honkela, 2015; Wang et al., 2014).

Most effects we have shown are mild, or limited to a small subset

of loci, so the results shown herein ought to be read with caution.

Interpretation of trends as tendencies, rather than categorical biases,

is advisable. The consensus improves as more technologies are

included in the row-linear fit, since it is less susceptible to skewing

due to measurement from a deviant technology. Positive correlations

between the respective dis (for example, in Fig. 2h) are indicative

that the ease with which quantification can be made varies from

locus to locus—likely a result of stochastic “burstiness” (Raj et al.,

2006)—and this variation is somewhat preserved across platforms.

Platforms such as WGBS can be seen as higher-risk, higher-reward

technologies, given their extreme ranks in both sensitivity and preci-

sion. Some trends are quite clear, such as an anticorrelation of rela-

tive microarray sensitivity with GC content, which is likely due to

differing amplification efficiencies (Arezi et al., 2003; Degrelle et al.,

2008). Plainly, RNA-Seq outperforms all microarrays in terms of

sensitivity to changes in transcription and robustness to GC content.

However, its measurement quality is less clear when it comes to pre-

cision. An anticorrelative effect can be seen between ai and di on all

RNA-Seq platforms (data not shown), though this is likely an arte-

fact of the variance stabilisation via log transformation of counts,

which may be suboptimal. Most of the library sizes used in this

study (see Supplementary Tables S2 and S3) are below those recom-

mended for analysis of differential expression (Liu et al., 2013),

speaking to the lack of stability of quantification estimates when

overall count pileup is low. The HTA’s superior precision at both

the gene and exon level supports previous work, where stochastic

variability of the signal was found to be higher in RNA-Seq than

from this array (Nazarov et al., 2017). No appreciable differences

were observed between the two RNA-Seq strategies in datasets T2,

T2A and T2B in terms of direct comparison. When comparing cod-

ing and noncoding loci, Whole RNA-Seq shows a smaller divergence

(Fig. 3c and d), which relates to earlier work showing this strategy

shows less variability than PolyAþ for quantifying some noncoding

RNAs (Holik et al., 2017). The reasons for the reversal of effect be-

tween coding and noncoding RNAs from dataset T2 to T2B remain

elusive; however this may be a consequence of the design of the

HTA, giving more emphasis to quantifying canonical coding loci at

the gene level, but removing this emphasis at the more granular

exon level.

In terms of methylation, we have shown that a subset of poten-

tially cross-hybridising probes on Illumina arrays show a lower sen-

sitivity to change, as do probes known to hybridise to repeat

regions. Both phenomena result in heterogeneous sources of signal

intensity which, if hybridisation patterns are consistent, would not

(a)

(b)

Fig. 7. Scatterplots depicting (a) bi and (b) di of twenty-one laboratories for

both KRAS genotype abundances, from Dataset IL1. Number plotted denotes

laboratory ID
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hinder the precision of the signal, but rather its sensitivity to methy-

lation change compared to other loci, which is precisely what we

see. Further evidence for this is gained from modelling the off-target

methylation measurements from WGBS as predictors of the micro-

array measurements. The increased susceptibility of EPIC to blunted

sensitivity via cross-hybridisation is without categorical explanation,

but may be related to the fact that the overall intensities (MþU) of

the EPIC arrays used in this study are, on average, only �70% as

strong as that of that of 450 K, which may indicate fewer total hy-

bridisation events for this technology. We have also shown that the

row-linear model can be powerful tool in assessing current and fu-

ture microarray normalisation procedures, as evidenced from the

methylation results.

From the results taken from interlaboratory test on Dataset IL1,

we can conclude that known deviations from consensus protocols

can result in discordance of measurement between testing sites. A

more standardised testing procedure, where intentional differences

in protocol are implemented, replicated and blocked properly across

all sites prior to row-linear modelling of their measurements would

further elucidate the effect of such deviations.

To improve the characterisation of the biases outlined in this

paper, a broader collection of platforms and samples will be needed.

For example, the quality assessment of both transcription and

methylation sequencing assays would be clarified by sequencing

these (and other) samples across a range of library sizes and cover-

age depths. Data from the SEQC/MAQC-III consortium (SEQC/

MAQC-III Consortium, 2014) would have been ideal to use for this

paper, but the limited number of samples (n¼4) unfortunately pre-

cludes us from applying an informative row-linear fit.

As suggested from our discussion of Dataset IL1, applications of

the row-linear model need not be restricted to different technologies,

either. Potential biases from reagent concentrations, ambient labora-

tory temperature and humidity, and temporal and geographical vari-

ation are all able to be characterised by the row-linear model in the

same fashion exemplified here, providing matched, homogenous ali-

quots of nucleic acid are distributed across all conditions. Given

enough biological and technological replicates, a growing, dynamic

repository of contributions sourced from throughout the world (in

the vein of, for example, recount2 (Collado-Torres et al., 2017))

would allow calculation of increasingly stable consensus estimates

for sensitivity and precision. This is a conceivable empirical alterna-

tive to a static gold-standard benchmark of measurement. Through

such an infrastructure, scientists will have increased confidence in

the reproducibility of their results.
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