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Abstract

Background: The aim of this study was to validate previously described diagnostic and prognostic microRNA
expression profiles in tissue samples from patients with pancreatic cancer and other periampullary cancers.

Methods: Expression of 46 selected microRNAs was studied in formalin-fixed paraffin-embedded tissue from
patients with resected pancreatic ductal adenocarcinoma (n = 165), ampullary cancer (n=59), duodenal cancer
(n = 6), distal common bile duct cancer (n = 21), and gastric cancer (n = 20); chronic pancreatitis (n = 39); and
normal pancreas (n = 35). The microRNAs were analyzed by PCR using the Fluidigm platform.

Results: Twenty-two microRNAs were significantly differently expressed in patients with pancreatic cancer
when compared to healthy controls and chronic pancreatitis patients; 17 miRNAs were upregulated (miR-21-
5p, −23a-3p, −31-5p, −34c-5p, −93-3p, −135b-3p, −155-5p, −186-5p, −196b-5p, −203, −205-5p, −210, −222-3p,
−451, −492, −614, and miR-622) and 5 were downregulated (miR-122-5p, −130b-3p, −216b, −217, and miR-
375). MicroRNAs were grouped into diagnostic indices of varying complexity. Ten microRNAs associated with
prognosis were identified (let-7 g, miR-29a-5p, −34a-5p, −125a-3p, −146a-5p, −187, −205-5p, −212-3p, −222-
5p, and miR-450b-5p). Prognostic indices based on differences in expression of 2 different microRNAs were
constructed for pancreatic and ampullary cancer combined and separately (30, 5, and 21 indices).

Conclusion: The study confirms that pancreatic cancer tissue has a microRNA expression profile that is
different from that of other periampullary cancers, chronic pancreatitis, and normal pancreas. We identified
prognostic microRNAs and microRNA indices that were associated with shorter overall survival in patients
with radically resected pancreatic cancer.
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Background
Pancreatic cancer (PC) is the fourth most common cause
of cancer-related death in the Western world, although it
only represents 3% of all new cancer cases [1, 2]. Most
cases are pancreatic ductal adenocarcinomas (PDAC).
Due to locally advanced or metastatic disease, only 20% of

all patients diagnosed with PC are accessible to radical
surgical treatment, and thereby have the potential for
long-term survival [3, 4]. However, even in this group, the
5-year survival is only 20% due to the high recurrence rate
[5, 6].
PC located in the head of the pancreas constitutes

the majority (60–70%) of the group of cancers in the
region, which also includes of ampullary adenocarcin-
omas (A-AC), accounting for 15–25%; and duodenal
cancers (DC); and distal common bile duct (CBD)
cancers, each accounting for approximately 10%[6].
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The distribution of the different types of the periam-
pullary cancers is variously reported, probably due to
the complexity of the periampullary anatomy and
histopathology. The 5-year survival rate after surgery
is 45–55% for A-AC and DC [7, 8] and approximately
25% for distal CBD cancers [6].
Cancer antigen 19–9 (CA 19–9, also named carbohy-

drate antigen 19–9 and sialylated Lewis antigen) is the
most widely used biomarker for patients with PC. Serum
CA19-9 alone is insufficient as a diagnostic biomarker,
although it may have prognostic value in the absence of
cholestasis [9]. There is an obvious need for better bio-
markers in PC, and microRNAs (miRNAs, miRs) could
be interesting in this regard.
MiRNAs are small (18–24 nucleotides) non-coding

RNAs that regulate gene expression post-transcriptionally
by binding to messenger RNA molecules through nucleo-
tide complementarity [10, 11]. MiRNAs regulate critical
cellular processes such as differentiation, proliferation,
apoptosis, and metastasis [12–16]. MiRNAs are stable and
analyzable in formalin-fixed paraffin-embedded (FFPE)
tissue, which is suitable for analysis [17, 18]. So far,
2603human miRNA sequences have been discovered and
the number is increasing [19].
The expression patterns of miRNAs can be combined

into profiles that are specific for a given type of tissue or
disease. Several specific miRNA expression profiles in
PC tissue have been described, with a promising
consistency between studies and different array or PCR
platforms. The expressions of miR-15b, −21, −95, −103,
−107, −122, −135b, −148a, −155, −190, −196a, −200,
−203, −210, −216b, −217, −221, −222, and miR-375
differ between PC and normal pancreas or chronic
pancreatitis [20–28]. Furthermore, miRNA expression
profiling indicates a close relationship between PDAC
and A-AC [27]. Specific miRNAs have also been sug-
gested as prognostic biomarkers in several cancers,
including PC [23, 29–32].
The aim of the present study was to validate previ-

ously described diagnostic and prognostic miRNA
expression profiles for PDAC and A-AC in FFPE
specimens.

Methods
Patients
Diagnostic miRNA study
FFPE tumor specimens (n = 359 including an internal
control) were obtained from patients who underwent re-
section with radical intent for the following diagnoses:
PDAC (n = 165), A-AC (n = 59), DC (n = 6), distal CBD
cancer (n = 21), chronic pancreatitis (CP) (n = 39), gastric
cancer (GC) (n = 20), serous cyst adenoma (n = 2), and
no cancer (n = 4; cysts or fibrosis that could not be clas-
sified as normal pancreas or pancreatitis and did not

have any malignant foci) and healthy subjects (HS)
(n = 35). The pancreatic and periampullary specimens
came from patients who had undergone pancreaticoduode-
nectomy, distal pancreatectomy, or total pancreatectomy
between 2004 and 2011 in Denmark (Herlev Hospital n =
9; Rigshospitalet n = 198), Germany (Heidelberg n = 69),
and Norway (Bergen n = 55). The chronic pancreatitis
specimens came from Copenhagen (n = 5) and Heidelberg
(n = 34). All normal pancreas tissue was obtained from
Heidelberg from organ donors or patients with traumatic
pancreatic lesions leading to resection of healthy pancre-
atic tissue. The Danish patients were included in the BIO-
PAC Study (BIOmarkers in patients with Pancreatic
Cancer). The gastric cancers came from patients who had
undergone surgery at Gentofte Hospital. An experienced
pathologist reassessed all samples to select the most repre-
sentative part of the specimen, and tumors were classified
and graded according to the World Health Organization
criteria [33].

Prognostic miRNA study
One hundred fifty-seven FFPE tumor specimens were
analyzed from patients who underwent surgery with
radical intent for PDAC (n = 103) and A-AC (n = 54).
The patients were included in the BIOPAC Study at
Rigshospitalet in Denmark. Inclusion criteria were
age ≥ 18 years and histologically verified PC in a
resected specimen. After surgery, the majority of the
patients (87%) were treated with adjuvant gemcitabine
for 6 months or until disease recurrence.
Patient characteristics are shown in Table 1.

MiRNA purification from FFPE tissues
One FFPE block was selected from each patient for
miRNA analysis. From each of these blocks, 3 10-μm
sections were cut for miRNA extraction without micro-
dissection. As method control, 9×3 sections were cut
from a specimen from 1 of the PDAC patients. MiRNAs
were extracted using Qiagen miRNeasy FFPE kit, Cat
No./ID: 217504. Briefly, the sections were deparaffinized
in xylene and ethanol and then treated with proteinase
K, and RNA was isolated using the one-column spin col-
umn protocol for total RNA. The concentration of small
RNAs was assessed by absorbance spectrometry on a
DTX 880 (Beckman Coulter).

MiRNA analysis
The following 46 miRNAs were selected for analysis:
miR-21-5p, −23a-3p, −29a-5p, −31-5p, −34a-5p, −34c-
5p, −93-3p, −122-5p, −125a-3p, −130b-3p, −135b-3p,
−136-3p, −146a-5p, −148a-3p, −148a-5p, −155-5p, −186-
5p, −187-3p, −194-3p, −196b-5p, −198, −203, −205-5p,
−210, −212-3p, −216b, −217, −222-3p, −222-5p, −375,
−411-5p, −431-5p, −450b-5p, −451a, −490-3p, −492,
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−509-5p, −571, −614, −622, −625-5p, −675-5p, −769-5p,
−939, −944, and let-7 g. The selection was based on the
previously described relationship of the miRNAs to PC
in particular and to cancer biology in general (Detailed
information on each specific miRNA is available in
“Additional file 1”).
The miRNAs were analyzed in triplicate using the

Fluidigm BioMark System™. This system can perform
multiple simultaneous real-time PCR measurements
running gold-standard Taqman® assays in nanolitre
quantities. The instructions from Fluidigm were followed
in all details (https://www.fluidigm.com). The analyses
were performed at AROS Applied Biotechnology A/S
(www.arosab.com, Aarhus, Denmark).

Statistical analysis
Differences in miRNA expression according to diagnosis
were tested by univariate logistic regression including
the raw miRNA expression level as continuous variables
on the cycle threshold scale. Odds ratios (OR) per inter-
quartile increase and 95% confidence intervals were
computed for both PC vs. HS and PC vs. HS and CP.
Diagnostic indices were identified in 3 different ways

among the significant miRNAs: (1) As a manually de-
fined index by including 2 miRNA with OR > 1 and 2
with OR < 1 (indices I and IV);(2) As a computer gener-
ated index found by backwards elimination of a model
with miRNAs chosen from 18 miRNAs described in an
previous index (the so-called LASSO-classifier: miR-23a,
34c-5p, −122, −135b-3p, −136-3p, −186, −196b, −198,

−203, −222-3p, −451, −490, −492, −509-5p, −571, −614,
−622, and miR-93 [27]) which were significant at a 1%
significance level, to account for multiple testing and
with less than 10% missing values (indices II and V) and
(3) as a computer generated index like (2) but based on
all significant miRNAs (indices III and VI). A total of 6
indices were identified: I, II, and III developed for the
PC vs. HS comparison and IV, V, and VI developed for
the PC vs. HS + CP comparison. The indices were evalu-
ated by means of boxplots, and their performance was
evaluated by computing sensitivity, specificity, accuracy,
area under curve (AUC), true positives (TP), true nega-
tives (TN), false positives (FP), and false negatives (FN).
The indices were also tested on other cancer types. For
each index, we first found a suitable cut-off by requiring
a sensitivity of 85% in the PC vs. HS or vs. HS + CP
comparison. Subsequently, this cut-off point was applied
in all other comparisons.
It was not possible to stratify our patients according to

TNM due to the very uneven distribution of cancer
stages and resulting small subgroups.
For the prognostic study, the association between

overall survival (OS) and miRNA expression was illus-
trated by Kaplan–Meier curves by dichotomizing the
miRNA expression into below and above the median
expression for each miRNA. The association was tested
by means of univariate Cox proportional hazards regres-
sion both on the continuous variables and on the dichot-
omized variables, and presented as hazard ratios (HR)
and corresponding 95% confidence intervals (CIs). In

Table 1 Characteristics of the Danish patients

Characteristic PDAC
N = 110

A-AC
N = 59

Duodenal cancer
N = 6

Distal CBD cancer
N = 21

Chronic pancreatitis
N = 5

Serous cystadenoma and
other benign diagnosis
N = 6

Age, years median (range) 65.7 (37.4-81.3) 64.9 (38.3-80.5) 69.0 (54.3-74.4) 64.7 (38.6-74.6) 56.4 (43.8-68.2) 60.6 (46.7-84.7)

Gender

Male 60 (55%) 37 (63%) 5 (83%) 11 (52%) 5 (100%) 2 (33%)

Female 50 (45%) 22 (37%) 1 (17%) 10 (48%) 0 4 (67%)

ASA score

1 12 (11%) 9 (15%) 0 2 (10%) 1 (20%) 0

2 58 (53%) 38 (66%) 5 (83%) 15 (75%) 2 (40%) 4 (80%)

3 30 (27%) 11 (19%) 1 (17%) 3 (15%) 2 (40%) 1 (20%)

4 0 0 0 0 0

TNM-Stage

IA 9 (8%) 4 (7%) 1 (17%) 1 (5%)

IB 3 (3%) 7 (12%) 1 (17%) 1 (5%)

IIA 27 (25%) 6 (10%) 2 (33%) 7 (52%)

IIB 67 (65%) 24 (41%) 2 (33%) 11 (33%)

III 0 16 (27%) 0 1 (5%)

Values are N (%). Numbers may not add up due to missing values
No clinical information is available from the patients with gastric cancer and the patients and healthy subjects from Heidelberg and Bergen
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addition, analyses adjusted for age, sex, tumor stage,
ASA score, and tumor differentiation were performed.
Finally, we considered differences between 2 miRNAs at
a time as a continuous variable in the Cox models
(unadjusted and adjusted) for OS. Analyses were made
for the diagnoses PDAC and A-AC together and
separately.
In all analysis, the software package R version 3.1.1 (R

Core Team 2014; R: A language and environment for
statistical computing. R Foundation for Statistical Com-
puting, Vienna, Austria. www.R-project.org) was used,
and P-values below 5% were considered statistically
significant.

Results
Diagnosis – Pancreatic cancer vs. healthy subjects
The following 14 miRNAs were upregulated in PC com-
pared to HS: miR-21-5p, −23a-3p, −31-5p, −34c-5p,
−93-3p, −135b-3p, −155-5p, −196b-5p, −203, −205-5p,
−210, −222-3p, −451, and miR-622. The following 5
miRNAs were downregulated in PC: miR-122-5p,
−130b-3p, −216b, − 217, and miR-375 (Table 2).
Three indices of miRNA expression, index I, II, and

III, were identified to separate PC from HS (i.e., normal
pancreas tissue):
(I) A manually defined index: miR-375 +miR-130b-3p –

miR-451 – miR34c-5p.
(II) A computer-generated index based on univariate

significant miRNAs chosen from 18 miRNAs describes in
a previous index with less than 10% missing: 292.6458–
3.0539×miR-34c-5p + 4.007×miR-203–10.4×miR-222-3p–
3.6057×miR-451–4.3015×miR-622.
The potential miRNAs for index II were miR-34c-5p,

−135-3p, −203, −222-3p, −451,and miR-622.
(III) A computer-generated index based on all univari-

ate significant miRNAs with less than 10% missing
values: 118.7249 + 77.2459×miR-130b-3p–23.7911×miR-
34c-5p–49.923×miR-451.
The potential miRNAs for index III were miR-31-5p,

−34c-5p,-93-3p, −130b-3p, −135b-3p, −155-5p, −203,
−205-5p, −210, −216b, −217, −222-3p, −375, −451,and
miR-622.
The performances of these indices are illustrated in

box plots in Fig. 1 and Table 3 (upper part). The manu-
ally calculated index I was able to separate PC from HS
with a sensitivity of 84.9 (CI 78.5–90.0), but could also
differentiate the other malignant diagnoses from HS,
with a sensitivity varying from 66.7 (distal CBD cancer)
to 100.0 (DC and GC). The computer-generated index II
performed in the same way with regard to PC vs. HS,
but was inferior for separating the other malignancies
from HS except for distal CBD cancer, where it per-
formed better than index I. The computer-generated
index III performed slightly better than index II with

regard to separating A-AC and DC cancer from HS, but
was inferior for separating distal CBD cancer and GC.

Diagnosis - Pancreatic cancer vs. healthy subjects +
chronic pancreatitis
The following 17 miRNAs were upregulated in PDAC
compared with benign specimens (HS and CP com-
bined): miR-21-5p, −23a-3p, −31-5p, −34c-5p, −93-3p,
−135b-3p, −155-5p, −186-5p, −196b-5p, −203, −205-5p,
−210, −222-3p, −451, −492, −614, and miR-622. The
following 5 miRNAs were downregulated in PDAC
compared to benign specimens (HS and CP com-
bined): miR-122-5p, −130b-3p, −216b, −217, and miR-
375 (Table 2).
Three indices, IV, V, and VI, of miRNA expression to

separate PC from benign tissue (i.e., HS and CP com-
bined) were identified.
(IV) A manually defined index: miR-375 +miR-130b-

3p – miR-451 – miR-34c-5p.
(V) A computer-generated index based on significant

miRNAs chosen from 18 miRNAs described in a
previous index with less than 10% missing values:
20.5487–1.5899×miR-222-3p–0.4006×miR-451–
0.3864×miR-203–0.5056×miR-622+ 1.203×miR-186-5p.
The potential miRNAs for index V weremiR-34c-5p,

−135b-3p, −186-5p, −203, −222-3p, −451, and miR-622.
(VI) A computer-generated index based on all significant

miRNAs with less than 10% missing values: 7.1834–
0.5175×miR-210 + 1.3893×miR-93-3p – 0.7423×miR-375–
2.6184×miR-222-3p – 0.3414×miR-451–0.3852×miR-203–
0.5316×miR-622 + 1.822×miR-186-5p.
The potential miRNAs for index VI were miR-31-5p,

−34c-5p, −93-3p, −130b-3p, −135b-3p, −155-5p, −186-
5p, −203, −210, −216b, −217, −222-3p, −375, −451, and
miR-622.
The performances of these indices are illustrated in

box plots in Fig. 1 and in Table 3 (lower part). Index IV
could separate HS from the other diagnoses. Indices V
and VI were able to separate CP from the malignant
diagnoses.

Diagnostic miRNA indices previously identified for
pancreatic cancer
We have previously described the following 4 differ-
ent diagnostic miRNA indices in FFPE cancer tissues
consisting of 2 different miRNAs [27]: (1) miR-196b-
5p – miR-217; (2) miR-411 – miR-198; (3) miR-614 –
miR-122-5p; and (4) miR-614 – miR-93-3p. The
performance of the 4 indices in the present cohort
was tested using the Fluidigm method. Since many
samples had non-detectable miRNAs, we only used
observations that were non-missing, i.e., not imputed
by a large Ct-value. Index 1 had 97 samples with at
least 1miRNA missing, index 2 had 122 samples with
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Table 2 Significantly deregulated microRNAs

microRNA upregulated in PC compared to healthy subjects

miRNA OR (CI) p-value PC HS Missing

miR-21-5p 0.11 (0.03–0.25) 0.0000 134 13 53

miR-23a-3p 0.36 (0.13–0.67) 0.0100 156 5 39

miR-31-5p 0.38 (0.28–0.50) 0.0000 165 35 0

miR-34c-5p 0.17 (0.09–0.28) 0.0000 165 35 0

miR-93-3p 0.14 (0.06–0.26) 0.0000 165 34 1

miR-135b-3p 0.31 (0.20–0.44) 0.0000 165 30 5

miR-155-5p 0.11 (0.03–0.23) 0.0000 165 33 2

miR-196b-5p 0.14 (0.02–0.45) 0.0151 147 3 50

miR-203 0.37 (0.25–0.51) 0.0000 165 35 0

miR-205-5p 0.71 (0.59–0.82) 0.0000 148 21 31

miR-210 0.12 (0.05–0.22) 0.0000 165 34 1

miR-222-3p 0.06 (0.02–0.15) 0.0000 165 35 0

miR-451 0.14 (0.06–0.27) 0.0000 165 35 0

miR-622 0.57 (0.41–0.76) 0.0003 165 34 1

microRNA downregulated in PC compared to healthy subjects

miRNA OR (CI) p-value PC HS Missing

miR-122-5p 2.08 (1.40–3.51) 0.0014 30 18 152

miR-130b-3p 5.34 (3.17–9.98) 0.0000 165 35 0

miR-216b 6.30 (3.36–14.24) 0.0000 149 35 16

miR-217 2.94 (2.03–4.69) 0.0000 142 35 23

miR-375 26.10 (9.48–90.22) 0.0000 165 35 0

microRNA upregulated in PC compared to healthy subjects and chronic pancreatitis

miRNA OR (CI) p-value PC HS + CP Missing

miR-21-5p 0.24 (0.14–0.36) 0.0000 134 42 63

miR-23a-3p 0.54 (0.38–0.74) 0.0003 156 31 52

miR-31-5p 0.50 (0.41–0.59) 0.0000 165 74 0

miR-34c-5p 0.33 (0.25–0.43) 0.0000 165 74 0

miR-93-3p 0.27 (0.17–0.40 0.0000 165 73 1

miR-135b-3p 0.31 (0.22–0.41 0.0000 165 58 16

miR-155-5p 0.46 (0.37–0.56 0.0000 165 72 2

miR-186-5p 0.71 (0.55–0.89 0.0041 165 74 0

miR-196b-5p 0.53 (0.39–0.70 0.0000 147 20 72

miR-203 0.36 (0.26–0.46 0.0000 165 74 0

miR-205-5p 0.79 (0.71–0.88 0.0000 148 46 45

miR-210 0.27 (0.18–0.36 0.0000 165 73 1

miR-222-3p 0.23 (0.16–0.32 0.0000 165 74 0

miR-451 0.44 (0.35–0.54 0.0000 165 74 0

miR-492 0.46 (0.22–0.78 0.0097 57 4 178

miR-614 0.75 (0.57–0.94 0.0219 110 14 115

miR-622 0.52 (0.41–0.66 0.0000 165 72 2
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at least 1 miRNA missing, index 3 had 213 samples
with at least 1 miRNA missing, and index 4 had 115
samples with at least 1miRNA missing. For indices 2
and 3, it was not possible to consider HS alone. The
performances of these indices are shown in box plots
in Fig. 2. Index 1 could separate HS from PC patients
but could not separate CP from A-AC. Index 1 could
separate GC from all other diagnoses with high ac-
curacy. Indices 2, 3, and 4 could not separate samples
with benign from malignant diagnoses. Further infor-
mation is given in the “Additional file 2”.

Prognostic miRNAs – PDAC and A-AC patients combined
In all, 157 patients with either PDAC or A-AC were
available for the survival analysis, and 112died during
the follow-up period. Table 4 illustrates that low expres-
sion of 6 miRNAs (miR-29a-5p, miR-34a-5p, miR-125a-
3p, miR-146a-5p, miR-205-5p, and miR-212-3p) was
associated with short OS, both with and without adjust-
ment for age, sex, tumor stage/differentiation, and ASA-
score. When patients were divided into 2 groups for
each miRNA (defined as expression under or above the
median level), low miR-34a-5p, miR-205-5p, miR-212-

Fig. 1 Performance of diagnostic indices for PC vs. HS and for PC vs. HS + CP

Table 2 Significantly deregulated microRNAs (Continued)

microRNA downregulated in PC compared to healthy subjects and chronic pancreatitis

miRNA OR (CI) p-value PC HS + CP Missing

miR-122-5p 1.99 (1.46–2.98) 0.0001 30 40 169

miR-130b-3p 1.71 (1.33–2.23) 0.0001 165 74 0

miR-216b 1.55 (1.34–1.84) 0.0000 149 73 17

miR-217 1.46 (1.28–1.69) 0.0000 142 71 26

miR-375 2.22 (1.62–3.15) 0.0000 165 74 0
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3p, and miR-222-5plevels were significantly associated
with short OS. After adjusting for age, sex, tumor stage/
differentiation, and ASA-score, let-7 g, miR-29a-5p,
miR-34a-5p, miR-205-5p, and miR-212-3p were associ-
ated with short OS. Figure 3 illustrates Kaplan–Meier
curves for the6 miRNAs reaching a significance level
below 0.01.
Table 5 shows 30 and 27 combinations of 2 miRNAs

significantly associated with short OS in an unadjusted
and an adjusted analysis in PDAC and A-AC in
combination.th=tlb=

Prognostic miRNAs - PDAC
One hundred three patients with PDAC were available
for the survival analysis, and 83 died during the follow-
up period. In both the unadjusted and the adjusted (age,
sex, tumor stage/differentiation, ASA-score) analyses,
low expression of 2 miRNAs was associated with short
OS prognosis:miR-34a-5p: HR = 0.72(CI: 0.56–0.93)
(unadjusted) and HR = 0.70(CI: 0.52–0.93) (adjusted);
and miR-212-3p HR = 0.83(CI: 0.71–0.99) (unadjusted)

and HR = 0.82(CI: 0.68–0.99) (adjusted). Dividing the
patients into 2 groups for each miRNA (defined as
expression under or above the median level), low miR-
34a-5p and miR-212-3p levels were associated with short
OS. Figure 4 shows Kaplan–Meier curves for the miR-
NAs reaching a significance level below 0.01.
Table 5 shows 5 and 12 combinations of 2 miRNAs

significantly associated with short OS in an unadjusted
and an adjusted analysis in PDAC.

Prognostic miRNAs – A-AC
Fifty-four patients with A-AC were available for the sur-
vival analysis, and 29 died during the follow-up period.
In the unadjusted analysis, 4 miRNAs were significantly
associated with prognosis: let-7 g: HR = 0.74(CI: 0.58–
0.93), miR-34a-5p: HR = 0.66(CI: 0.46–0.94), miR-187:
HR = 1.51(CI: 1.01–2.24), and miR-205-5p: HR = 0.74(CI:
0.63–0.86). In the adjusted analysis (age, sex, tumor
stage/differentiation, ASA-score), low expression of miR-
34a-5p: HR = 0.58(CI: 0.38–0.89) and miR-450b-5p: HR
= 0.48(CI: 0.23–0.99) and high expression of miR-187:

Fig. 2 Performance of two miRNA diagnostic indices
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Table 4 Prognostic miRNAs in patients with PC + A-AC, PC and A-AC

PDAC and A-AC

CT-expression (per IQR increase)

Unadjusted Adjusted

miRNA HR (CI) P N HR (CI) P N

miR-29a-5p 0.87 (0.76–0.99) 0.0302 156 0.85 (0.74–0.98) 0.0212 145

miR-34a-5p 0.66 (0.54–0.81) <0.0001 156 0.64 (0.52–0.79) <0.0001 145

miR-125a-3p 0.83 (0.73–0.95) 0.0051 153 0.83 (0.72–0.95) 0.0077 142

miR-146a-5p 0.87 (0.76–0.99) 0.0296 157 0.85 (0.74–0.97) 0.0191 146

miR-205-5p 0.91 (0.86–0.96) 4e-04 130 0.92 (0.87–0.97) 0.0037 120

miR-212-3p 0.81 (0.72–0.91) 4e-04 156 0.80 (0.71–0.91) 4e-04 145

Under median vs. over median

Unadjusted Adjusted

miRNA HR (CI) P N HR (CI) P N

let-7 g NS 0.62 (0.41–0.93) 0.0220 145

miR-29a-5p NS 0.64 (0.42–0.96) 0.0314 145

miR-34a-5p 0.46 (0.31–0.67) <0.0001 156 0.47 (0.31–0.71) 0.0003 145

miR-205-5p 0.37 (0.25–0.57) <0.0001 130 0.44 (0.28–0.69) 0.0003 120

miR-212-3p 0.51 (0.35–0.74) 5e-04 156 0.53 (0.35–0.79) 0.0021 145

miR-222-5p 0.68 (0.47–1.00) 0.0495 152 NS

PDAC

CT-expression (per IQR increase)

Unadjusted Adjusted

miRNA HR (CI) P N HR (CI) P N

miR-34a-5p 0.72 (0.56–0.93) 0.0104 103 0.70 (0.52–0.93) 0.0144 93

miR-212-3p 0.83 (0.71–0.99) 0.0328 103 0.82 (0.68–0.99) 0.0350 93

Under median vs. over median

Unadjusted Adjusted

miRNA HR (CI) P N HR (CI) P N

miR-34a-5p 0.49 (0.31–0.77) 0.0020 103 0.53 (0.32–0.89) 0.0151 93

miR-212-3p 0.64 (0.41–0.98) 0.0417 103 0.59 (0.36–0.97) 0.0358 93

A-AC

CT-expression (per IQR increase)

Unadjusted Adjusted

miRNA HR (CI) P N HR (CI) P N

let-7 g 0.74 (0.58–0.93) 0.0100 53 NS

miR-34a-5p 0.66 (0.46–0.94) 0.0218 53 0.58 (0.38–0.89) 0.0121 52

miR-187 1.51 (1.01–2.24) 0.0439 24 2.34 (1.22–4.48) 0.0104 24

miR-205-5p 0.73 (0.63–0.86) 0.0001 37 NS

miR-450b-5p NS 0.48 (0.23–0.99) 0.0458 26

Under median vs. over median

Unadjusted Adjusted

miRNA HR (CI) P N HR (CI) P N

miR-34a-5p 0.40 (0.19–0.86) 0.0183 53 0.36 (0.16–0.85) 0.0195 52

NS Not significant
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Fig. 3 Kaplan–Meier curves for miRNAs significantly associated to survival in patients with PC + A-AC
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Table 5 Differences of miRNA

Unadjusted effects on differences Adjusted effects on differences

miRNA1 miRNA2 HR (CI) P N miRNA1 miRNA2 HR (CI) P N

PDAC + AAC

miR-148a miR-212-3p 1.20 (1.09–1.33) 0.0002 155 miR-34a-5p miR-148a 0.82 (0.73–0.92) 0.0011 144

miR-205-5p miR-769-5p 0.90 (0.85–0.95) 0.0003 129 miR-205-5p miR-769-5p 0.91 (0.85–0.96) 0.0015 119

miR-148a miR-205-5p 1.08 (1.04–1.13) 0.0004 130 miR-146a-5p miR-212-3p 1.33 (1.11–1.60) 0.0017 145

miR-34a-5p miR-148a 0.83 (0.75–0.92) 0.0009 155 miR-34a-5p miR-187 0.67 (0.52–0.88) 0.0038 44

miR-34a-5p miR-187 0.64 (0.50–0.83) 0.0009 47 miR-148a miR-205-5p 1.07 (1.02–1.12) 0.004 120

miR-146a-5p miR-212-3p 1.32 (1.12–1.57) 0.0013 156 miR-29a-5p miR-205-5p 1.08 (1.03–1.15) 0.0046 119

miR-187 miR-212-3p 1.55 (1.18–2.04) 0.0016 47 miR-125a-3p miR-769-5p 0.81 (0.69–0.94) 0.0071 140

miR-34a-5p miR-769-5p 0.74 (0.62–0.89) 0.0017 154 miR-187 miR-212-3p 1.47 (1.11–1.96) 0.0078 44

miR-212-3p miR-769-5p 0.81 (0.70–0.92) 0.0020 154 let-7 g miR-187 0.74 (0.59–0.93) 0.0085 44

miR-205-5p miR-625-5p 0.91 (0.86–0.97) 0.0023 72 miR-146a-5p miR-205-5p 1.08 (1.02–1.14) 0.0097 120

miR-205-5p miR-450b-5p 0.91 (0.86–0.97) 0.0031 94 miR-205-5p miR-222-5p 0.93 (0.87–0.99) 0.0152 117

miR-146a-5p miR-205-5p 1.08 (1.03–1.14) 0.0033 130 miR-29a-5p miR-769-5p 0.81 (0.68–0.96) 0.0171 143

miR-205-5p miR-222-5p 0.92 (0.86–0.97) 0.0034 127 let-7 g miR-205-5p 1.07 (1.01–1.13) 0.018 120

let-7 g miR-205-5p 1.08 (1.02–1.14) 0.0048 130 miR-29a-5p miR-194-3p 0.68 (0.50–0.94) 0.0188 46

miR-194-3p miR-205-5p 1.26 (1.07–1.48) 0.0062 36 miR-125a-3p miR-187 0.76 (0.61–0.96) 0.0188 43

miR-29a-5p miR-205-5p 1.07 (1.02–1.13) 0.0072 129 let-7 g miR-212-3p 1.14 (1.02–1.28) 0.0233 144

miR-125a-3p miR-205-5p 1.08 (1.02–1.15) 0.0074 128 miR-125a-3p miR-205-5p 1.07 (1.01–1.14) 0.0236 118

let-7 g miR-187 0.82 (0.70–0.95) 0.0093 47 miR-205-5p miR-450b-5p 0.93 (0.87–0.99) 0.024 85

miR-34a-5p miR-205-5p 1.07 (1.02–1.13) 0.0125 130 miR-34a-5p miR-194-3p 0.64 (0.43–0.94) 0.0262 45

miR-125a-3p miR-148a 0.90 (0.83–0.98) 0.0139 152 miR-194-3p miR-212-3p 1.39 (1.04–1.85) 0.0273 45

miR-125a-3p miR-769-5p 0.84 (0.73–0.97) 0.0146 151 miR-212-3p miR-625-5p 0.86 (0.75–0.98) 0.0298 74

miR-125a-3p miR-187 0.80 (0.66–0.96) 0.0155 46 miR-34a-5p miR-205-5p 1.07 (1.01–1.13) 0.0307 120

miR-212-3p miR-625-5p 0.87 (0.77–0.98) 0.0194 79 miR-194-3p miR-205-5p 1.21 (1.02–1.45) 0.0326 33

let-7 g miR-212-3p 1.12 (1.01–1.25) 0.0332 155 miR-625-5p miR-944 1.51 (1.03–2.22) 0.0339 20

miR-187 miR-194-3p 1.41 (1.02–1.96) 0.0366 21 miR-125a-3p miR-148a 0.91 (0.84–1.00) 0.0383 141

miR-205-5p miR-212-3p 0.95 (0.90–1.00) 0.0410 130 miR-146a-5p miR-769-5p 0.84 (0.71–1.00) 0.0394 144

miR-34a-5p miR-625-5p 0.88 (0.78–1.00) 0.0443 79 miR-34a-5p miR-625-5p 0.87 (0.75–1.00) 0.0478 74

miR-146a-5p miR-187 0.79 (0.63–1.00) 0.0452 47

miR-187 miR-205-5p 1.12 (1.00–1.26) 0.0468 38

miR-34a-5p miR-146a-5p 0.83 (0.68–1.00) 0.0488 156

PDAC

miR-148a miR-212-3p 1.18 (1.04–1.33) 0.0077 103 miR-34a-5p miR-769-5p 0.63 (0.47–0.84) 0.002 92

miR-34a-5p miR-148a 0.86 (0.76–0.97) 0.0156 103 miR-29a-5p miR-187 1.99 (1.20–3.29) 0.0072 20

miR-34a-5p miR-769-5p 0.75 (0.59–0.96) 0.0199 102 miR-187 miR-769-5p 0.54 (0.33–0.87) 0.0111 20

miR-146a-5p miR-212-3p 1.26 (1.01–1.56) 0.0371 103 miR-187 miR-205-5p 0.72 (0.56–0.94) 0.0138 19

miR-34a-5p miR-146a-5p 0.74 (0.56–0.99) 0.0427 103 miR-212-3p miR-769-5p 0.75 (0.60–0.95) 0.0153 92

miR-148a miR-212-3p 1.18 (1.03–1.34) 0.016 93

miR-450b-5p miR-944 1.56 (1.06–2.30) 0.0243 24

miR-34a-5p miR-148a 0.86 (0.75–0.99) 0.0341 93

miR-146a-5p miR-212-3p 1.29 (1.02–1.63) 0.0343 93

miR-148a miR-431-5p 1.32 (1.02–1.72) 0.0364 34

miR-146a-5p miR-187 1.57 (1.01–2.44) 0.0438 20

miR-222-5p miR-769-5p 0.84 (0.70–1.00) 0.0491 92
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HR = 2.34(CI: 1.22–4.48) were associated with short OS.
When patients were divided into 2 groups for each
miRNA (defined as expression under or above the me-
dian level), low expression of miR-34a-5p was associated
with short OS. Figure 4 shows Kaplan–Meier curves for
the miRNAs reaching a significance level below 0.01.
Table 5 shows 21 and 16 combinations of 2 miRNAs

in A-AC FFPE tissue significantly associated with short
OS in both an unadjusted and an adjusted analysis.

Discussion
In the present study, our aim was to validate previously
described tissue miRNA expression profiles as diagnostic
and prognostic biomarkers of PC and other periampul-
lary cancers [20–32]. We used non-microdissected FFPE
tissue from 165 patients who had undergone surgery for
PDAC and from 86 patients who had undergone resec-
tion for other periampullary cancers.
Many of the diagnostic miRNAs described in the lit-

erature [20, 21, 34] could be validated. We found the fol-
lowing miRNAs either upregulated or downregulated in
PC tissue compared to tissue from CP and/or normal
pancreas, upregulated miRNAs: miR-21-5p, −23a-3p,
−31-5p, −34c-5p, −93-3p, −135b-3p, −155-5p, −186-5p,
−196b-5p, −203, −205-5p, −210, −222-3p, −451, −492,
−614, and miR-622; and downregulated miRNAs: miR-

122-5p, −130b-3p, −216b, −217, and miR-375. Further-
more, we validated the two-miRNA index “miR-196b –
miR-217” [27], and suggested new diagnostic indices for
separating patients with PC vs. HS and PC vs. HS and
CP combined. We found that these indices were useful
in discriminating other upper gastrointestinal cancers
(duodenal cancer, common bile duct cancer and gastric
cancer) from normal pancreas and CP.
In addition to the diagnostic miRNAs, we demon-

strated the association of 10 miRNAs with prognosis
and constructed several indices based on differences of 2
miRNA associated with poor prognosis.
A major limitation of the study was the high num-

ber of non-detectable miRNAs using the Fluidigm
BioMark System™. Even though we purified the miR-
NAs from FFPE by the same method as in our previ-
ous studies [27, 31] and repeated the analysis several
times, we still experienced a high number of un-
detectable miRNAs. At present, we have no explan-
ation for this problem apart from possible platform
sensitivity limitations.
We consider it a strength of the study that non-

microdissected samples were used, since this will also be
the case in a clinical setting. The tumor microenviron-
ment is a highly dynamic component of PC, often con-
stitutes the bulk of the tumor, and should therefore be

Table 5 Differences of miRNA (Continued)

A-AC

miR-205-5p miR-769-5p 0.71 (0.60–0.84) <0.0001 36 miR-34a-5p miR-769-5p 0.51 (0.32–0.81) 0.0043 51

miR-34a-5p miR-187 0.44 (0.27–0.72) 0.0011 24 miR-125a-3p miR-187 0.37 (0.18–0.75) 0.0055 23

miR-148a miR-205-5p 1.25 (1.09–1.44) 0.0018 37 miR-34a-5p miR-187 0.48 (0.28–0.82) 0.0067 24

miR-125a-3p miR-187 0.69 (0.54–0.88) 0.0032 23 miR-148a miR-187 0.59 (0.40–0.87) 0.0074 24

miR-187 miR-205-5p 1.35 (1.10–1.66) 0.0041 17 miR-29a-5p miR-769-5p 0.65 (0.48–0.89) 0.0077 52

miR-187 miR-212-3p 2.22 (1.29–3.82) 0.0042 24 miR-222-5p miR-450b-5p 2.12 (1.18–3.81) 0.0123 25

miR-205-5p miR-450b-5p 0.73 (0.59–0.91) 0.0045 22 miR-187 miR-769-5p 2.09 (1.16–3.78) 0.0148 24

let-7 g miR-205-5p 1.28 (1.07–1.52) 0.006 37 miR-29a-5p miR-187 0.62 (0.42–0.91) 0.0154 24

miR-146a-5p miR-205-5p 1.19 (1.05–1.34) 0.0065 37 miR-187 miR-212-3p 2.23 (1.16–4.30) 0.016 24

let-7 g miR-769-5p 0.74 (0.59–0.93) 0.0083 52 miR-146a-5p miR-187 0.54 (0.33–0.90) 0.0175 24

miR-34a-5p miR-769-5p 0.66 (0.48–0.91) 0.0122 52 miR-148a miR-450b-5p 2.12 (1.14–3.96) 0.0181 26

miR-34a-5p miR-205-5p 1.22 (1.04–1.43) 0.0126 37 miR-450b-5p miR-769-5p 0.31 (0.12–0.84) 0.0214 26

let-7 g miR-187 0.77 (0.62–0.95) 0.017 24 miR-34a-5p miR-625-5p 0.71 (0.52–0.96) 0.0267 30

let-7 g miR-625-5p 0.74 (0.58–0.95) 0.0175 31 miR-125a-3p miR-769-5p 0.75 (0.58–0.97) 0.0283 49

miR-125a-3p miR-205-5p 1.21 (1.03–1.43) 0.0227 36 miR-29a-5p miR-625-5p 0.74 (0.56–0.99) 0.0408 30

let-7 g miR-222-5p 0.80 (0.67–0.97) 0.0242 50 miR-205-5p miR-222-5p 0.81 (0.66–0.99) 0.0436 33

miR-29a-5p miR-187 0.74 (0.56–0.97) 0.0272 24

miR-205-5p miR-212-3p 0.86 (0.75–0.98) 0.0289 37

miR-146a-5p miR-187 0.67 (0.46–0.96) 0.0308 24

miR-187 miR-769-5p 1.47 (1.02–2.11) 0.0367 24

miR-450b-5p miR-769-5p 0.59 (0.35–1.00) 0.0489 27
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taken into account. The extracellular stroma participates
in paracrine signaling that promotes PDAC cell survival
and metastasis, and the dense extracellular matrix char-
acteristic of PDAC acts as a physical barrier to infiltrat-
ing immune cells and the diffusion of chemotherapy
[35–37]. MicroRNAs are involved in the regulation of
the extracellular components in different tissues [38, 39].
Since many studies regarding miRNAs in PC are per-
formed on microdissected tissue or cell lines the miR-
NAs originating from the extracellular stroma are less
elucidated. The following miRNAs significantly deregu-
lated in the present study are known to be related to the

extracellular compartment of PC: miR-21, −29, −130b,
−210, and-451 [40–43].
Among the validated miRNAs, high expression of

miR-21, miR-31, and miR-155 and low expression of
miR-217 and miR-375are the most consistently de-
scribed dysregulated miRNAs in PC. Several studies have
found miR-155to be upregulated in PC [20–22, 28, 32,
44, 45]. miR-155 functions as an onco-miRNA in differ-
ent types of cancer,e.g., breast, cervix, colon, and lung
cancer, and high miR-155 expression in cancer tissue is
associated with poor prognosis in PC and lung cancer
[30, 46–49]. The oncogenic effect of miR-155 maybe

Fig. 4 Kaplan–Meier curves for miRNAs significantly associated to survival in patients with PC and patients with A-AC
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caused by the targeting of anti-inflammatory signal
pathways such as Sh2 domain-containing inositol
phosphatase-1 (Ship1) or from suppression of cytokine
signaling 1 (Socs1) [50, 51].
miR-21 is also an onco-miR involved in PC tumorigen-

esis, invasion, metastasis, and chemoresistance [20, 21,
23, 27, 32, 44, 45, 52–57]. miR-21 is primarily upregu-
lated in the extracellular stroma, which is considered a
dynamic component of PC, and high expression is asso-
ciated with poor prognosis [40]. Our study was con-
ducted on non-microdissected tissue and thus also
detects miRNAs in the extracellular stroma.miR-21 tar-
gets tumor suppressors like PTEN, PDCD4, and TIMP3,
components of the p53 pathway, and modulates TGF-b
signaling, thus promoting cell proliferation, survival, and
migration/invasion [45, 58–60].
miR-31 is upregulated in PC [21, 27, 28, 45, 61]. miR-

31 targets human mutL homolog 1 (a mismatch repair
protein) [62] and activates the RAS pathway by inhibit-
ing RAS p21 GTPase activating protein 1 (RASA1) in
colorectal cancer [63].
miR-217 is downregulated in PC and in pancreatic

intraepithelial neoplasm (PanIN) [21, 27, 28, 32, 45, 64].
This finding has also been replicated in studies using
fine needle aspirates from PC [24, 65].miR-217 acts
as a tumor suppressor in PC by targeting KRAS [66]
and is involved in epithelial-mesenchymal-transition
(EMT) in PC and CP via the miR-217-SIRT1 pathway,
which can be triggered by TGF-β1 in inflammatory
processes [67].
miR-375 is downregulated in PC compared to nor-

mal pancreas, is associated with prognosis, and can
differentiate between pancreatobiliary and intestinal
subtypes in ampullary adenocarcinoma [20, 21, 27, 28,
32, 68]. miR-375 is also downregulated in esophageal,
gastric, breast, lung, colorectal, and cervical cancers
[69–74]. miR-375 plays a role in the development and
maintenance of the α- and β-cell mass in the normal
pancreas and is upregulated in patients with type 2
diabetes [75, 76].miR-375 targets 3-phosphoinositide-
dependent protein kinase-1 (PDK1) in PC and inhibits
PC cell proliferation in vitro [77, 78].
In the literature, the following miRNAs are described

as prognostic after PC resection:Let-7 g, miR-21, miR-
29a-5p, miR-34a-5p, miR-146a, miR-155, miR-196a,
miR-203, miR-205, miR-210, miR-212, miR-222, miR-
450b-5p, and miR-675 [23, 29–32]. We have previously
described prognostic indices using combinations of high
expression of miR-212 and miR-675 and low expression
of miR-148a-5p (previous ID: miR-148a*), miR-187 and
let-7 g-3p (previous ID: let-7 g*) in FFPE tissue from
patients operated for PC [31]. Only a few of these pa-
tients received adjuvant chemotherapy after surgery. In
the present study, patients with PDAC and A-AC were

all treated with adjuvant gemcitabine for 6 months or
until disease recurrence. In this population, we could
validate let-7 g, miR-29a-5p, miR-34a-5p, miR-146a-5p,
miR-205-5p, and miR-212-3pas prognostic biomarkers
after radical resection for PC.
The let-7 family of miRNAs includes tumor suppressor

miRNAs, the expression of which is prognostic in HCC,
gastric, and ovarian cancers [79–81]. Let-7 g is involved
in pathways essential for the development of cancer. It
targets Fas and is involved in Fas-mediated apoptosis
[82]. Silencing of let-7b/g activates AKT signaling and
promotes carcinogenesis in gastric cancer [83]. Let-7 in-
hibits cell motility in breast cancer by regulating genes
in the cytoskeleton pathway and silencing of let-7 pro-
motes metastases [84]. Let-7 inhibits proliferation in
HCC by downregulation of c-Myc and upregulation of
p16(INK4A) [85].
In PC, miR-29a-5p induces EMT, stimulates pancreatic

stellate cells to accumulate protein in the extracellular
matrix, and increases resistance to gemcitabine through
the Wnt/beta-catenin pathway [41, 86, 87]. miR-34a is up-
regulated in cervical and colorectal cancers and downreg-
ulated in breast, prostate, renal and lung cancer [49, 88].
The miR-34 family miRNAs are described as tumor

suppressor miRNAs, and miR-34a/c suppresses breast
cancer invasion and metastasis by targeting Fos-related
antigen-1 [89]. PC mouse models show that miR-146a
acts through EGFR signaling [90]. miR-205 is involved
in EMT and acts through the anti-apoptotic protein
Bcl-2 (in prostate cancer) and HER3 (in breast can-
cer) [91–93]. We found that low expression of miR-
125a-3p was associated with short OS in patients with
PC, and this is a novel observation.miR-125a-3p has
been described as a tumor suppressor miRNA in
several cancers [94, 95].
In the present study, miR-130b was found to be down-

regulated in PDAC compared to benign specimens.
Interestingly, this miRNA is upregulated in the stroma
compared to carcinoma cells [42].
Further information about the 46 miRNAs analyzed in

the present study is given in “Additional file 1”.

Conclusions
In conclusion, we could validate miRNAs selected from
the literature as diagnostic and/or prognostic biomarkers
in patients radically resected for PC. No microdissection
of the tumors was done, and some of the miRNAs most
likely originated from the stroma and not the cancer
cells. The diagnostic ability of these miRNAs was also
tested on duodenal cancer, common bile duct cancer,
and gastric cancer – diagnoses that represent a consider-
able diagnostic challenge in separating from PC in a
clinical setting. Hopefully, this study can contribute to
the understanding of pancreatic and periampullary
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cancers and improve the diagnosis, prognosis, and
ultimately treatment of patients with these conditions.
For example, this could be achieved by allocating young
patients with a miRNA expression profile suggestive of
poor prognosis to a more aggressive chemotherapy
regimen, or elderly patients with a more promising prog-
nostic profile could be spared from adjuvant therapy.
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