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Bottom-up proteomics relies on the use of proteases and
is the method of choice for identifying thousands of pro-
tein groups in complex samples. Top-down proteomics
has been shown to be robust for direct analysis of small
proteins and offers a solution to the “peptide-to-protein”
inference problem inherent with bottom-up approaches.
Here, we describe the first large-scale integration of
genomic, bottom-up and top-down proteomic data for the
comparative analysis of patient-derived mouse xenograft
models of basal and luminal B human breast cancer,
WHIM2 and WHIM16, respectively. Using these well-char-
acterized xenograft models established by the National
Cancer Institute’s Clinical Proteomic Tumor Analysis
Consortium, we compared and contrasted the perform-
ance of bottom-up and top-down proteomics to detect
cancer-specific aberrations at the peptide and proteo-
form levels and to measure differential expression of pro-
teins and proteoforms. Bottom-up proteomic analysis of
the tumor xenografts detected almost 10 times as many
coding nucleotide polymorphisms and peptides resulting
from novel splice junctions than top-down. For proteins in
the range of 0–30 kDa, where quantitation was performed

using both approaches, bottom-up proteomics quantified
3,519 protein groups from 49,185 peptides, while top-
down proteomics quantified 982 proteoforms mapping
to 358 proteins. Examples of both concordant and dis-
cordant quantitation were found in a ~60:40 ratio, pro-
viding a unique opportunity for top-down to fill in missing
information. The two techniques showed complementary
performance, with bottom-up yielding eight times more
identifications of 0–30 kDa proteins in xenograft pro-
teomes, but failing to detect differences in certain post-
translational modifications (PTMs), such as phosphoryla-
tion pattern changes of alpha-endosulfine. This work
illustrates the potency of a combined bottom-up and
top-down proteomics approach to deepen our knowledge
of cancer biology, especially when genomic data are
available. Molecular & Cellular Proteomics 15: 10.1074/
mcp.M114.047480, 45–56, 2016.

Recent advances in high-throughput genomics have al-
lowed deep characterization of cancer at the DNA and RNA
level. Large-scale initiatives, such as The Cancer Genome
Atlas at the National Cancer Institute, have provided compre-
hensive genomic analyses of human tumors from many can-
cer types and, thus, the prospect for novel insights into the
pathways leading to cancer and new possibilities for medical
advances. It is well known that genomic aberrations and an
inability to properly maintain and repair genetic material en-
able tumor initiation and progression (1). The large-scale map-
ping of cancer genomes has provided a detailed catalogue of
mutations and polymorphisms that may translate into pro-
teome variation and has left researchers wondering which
genomic abnormalities drive tumor biology and which are
functionally irrelevant. Although RNA sequencing can provide
supporting evidence for the translation of DNA-level muta-
tions into the proteome and alternative splicing, events, in-
cluding signal peptide cleavage and a multitude of biologically
active posttranslational modifications (PTMs) can significantly
increase protein variation that RNA-seq data could not reliably
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predict. Recent studies have also shown that RNA transcript
measurements poorly predict protein abundance differences
between tumors (2). Thus, detection of mutations and PTMs
at the protein level provides a direct readout of the biological
impact of cancer-related genomic abnormalities.

Proteomic technologies, especially those based on mass
spectrometry (MS), have the potential to detect genetic aber-
rations at the protein level. These technologies aim to identify
the genes that give rise to proteins, characterize any modifi-
cations from the primary amino acid sequence, and quantify
differences in relative expression levels between samples.
Ideally, these techniques would be operable for all the pro-
teins expressed in a cell, tissue, or other complex protein
mixture; however, this is not the case. Different technologies
exist, each with its unique strengths and weaknesses. Two
forms of proteomics analyses are shotgun bottom-up (BU)1

and top-down (TD) (3). In BU proteomics, the proteins are
digested with a protease, such as trypsin, prior to peptide
detection and sequencing using tandem mass spectrometry.
Protease digestion results in a complex mixture of peptides
between 500–3,500 Da that are usually separated by reverse
phase liquid chromatography or multidimensional chromatog-
raphy in-line with a mass spectrometer (4, 5). Precursor mass
measurements, along with MS/MS fragmentation information,
allow inference of the protein composition of the sample via
these peptides. Extremely sensitive BU methods have been
developed and are capable of identifying �5,000 protein groups
within a single sample, with some peptide sequences present in
multiple proteins or isoforms. Such shared peptides can lead to
ambiguities in identifying the unique proteins present in the
sample, the so called protein parsimony problem (6). Also, en-
zymatic digestion can result in the loss of information about
combinatorial PTMs and sequence variants.

Top-down (TD) proteomics, on the other hand, does not rely
on the use of proteases and examines proteins as a whole. In
doing so, top-down proteomics can fully characterize the
composition of individual proteoforms (7), including proteoly-
sis products, signal peptide cleavage, sequence variants, and
PTMs co-occurring on the same molecule. A typical TD work-
flow consists of single or multi-step protein separations, such
as reverse-phase liquid chromatography (8) and GELFrEE (9),
and the resulting protein fractions are further separated by
liquid chromatography in line with a mass spectrometer. Ad-
vances in MS instruments and protein separations have al-
lowed TD proteomics to become a robust technique for the
identification and characterization of ~2,000–3,000 proteo-

forms (8–10). Unlike BU, TD proteomics routinely links pro-
teins to their parental genes without the problem of protein
inference.

With the recent advent of methods for differential quantita-
tion using TD on proteins below 30 kDa (11), it is now possible
to begin comparing BU and TD techniques for three primary
proteomic tasks: gene identification, whole proteoform char-
acterization, and detection of differential expression. While
some efforts have explored the complementarity of BU and
TD technologies in the study of less complex proteomes (12,
13) and the structural analysis of antibodies (14, 15), herein we
describe the first evaluation of the complementarity of BU and
TD technologies for the qualitative and quantitative analysis of
cancer proteomes. To accomplish this task, we employed two
samples from patient-derived xenografts (PDXs) established
from a basal-like (WHIM2-P32) and luminal B (WHIM16-P33)
breast cancer (16–18). Patient-derived breast cancer xeno-
grafts have been established as reliable models of human
tumors that provide a renewable resource for studying the
human disease (16, 19, 20). These patient-derived xenograft
tumor lines are genomically well-characterized (16, 17) and
have been used to generate Comparison Reference (Com-
pRef) samples within the Clinical Proteomic Tumor Analysis
Consortium (CPTAC) (21) for performance validation of mass
spectrometry protocols and workflows. Genome and RNA
sequencing of the xenografts has provided us with lists of
sequence variants, due to single nucleotide polymorphisms
(SNPs), and novel splice junctions. Using these well-charac-
terized xenograft models, we compared and contrasted the
performance of BU and TD proteomic approaches to detect
cancer-specific aberrations at the peptide and proteoform
levels and to measure differential expression of proteins and
proteoforms.

This work represents the first large-scale integration of
genomic, BU, and TD proteomic data for comparative analy-
sis of PDXs comprised of the studies described in Table I. In
brief, Study 1 was designed to provide information on the
ability to detect tumor-specific features informed by prior
RNA-seq data of these samples (16, 17). Study 2 tested the
applicability of the recently established label-free top-down
quantitative proteomics platform (11) for the analysis of tu-
mors. Finally, Study 3 sought to detect differential expression
of proteins and proteoforms between basal and luminal B
breast cancer samples for the low molecular weight proteome
(�30 kDa).

EXPERIMENTAL PROCEDURES

Sample Preparation—Cryopulverization of tumor xenografts was
performed at Washington University in St. Louis using the established
protocols of CPTAC as previously described (22). One of the driving
motivations for creating the CompRef samples was to evaluate the
capacity for mass spectrometry protocols to consistently provide
both qualitative and quantitative data between samples. The two
Washington University Human-in-Mouse (WHIM) models chosen for
this purpose represent two subtypes of breast cancer with very

1 The abbreviations used are: BU, bottom up; CPTAC, Clinical
Proteomic Tumor Analysis Consortium; DE, differential expression;
GELFrEE, gel-eluted liquid fraction entrapment electrophoresis;
K2C8, Type 2 cytoskeletal keratin 8; NGS, next-generation sequenc-
ing; PDX, patient-derived xenograft; PFR, proteoform record; PTM,
posttranslational modification; SNP, single nucleotide polymorphism;
TD, top down; WHIM, Washington University Human-in-Mouse; psi,
pounds per square inch.
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different intrinsic biologies (17, 18). WHIM2 is derived from a basal-
like (ER-, PR�, Her2-) breast cancer whereas WHIM16 is derived from
a luminal B (ER�, PR�, Her2-) breast cancer (16, 17). To prepare the
samples, tumors were harvested from established xenografts,
pooled, and subjected to cryopulverization to create two different
homogeneous samples, P32 (WHIM2) and P33 (WHIM16). The pul-
verized tissue from each CompRef sample (263 mg WHIM16, P33)
and (257 mg WHIM2, P32) was solubilized in 1,200 �l or 1,100 �l lysis
buffer (4% sodium dodecyl sulfate, 100 mM Tris-HCl, pH 7.5) supple-
mented with 50 mM DTT, 10 mM sodium butyrate, and phosphatase
and protease inhibitors (Thermo, Rockford, IL). The samples were
then sonicated using a Covaris S220X focused ultrasonicator (Cova-
ris, Woburn, MA) set to peak incident power (PIP) � 100, duty factor
(DF) � 10, cycles/burst (CPB) � 500, duration � 60 s at 6 °C. The
protein concentrations determined using the Advanced Protein Assay
(Cytoskeleton, Denver, CO) were 12.7 mg/ml and 11.2 mg/ml for P32
and P33, respectively. Samples were frozen at �80 °C and shipped to
Northwestern University on dry ice.

GELFrEE separation was performed as previously described (23,
24). Briefly, 400 �g of protein were precipitated with cold acetone to
remove salts and suspended in 4% SDS solution prior to the addition
of GELFrEE loading buffer. Separation was achieved using a com-
mercial GELFREE 8100 fractionation system (Expedeon, Cambridge,
UK) with either 8 or 10% cartridges to isolate proteins in ~5 kDa bins
from 3.5 kDa to ~100 kDa (Supplemental Fig. S1). SDS was removed
using the method described by Wessel and Flügge (25), unless oth-
erwise noted. Tumor samples were centrally prepared at Northwest-
ern University, some of which were shipped back to Washington
University in St. Louis, MO for BU proteomic analyses.

Bottom-Up Proteomics—
Endoprotease Digestion of GELFrEE Fractions—The proteins in

GELFrEE fractions for Study 1 were precipitated using acetone. Pro-
tein pellets were dissolved in 20 �l of Tris buffer (100 mM, pH 8.5)
containing 8 M urea. GELFrEE fractions for Study 3 were received as
protein pellets and dissolved in 20 �l of Tris buffer (100 mM, pH 8.5)
containing 8 M urea. Horseradish peroxidase (1 �g) was added to
each digest for Study 1 and Study 3 samples as a digest standard.
The proteins were reduced using TCEP (5 mM) (Thermo) for 30 min,
and alkylated with iodoacetamide (40 mM) (Sigma) at room tempera-
ture in the dark for 30 min. The reaction was quenched with DTT (20
mM) (Sigma) for 15 min. The methods described by Zybailov et al. (26)
were followed with minor modifications. Specifically, the proteins
were digested for 4 h with endoprotease LysC (5 �g) (Sigma) on a
Thermomixer (750 rpm) at 37 °C. The digests were then diluted four-
fold with Tris buffer (100 mM, pH 8.5) and trypsin (5 �g) was added
with continued incubation overnight. Due to the different protein
concentrations of the individual GELFrEE fractions, the enzyme to
protein ratio for the LysC and trypsin digests ranged from 1:25–1:50
and 1:5–1:10, respectively. The digests were acidified to 5% formic
acid (Fluka) and filtered through a Microcon centrifugal filter (30K
molecular weight cutoff) (Millipore). The peptides were desalted in
parallel on Glygen Nutips containing C4 and graphitic carbon solid
phase on a Biomek NXP (Beckman Coulter), as previously described
(27). The eluted peptides were dried in a SpeedVac and dissolved in
water/acetonitrile/formic acid (98%/1%/1%) and transferred to au-
tosampler vials for storage at �80 °C prior to LC-MS analysis.

High-Performance Liquid Chromatography with High-Resolution
Tandem Mass Spectrometry—A NanoLC 2D Plus System with a
cHiPLC-Nanoflex and AS2 autosampler (ABSciex, Concord, ON) was
configured with two columns in parallel. One cHiPLC column
(ChromXP C18 (200 �m � 15 cm; particle size 3 �m, 120 Å) was used
to inject calibrant solution (�-galactosidase peptides (625 pmol/vial)),
and the other cHiPLC column was used for sample analysis. The
calibrant solution (500 fmol) was injected in solvent A (water/aceto-

nitrile/formic acid, 98%/1%/1%). The samples were loaded in a vol-
ume of 10 �l at a flow rate of 0.8 �l/min followed by gradient elution
of peptides at a flow rate of 800 nl/min. The calibrant solution was
eluted with the following gradient conditions with solvent B (water/
formic acid/acetonitrile, 1%/1%/98%):0, 2%; 3 min, 2%; 73 min,
50%; 83 min, 80%; 86 min, 80%; 87 min 2%; and 102 min, 2%. The
digests from the five fractions from 0–30 kDa (Study 3) were analyzed
under the following gradient conditions (time, percentage solvent B):
0, 2%; 5 min, 2%; 365 min, 35%; 400 min, 80%; 405 min, 2%; and
425 min, 2%. The digests from the 12 GELFrEE fractions (Study 1)
were analyzed under the following gradient conditions (time, percent-
age solvent B): 0, 2%; 5 min, 2%; 650 min, 35%; 695 min, 80%; 700
min, 2%; and 720 min, 2%.

Data acquisition was performed with a TripleTOF 5600� mass
spectrometer (AB SCIEX, Concord, ON) fitted with a PicoView Nano-
spray source (PV400) (New Objectives, Woburn, MA) and a 10 �m
Silica PicoTip emitter (New Objectives) for bottom-up proteomics.
Data were acquired using an ion spray voltage of 2.9 kV, curtain gas
of 20 psi, nebulizer gas of 25 psi, and an interface heater temperature
of 175 °C. The MS was operated with a resolution of greater than or
equal to 25,000 (fwhm) for TOF-MS scans. For data-dependent ac-
quisition, survey scans were acquired in 250 ms from which 100
product ion scans were selected for MS2 acquisition for a dwell time
of 20 ms. Precursor charge state selection was set at �2 to �5. The
survey scan threshold was set to 100 counts per second. The total
cycle time was fixed at 2.25 s. Four time bins were summed for each
scan at a pulser frequency value of 15.4 kHz through monitoring of the
40 GHz multichannel time to digital converter detector with four-
anode/channel detection. A rolling collision energy was applied to all
precursor ions for collision-induced dissociation as described in the
Analyst software.

The raw LC-MS data (*.wiff) were converted to *.mzML format
utilizing the AB SCIEX MS Data Converter v1.3 (AB SCIEX, Concord,
ON) within PEAKS STUDIO 7.0 (Bioinformatics Solutions Inc., Water-
loo, Canada) (28). The resulting files were used for database search-
ing by the PEAKS software using the following databases. Tumor-
specific protein sequence databases were created by starting with
RefSeq release 50 and adding variants detected in whole genome
sequencing of the xenografts and the corresponding germline. Alter-
native splice forms detected by RNA-seq of the tumors were also
added to the protein sequence database. The variant calling for the
whole genome sequencing data was done using GATK version 2.6,
and the RNA-seq data were analyzed using TopHat version 2.0.3. The
searches were conducted with trypsin cleavage specificity, allowing
three missed cleavages, oxidation of methionine and carbamidom-
ethylation of cysteine as variable and fixed modifications, respec-
tively. A parent ion tolerance of 25 ppm and a fragment ion tolerance
of 100 millimass units were used. The MS2-based peptide identifica-
tions were validated within PEAKS software using a modified target
decoy approach, decoy fusion, to estimate the false discovery rate
(FDR). A 1% FDR for peptide spectral matches was used as the
quality filter to identify peptides and an FDR of �0.1% for proteins
with at least two unique peptides. A spectral count of 3 within the
same LC/MS run was used as a quality threshold for peptides iden-
tified as resulting from SNPs or alternative splicing events. The bot-
tom-up data were quantified using spectrum counting. The spectral
counting was done using in-house developed scripts for label-free
quantitation.

Top-Down Proteomics—
LC/MS—For all studies, proteins were resuspended by pipetting

vigorously with 40 �l solvent A (95% water, 5% acetonitrile, 0.2%
formic acid) after SDS removal. Resuspended protein fractions (5 �l)
were injected onto a trap column (150 �m inner diameter � 3 cm)
using an autosampler (Thermo Dionex). For Study 1, a nanobore
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analytical column (75 �m inner diameter � 15 cm) was coupled to the
trap in a vented tee setup. Upstream of the column a 15 �m spray tip
from New Objective was connected. The trap and analytical column
were packed with polymeric reverse phase (PLRP-S, Phenomenex)
media (5 �m dp, 1,000 Å pore size). The Dionex Ultimate 3000 system
was operated at a flow rate of 2.5 �l/min for loading samples onto the
trap. Proteins were separated on the analytical column and eluted into
the mass spectrometer using a flow rate of 300 nl/min and the
following gradient: 5% B at 0 min.; 15% B at 5 min.; 55% B at 55 min.;
95% B from 58–61 min.; and 5% B from 64 to 80 min. Solvent A
consisted of 95% water, 5% acetonitrile and 0.2% formic acid, and
solvent B consisted of 5% water, 95% acetonitrile, and 0.2% formic
acid. In Studies 2 and 3, proteins were injected onto a PepSwift trap
column (200 �m inner diameter � 5 mm, Thermo Fisher) at 10 �l/min,
separated onto a monolithic ProSwift RP-4H analytical column (100
�m inner diameter � 50 cm) and eluted into the mass spectrometer
using a flow rate of 1 �l/min and the following gradient: 1% B at 0
min.; 55% B at 55 min.; 95% B from 58–61 min.; and 5% B from 64
to 80 min.

MS data were obtained on an Orbitrap Elite (Thermo) mass spec-
trometer fitted with a custom nanospray ionization source. Previous
studies (10, 29) have demonstrated that high-energy collisional dis-
sociation results in higher number of identifications than other frag-
mentation techniques, such as electron transfer dissociation and
thus, high-energy collisional dissociation was the fragmentation of
choice in the work described here. For proteins of molecular weight
�30 kDa, the MS method included the following events: (1) FT scan,
four microscans, m/z 500–2,000, 120,000 resolving power at m/z 400
and (2) data-dependent MS/MS on the top two peaks in each spec-
trum from scan event 1 using higher-energy collisional dissociation
with normalized collision energy of 25, isolation width 50 m/z, four
microscans, and detection of ions with resolving power of 60,000 (at
m/z 400). For proteins of molecular weight �30 kDa, the MS method
included the following events: (1) precursor scan, ion trap, 25 micros-
cans, m/z 500–2,000 and (2) data-dependent MS/MS on the top two
peaks in each spectrum from scan event 1 using high-energy colli-
sional dissociation with normalized collision energy of 25, isolation
width 200 m/z, four microscans, and detection of ions with resolving
power of 60,000 (at m/z 400).

Study 1: Qualitative BU-TD Comparison of CompRef Samples (Mul-
tiple Fractions up to 100kDa)—A 10% GELFrEE cartridge was used to
obtain 12 protein fractions ranging in molecular weight from 0 to 100
kDa for each tumor sample. After SDS removal, proteins were resus-
pended in solvent A and injected onto the PLRP-S LC setup de-
scribed above. Each fraction was analyzed in triplicate, resulting in a
total of 72 RAW files.

Data Analysis—ProSightPC PUF files were created using a custom
version of the cRAWler application. These neutral mass data were
searched against an eight-step search tree (Supplemental Fig. S2).
First, each target was searched with strict search criteria (mass
tolerance of 2.2 Da for precursor mass and 10 ppm for fragment
masses) against a mouse-specific database (UniProt Release 2014_
05) to remove proteins that were a good match to the murine xeno-
graft host. This implies that proteins with identical sequence in both
human and mouse will be filtered from further analysis. The filtered
proteins are listed in Supplemental Table 1 under the heading Search
0. Next, a WHIM-specific PTM-annotated database was created ac-
cording to the workflow in Supplemental Fig. S3. Any target failing to
be identified with the mouse search was then searched against this
database, first with a strict absolute mass search (i.e. mass tolerances
of 2.2 Da for precursor mass and 10 ppm for fragment masses),
followed by a strict biomarker search (i.e. mass tolerance of 10 ppm
for precursor and fragment masses). This step identified proteoforms
from the xenograft that were a good match to non-sample-specific

proteoforms. The remaining unidentified proteoforms were then
searched against sample-specific databases to identify proteoforms
that are uniquely associated with genetic events in each of the
WHIM2 and WHIM16 tumor samples. Lastly, still unidentified targets
were subjected to broad searches designed to identify previously
unknown proteoforms. Supplemental Table 1 lists the number of
targets identified at each of these steps.

Study 2: Label-Free Top-Down Quantitation (Single Fraction up to
30 kDa)—An 8% GELFrEE cartridge was used to obtain a single
fraction containing proteins of MW from 0 to 30 kDa. After SDS
removal, proteins were resuspended in solvent A and injected onto
the RP-4H LC setup described above. The GELFrEE was performed
three times for each CompRef sample and the resulting protein frac-
tions were analyzed in six LC/MS replicates for a total of 18 RAW files
per sample. Neutral mass data were created and searched as de-
scribed in Study 1 above, and quantitative results generated by the
same analysis of variance (ANOVA) analysis described in Study 3
below.

Study 3: Quantitative BU-TD Comparison of CompRef Samples
(Multiple Fractions up to 30 kDa)—A 10% GELFrEE cartridge was
used to obtain five protein fractions ranging in molecular weight from
0 to 30 kDa for each sample. After SDS removal, proteins were
resuspended in solvent A and injected onto the RP-4H LC setup
described above. The GELFrEE was performed three times for each
CompRef sample and the resulting protein fractions were analyzed in
five LC/MS replicates, for a total of 150 RAW files. The research
design is illustrated in Supplemental Fig. S4.

Data Analysis—The RAW files (150) generated for this study were
analyzed in two steps: quantitation and proteoform identification. To
identify proteoforms, for each MS1-based mass group, neutral
masses were determined from all 150 RAW files, and ProSightPC PUF
files were created using a custom version of the cRAWler application.
These neutral mass data were searched as described above for Study
1. In the quantitation step, neutral masses were inferred from all files,
and then only those with identifications from tandem MS were
grouped based on accurate MS1 mass and retention time. Next, the
intensity from the mass groups, for each proteoform, were standard-
ized within each fraction. Specifically, the average intensity for all
measurements of a given proteoform was subtracted from each
measurement, and the resulting difference was divided by the stand-
ard deviation of all measurements of that proteoform. Subtracting the
mean centers the proteoform intensity data on zero, and the division
rescales the data into units of standard deviations. The standardized
values were then subjected to a hierarchical linear model-based
ANOVA, with Benjamini and Hochberg FDR correction at � � 0.05, to
find proteoforms that were differentially expressed between WHIM2
and WHIM16.

TD and BU Comparisons—TD measures intact proteoforms, while
BU measures tryptic peptides derived from sets of proteoforms shar-
ing amino acid sequences. In order to consistently compare these
two techniques, we chose to call sets of peptides from BU that map
to a single RefSeq identification (ID) number as detecting a “protein.”
Likewise, TD frequently identified more than one proteoform associ-
ated with a single RefSeq ID. Therefore, the number of proteoforms
reported from each study is greater than the number of proteins
identified by TD; if five proteoforms associated with a single RefSeq
identifier were discovered with TD, this was reported as one protein
and five proteoforms. In this study, unlike TD, BU analysis of Com-
pRef sets allowed comprehensive identification of protein groups
without any MW restriction. All of the primary mass spectrometry data
are deposited at the CPTAC Data Coordinating Center as raw files for
public access (https://cptac-data-portal.georgetown.edu).
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RESULTS

We set out to compare the ability of TD and BU to (1)
identify the genes from which protein products were derived;
(2) characterize proteoforms, including any PTMs, SNPs, and
novel splice junctions; and (3) detect differential expression of
proteins and proteoforms between a basal-like (WHIM2) and a
luminal B (WHIM16) breast tumor xenograft sample. The three
studies employed are described in Table I. The workflow for
all three studies included GELFrEE separation prior to LC/MS
and data analysis as illustrated in Fig. 1. It was expected that
TD would identify fewer molecular entities but that these
would be characterized proteoforms, while BU would identify
a greater number of proteins but do so with lower sequence
coverage.

Protein Identifications—Studies 1 and 3 offered head-to-
head comparisons of TD and BU. Using GELFrEE to separate
the proteome into molecular weight bins, we obtained infor-
mation about proteins present with molecular weights ranging
from 0–100 kDa and 0–30 kDa in Studies 1 and 3, respec-
tively. The number of protein and proteoform identifications is
enumerated in Table I and a detailed list is included in Sup-
plemental Tables 1 and 2, for TD and BU, respectively. In all
TD analyses, any proteoform that was consistent with mouse,
even when having sequence homology with human, as in the
case of histones, was removed from the counts. In both
studies, BU resulted in a greater number of protein identifica-
tions than TD, as anticipated. Despite significant improve-
ments for top-down proteomics in discovery mode (9), BU
outperforms TD in the �40 kDa range.

Identification of Sequence Variants and Alternative Se-
quences Unique to the WHIM Tumor Samples—Whole ge-
nome and RNA sequencing of the WHIM2 and WHIM16 PDX
models, as well as the corresponding primary tumor sample
(16, 17) provide an excellent foundation for evaluating the
proteomic technology capacity for detecting sample or
“WHIM-specific” coding SNPs and alternate splice variants
that may give rise to unique proteoforms. The BU datasets

included the detection of 188 peptides containing sample-
specific SNPs and 27 peptides crossing the junction of sam-
ple-specific novel splice junctions for each WHIM sample. In
comparison, analysis of the TD datasets allowed the detection
of 10 proteins containing WHIM-specific SNPs as shown in
Table II. A single proteoform resulting from a WHIM-specific
novel splice junction was also detected in both WHIM2 and
WHIM16 samples, and its sequence coverage by TD appears
in Supplemental Fig. S5. Since proteoforms containing se-
quences differing by one amino acid, for example, a reference
protein sequence and a protein containing a cSNP, will likely
coelute, TD was expected to be well suited for detecting
allelic expression ratios. Indeed, as demonstrated in Fig. 2,
gamma-synuclein (RefSeq:NP_003078, UniProt:O76070) and
ribosomal protein L35 (RefSeq:NP_009140, UniProt:P42766)
displayed that protein products from heterozygous alleles are
being expressed at a roughly 1:1 ratio. In both cases, TD
detected both protein forms and gave relative quantitative
information about the abundance of the protein products
resulting from the expression of the two different allelles. BU
could provide that information only for gamma-synuclein,
while in the case of ribosomal protein L35, peptides contain-
ing the site of the coding SNP were not detected.

Label-Free Top-Down Quantitative Analysis—Recently, a
workflow for label-free top-down quantitation in discovery
mode was described (11). Study 2 was designed to demon-
strate the efficacy of this new method on the CompRef sam-
ples. In this scenario, a 2�3�6 study design (i.e. two states,
three GELFrEE replicates, and six LC/MS injection technical
replicates) was established for the comparative proteome
analysis of WHIM2 and WHIM16. Proteins ranging from 0–30
kDa were isolated using GELFrEE followed by LC-MS/MS as
described above. Next, a hierarchical linear model was ap-
plied to quantify intact proteoforms within the samples. A
volcano plot (Fig. 3A) was generated, in which each proteo-
form was represented as a function of estimated effect size (in
log2 fold-change) and the statistical confidence (FDR) that

TABLE I
Summary of experiments comparing the performance of TD and BU proteomics to detect and quantify cancer specific aberrations

Study Description Bottom-up Top-down

1 Qualitative comparison of WHIM2 and
WHIM16 (BU/TD) protein MW range
0–100 kDaa

10,453 proteinsb (82,156 peptides)
197 SNPs/11 NSJsd

2,006 proteoforms (370 proteinsc)
5 SNPs/0 NSJs

2 Label-free TD quantitation of WHIM2
vs WHIM16 protein MW range 0–30
kDaa

N/Pe 1,334 proteoforms (218 proteinsc)
3 SNPs/1 NSJs

3 Quantitative comparison of WHIM2
and WHIM16 protein MW range
0–30 kDaa

3,367 proteinsb (49,185 peptides)
41 SNPs / 11 NSJsd

3,125 proteoforms (438 proteinsc)
7 SNPs/1 NSJs

a Proteins were fractionated using GELFrEE. Representative fractionations for each study are illustrated in Supplemental Fig. S1.
b The term proteins corresponds to protein groups as defined by Peak Studio, ver. 7.
c the term proteins corresponds to a single RefSeq identifier.
d Identification required a spectrum count of 3 within a single LC/MS run.
e not performed.
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there was a difference in the normalized intensities between
the two samples. Of the 5,975 quantitation mass targets
detected in total, 1,031 of them were above the 5% FDR value
comparing the WHIM2 and WHIM16 samples. Of all the quan-
titation mass targets, 538 were unambiguously identified us-
ing MS/MS information obtained during LC-MS. Among the
differentially expressed proteoforms is the canonical isoform
of gamma-synuclein (Fig. 2A), a protein known to be ex-
pressed in late-stage breast tumors (30). A list of all differen-
tially expressed proteoforms from this study appears in Sup-
plemental Table 3.

Comparison of TD and BU Label-Free Quantitation—In
Study 3, the ability of TD and BU to quantify proteoform
differential expression was evaluated. As described above,
TD label-free quantitation is limited to the low MW proteome
(�30 kDa). Briefly, GELFrEE separation of 0–30 kDa proteins
into five discrete fractions was performed and fractions were
run by both BU and TD methods. As such a direct comparison

had not been achieved before, it is the trends and not the
depth of proteome coverage that were of interest in the study,
a design for which is shown in Supplemental Fig. S4. Volcano
plots are shown (Figs. 3B and 3C) for the TD and BU results,
respectively. Notice that the TD results have much greater
spread in the fold change estimates but also that many pro-
teoforms have much higher confidence in their differential
expression, as represented by the correspondingly smaller
instantaneous q values (the Y axis). This effect comes from
proteoforms spanning multiple GELFrEE fractions and treat-
ing each fraction as a separate measure of the proteoforms’
differential expression. For BU, 777,850 total spectra from 30
LC-MS/MS runs provided 49,185 uniquely identified peptides
and a missing value percentage of 78.50%. For TD, a total of
4,950 quantitation mass targets were associated with proteo-
forms, with 67,434 MS1 observations used for quantification;
54.6% of the theoretically possible MS1 observations were
missing. Since many proteoforms were found to elute across

FIG. 1. Workflow for the qualitative and quantitative analysis of CompRef tumor xenografts by bottom-up and top-down.

TABLE II
Coding polymorphisms (cSNPs) detected and genotyped by TD proteomics

RefSeq Uniprot accession Protein description cSNP WHIM2 WHIM16

NP_000995 P05387 60S acidic RP P2 S64I S64 and I64 S64
NP_001093162 Q6IS14 eIF-5A1-like V137L V137 V137 and L137
NP_001120865 P56378 6.8kDa mitochondrial proteolipid I26V I26 and V26 I26
NP_003078 O76070 �-synuclein E110V E110 E110 and V110
NP_003854 O94777 DPM synthase subunit 2 T76S N/Da S76
NP_005013 P07737 Profilin-1 N10S N10 N10 and S10
NP_006734 P98179 Putative RNA-binding protein 3 Y117D Y117 Y117 and

D117
NP_009140 P42766 RP L35 N101H N101 N101 and

H101
NP_037519 Q9UDW1 Cytochrome b-c1 complex subunit 9 I47V I47 and V47 I47
NP_543011 Q96KR6 Protein FAM210B P126S P126 and S126 P126

a not detected.
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multiple GELFrEE fractions, only those mass groups that had
been associated with proteoforms were quantified. The MS1
intensity values were standardized within fractions prior to the
ANOVA.

When comparing the two proteomic techniques, it must be
remembered that TD and BU proteomics measure different
molecular entities. In comparing the differential results of the
two techniques, there are a fixed number of distinct logical
outcomes for a given protein. Both techniques can agree and
show the identified protein to be either differentially expressed
(DE) or not; the two techniques can disagree with one show-
ing DE while the other does not, or one of the two techniques
could have failed to observe the protein. All of these cases
and the corresponding counts of proteins and proteoforms
are shown in Table III. Notice first that there are 3,109 protein
groups detected by BU that were not detected by TD, while
only 64 proteins were uniquely detected by TD. This reflects
the well-known advantage of BU in identifying large numbers
of proteins present in a mixture. Nevertheless, TD provides a
complementary look of the tumor proteome.

Of those proteins detected by both methods and mapping
to the same RefSeq identifiers, the TD and BU quantitation
agreed that there was differential expression at 60% of the
time at the protein level. BU can only quantify what is hap-
pening on average to all proteoforms of a given protein due to
prior proteolysis and not the individual proteoforms them-
selves. However, it is often the relative abundance of proteo-
forms harboring PTMs that changes and not the absolute
abundance of the protein group. With regard to DE concord-
ance, we found that many of the measurements agreed be-
tween the two methods. Disagreements in DE often arise from
changes in PTM stoichiometry, creating dynamic behavior in
TD proteomics, which is often obscured through peptide–
protein inference in BU proteomics. Furthermore, the esti-

mates of fold change between the two techniques agreed
somewhat for those proteins and proteoforms where both
methods agreed on differential expression (R-squared of 0.39,
r � 0.62), as seen in Fig. 3D.

DISCUSSION

Across all three studies comparing the WHIM samples, it is
clear that BU proteomics is able to identify more proteins than
TD. However, TD proteomics identifies and characterizes dif-
ferent entities than BU, namely intact proteoforms (i.e. the
different molecular forms of a protein arising from a single
gene). The number of proteoforms per RefSeq identification
as discovered by TD varies significantly and the level of var-
iation can be seen in Supplemental Fig. S6. Of note, only 21%
of proteoforms are the sole representative of a RefSeq ID, and
52% of RefSeq IDs are seen by only one proteoform. The
ability to detect and quantify proteoforms makes TD more
sensitive at determining changes in PTMs and variant expres-
sion within complex samples that may be crucial in biological
processes responsible for signal transduction.

One clear example of these differences comes from alpha-
endosulfine (RefSeq: NP_996929, UniProt:O43768) from
Study 3, as shown in Fig. 4. It is known that phosphorylation
of this protein affects its secondary structure and its corre-
sponding protein–protein interactions (31). Both techniques
found a greater abundance of the unmodified protein in
WHIM2 (Figs. 4A and 4C). However, TD discovered a signifi-
cant difference in phosphorylation stoichiometry that accom-
panied the abundance change and detected a diphosphory-
lated proteoform that was only present in WHIM16. Both
methods had strong supporting evidence (Fig. 4B); TD confi-
dently detected Isoform 1 of this protein with 121 observa-
tions of the unmodified form, and 48 observations on the
diphosphorylated form, and BU detected the protein with five

FIG. 2. Protein identifications in WHIM2 and WHIM16. (A) TD spectrum of gamma-synuclein displaying the distinctive pattern of a
heterozygote genotype at this locus, and sequence of gamma-synuclein including fragment ions (flags) detected by TD and peptide sequences
(underlined) detected by BU. The highlighted N-terminal amino acid indicates an N-terminal acetylation. The cSNP E110V is circled. Both
technologies provided evidence of the cSNP. (B) TD spectrum of ribosomal protein L35 displaying the distinctive pattern of a heterozygote
genotype at this locus, and sequence of ribosomal protein L35 including fragment ions (flags) detected by TD and peptide sequences
(underlined) detected by BU. The cSNP N101H is circled. Only TD provided evidence of the cSNP.
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matched peptides covering 39.2% of the sequence and with
302 spectral counts. Although the BU analysis detected a
peptide spanning one of the two phosphorylation sites, the
analysis did not detect the phosphorylated peptide. As seen
from Fig. 4D, the level of phosphorylation in WHIM16 is higher
than in WHIM2, with both mono- and di- phosphorylated
forms at higher relative abundance than in WHIM2, yet the
unmodified form is higher in WHIM2. Despite the excellent
sequence coverage by BU, it was not possible to capture this
level of dynamism in PTM levels. Phosphopeptide enrichment

prior to BU may have resulted in the detection of these phos-
phorylations, as shown in the analysis of similar xenografts
(22). However, BU could not possibly report on the exact
proteoform present, as co-occurrence information of PTMs is
lost during proteolysis.

Now consider an example from those proteins that TD
detected as differentially expressed but were not classified as
such by the BU analysis. Figure 5A shows the results for
D-dopachrome decarboxylase (RefSeq: NP_001346, UniProt:
P30046), a protein in this class. Based on 24 MS1 observa-

FIG. 3. Summary of quantitative results from Study 3. (A) Volcano plot obtained using label-free TD quantitative analysis from comparison
of 0–30kDa proteins in WHIM2 and WHIM16 (Study 2), (B) Volcano plot obtained using label-free TD quantitative analysis from comparison of
0–30kDa proteins in WHIM2 and WHIM16 (Study 3), (C) Volcano plot obtained using label-free BU quantitative analysis from comparison of
0–30kDa proteins in WHIM2 and WHIM16 (Study 3), (D) Correlation of BU and TD fold change estimates for significantly different entities.

TABLE III
Overall quantitative results for Study 3 reveal a prevalence of concordant examples where proteoform-level changes differ substantially from that

determined by BU

Differentially expressed by TD Not differentially expressed by TD Not detected by TD

Differentially expressed by BU 12 proteins 14 proteins 314 proteins
27 proteoforms 18 proteoforms N/A

Not differentially expressed by BU 152 proteins 232 proteins 2,795 proteins
233 proteoforms 584 proteoforms N/A

Not detected by BU 0 proteins 64 proteins
0 proteoforms 99 proteoforms

Top number are the RefSeq IDs detected in each cell, while the bottom number are the number of proteoforms detected.
TD often has more than one proteoform per RefSeq ID, and so the same ID may be in two or more boxes (as some proteoforms are

differentially expressed, and others are not).
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tions and a strong characterization, TD data (Fig. 5E) showed
this protein to be DE with an estimated fold change of over
36x more abundant in WHIM16 than WHIM2 (instantaneous
q � 0.00001). The BU analysis had 91.5% sequence coverage
from 18 different peptides and 786 spectral observations. The
t test used to detect differential expression of the protein had
a p value of .0086, but the critical value to maintain the 1%
FDR for this test was .0019, thus, the protein was not con-
sidered DE by BU. Figure 5B shows the BU results for andro-
gen-induced gene 1 (RefSeq: NP_057192, UniProt: Q9NVV5),
a protein not detected by TD. The t test for this protein had a
p score five ranks better than D-dopachrome decarboxylase,
but it was identified by only five peptides, four of which were
only seen once, and the other peptide had at most only three
spectra in a single file. The effect of these marginal identifi-
cations is that they lengthen the list of identifications and
force stronger identifications such as D-dopachrome decar-
boxylase to meet more stringent criteria in the DE analysis.
This is an inherent tradeoff in quantitative omics studies.
Less-stringent criteria can be used to accept more identifica-
tions, but in doing so, entities with less support are passed
forward to the DE analysis. These less-well-supported enti-

ties, in this case BU protein IDs, increase the difference in
treatment means needed for all entities detected to pass the
multiple testing correction.

Decisions made in the data analysis pipeline can have a
drastic effect on the sensitivity of either technique. Differ-
ences in the statistical criteria used in the DE analysis can
cause a protein to be identified by BU as DE but not so by TD.
An example is illustrated in the case of cytochrome b-c1
complex subunit 8 (RefSeq: NP_055217, UniProt: O14949)
(Fig. 5C). The classification of DE hinges on the assumption of
uniform variances in the log-transformed spectral counts. For
the BU analysis, we assumed the log-transformed spectral
counts between the WHIM2 and WHIM16 GELFrEE replicates
had equal variance, and thus the corresponding increase in p
value of the t test was sufficient to move this result onto the
DE list for the BU study; if that assumption is relaxed, then the
results are not sufficiently great for this protein to be consid-
ered DE, and the protein would be in agreement with the
hierarchical linear model used for the TD analysis as not DE.

In some cases, the two methods can simply disagree as
shown in the case of protein phosphatase 1 regulatory sub-
unit 1B (RefSeq: NP_115568, UniProt: Q9UD71) (Fig. 5D). BU

FIG. 4. Differential expression of alpha-endosulfine. (A) Bottom-up heatmap illustrating number of alpha-endosulfine peptides identified
in each replicate. Each row represents a separate peptide reporting uniquely on alpha-endosulfine, while columns in the map represent
separate LC-MS/MS runs. Red represents one spectral count in the run, yellow two, light green three, and dark green four or more spectral
counts. (B) Sequence of alpha-endosulfine including fragment ions (flags) detected by TD and peptide sequences (underlined) detected by BU.
Two phosphorylation sites detected by TD are circled. The highlighted N-terminal amino acid indicates an N-terminal acetylation. (C) Boxplots
illustrating abundance differences of alpha-endosulfine in WHIM2 (blue) and WHIM16 (orange) samples. The box in the boxplots show the
median, first and third quartiles of all MS1 intensities detected for the protein. The bars show the range of the observed data. (D) Mass spectrum
of alpha-endosulfine showing phosphorylation pattern changes of alpha-endosulfine in the two WHIM samples.
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found 10 peptides each with one to three spectral counts in
those LC runs that detected them in WHIM2, while no spectra
were detected in WHIM16, leading to the conclusion that the
protein is present in WHIM2 and absent in WHIM16. Mean-
while, TD had 33 observations, 12 from WHIM16 where they
showed no difference in mean intensity (Fig. 5G). This case
highlights the inferential problems that can arise from data-
sets containing many missing values. The BU dataset has
78.5% missing values. Therefore, when the WHIM2 data are
near the detection threshold, i.e. no single file spotted any
supporting peptide more than three times, the total absence
of spectral counts from the WHIM16 LC-MS/MS runs is not
necessarily compelling evidence of the protein not being ex-

pressed. In TD, it is easy to determine if the intensity of a
proteoform is near the detection limit by looking at the signal-
to-noise ratio of the intact measurement.

The difference in the ability of the two techniques to charac-
terize major changes to proteins is highlighted by the response
to cytoskeletal keratins. Keratin, in general, is an intermediate
filament protein and one of the most common contaminants of
proteomic studies. Like other intermediate filament proteins,
keratins come in two complementary types, Type 1 and Type 2,
and form polymeric complexes that shape both intracellular and
extracellular structures (32). Type 2 intermediate filament pro-
teins are known to have unique head and tail regions that
differentiate their cellular function, while retaining the highly

FIG. 5. Discordant examples of differential expression profiles as measured by BU and TD. Panels A–D show heatmaps generated from
BU spectral count data, while panels E–G contain corresponding boxplots from TD MS1 intensity data. Each row of the BU heatmaps
represents a separate peptide reporting uniquely on the corresponding protein, while columns in the map represent separate LC-MS/MS runs.
Red represents one spectral count in the run, yellow two, light green three, and dark green four or more spectral counts. The box in the boxplots
show the median, first, and third quartiles of all MS1 intensities detected for the protein. The bars show the range of the observed data. Panels
5 A and E represent D-dopachrome decarboxylase (NP_001346) BU and TD , respectively; C and F represent cytochrome b-c1 complex subunit
8 (NP_055217), while D and G represent protein phosphatase 1 regulatory subunit 1B (NP_115568). Panel B shows BU data for androgen-
induced gene 1 (NP_057192).
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conserved central region responsible for forming the filamen-
tous dimers (33). Forming the primary component of human hair
and skin and containing a large and highly conserved middle
rod section, keratins are frequently dismissed in MS-based
proteomics as contaminants from sample preparation.

Type 2 cytoskeletal keratin 8 (K2C8, RefSeq: NP_002264,
UniProt: P05787), however, is a cytoplasmic keratin used as a
variable diagnostic tool in differentiating lobular and ductal
breast cancers (34). Ductal carcinomas tend to stain diffusely
positive for K2C8 markers (35), while lobular do not. In Study
3, the BU experiment found 98 peptides spanning nearly the
entire length of K2C8 with 88.2% sequence coverage. The BU
analysis found a strong increase of K2C8 in WHIM16 (1,727
versus 639 spectral counts; instantaneous q � 3.5 � 10�5;
2.7x fold increase in WHIM16). Unfortunately, because of the
conserved nature of keratins, these results are easily dis-
missed as contamination. Panel A of Supplemental Fig. S7
shows that much of the BU data come from peptides unique
to K2C8, and it is easy to see both its increase in WHIM 16
and a fairly uniform distribution of peptides across all three
regions of the protein (head, rod, and tail).

By virtue of the “biomarker” search strategy (effectively a
“no-enzyme” type search for TD data; see experimental sec-
tion), the TD study found 17 proteoforms derived from K2C8,
all of which were proteolytic fragments from the unique head
or tail regions (see Supplemental Fig. S7). Eight out of 17 of
the proteoforms were significantly increased in WHIM16
(ranging from 2–18-fold), the luminal-B cancer subtype. Two
of the DE proteoforms from the N-terminal variable region
contain phosphorylation, and one also contains a 3-hydroxy-
L-proline. These proteoforms cannot be explained as hair or
skin contamination as they represent unique sequences found
only in the cytoplasmic keratin. Furthermore, all of the pro-
teoforms from the head region end either one or two amino
acids from S74, which is known to play an important role in
keratin filament reorganization (35). These observations are
consistent with increased proteolytic release of the head and
tail domains of K2C8 in luminal versus basal PDX models.
While cytokeratins and intermediate filaments have been
identified as possible probes of breast cancer subtypes pre-
viously (33), these are the first such observations of head/tail
proteolytic events only made possible via detection of intact
proteoforms instead of tryptic peptides.

Summary and Future Directions—While BU and TD gener-
ally display complementary sensitivities, the trends found
within the data here provide a first tranche of specific obser-
vations. For example, BU identified 7.4 times as many pro-
teins as TD, and 6.3 times as many proteins were found to be
differentially expressed. TD proved sensitive for detecting
proteoform-level differences below 30 kDa, such as the mul-
tiple phosphorylation forms of alpha-endosulfine, relative ex-
pression of heterozygous alleles like in gamma-synuclein or
ribosomal protein L35, and domain-specific regions of keratin.
BU discovered 10 times as many cancer–events but was not

able to accurately predict which of these events were DE.
While precise mapping of BU and TD data is complicated
because they measure fundamentally different things, an early
estimate of the proteoform-level dynamics not captured by
BU can be made: For small, abundant proteins, changes in
primary structure not captured by BU occur in about 40% of
cases. Future quantitative TD studies will benefit from the
analysis of larger proteins (30–60 kDa) as many proteins fall
within that MW range. Given this study (and others), it is clear
that there are significant benefits from the integration of BU
and TD proteomics analyses, as a strong complementarity
exists between peptide- and proteoform-level measurements.
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