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INTRODUCTION

Sirtuins are a family of nicotinamide adenine dinucleotide (NAD+) dependent Class III histone
deacetylases. There are seven mammalian sirtuins (SIRT1-7) which differ from each other due to
their varying cellular localizations, enzymatic activities, and carboxy- and amino-terminal protein
sequences that act as targets for post-translational modification (1). Each contains a catalytic core
domain consisting of about 275 amino acids. SIRT1, SIRT2, SIRT3, and SIRT5 facilitate NAD+

dependent deacetylation of ε-amino-acetylated lysine residues, whereas SIRT4 and SIRT6 aid in
the ADP-ribosylation of protein substrates mediated by an NAD+ donor (2). SIRT7 facilitates
NAD+-dependent histone desuccinylation. SIRT1, SIRT6, and SIRT7 are localized in the nucleus,
whereas SIRT2 is generally cytoplasmic. However, SIRT1 and SIRT2 can also shuttle between
nucleus and cytoplasm depending on tissue and cell types. SIRT3, SIRT4, and SIRT5 are located
in the mitochondria. Previous research suggests the involvement of sirtuins in cellular homeostasis
through the regulation of oxidative stress, inflammation, metabolism, longevity, and senescence
via post-translational modification of both histone and non-histone proteins (2, 3). The sirtuins’
dependence on NAD+ for deacetylation suggests that they may play a role as a rheostat of cellular
energy (3). Sirtuins have garnered increased attention due to their potential role in life-span
extension, neuro- and age-related disorders, obesity, heart disease, inflammation, and cancer (1–3).
The role of sirtuins is complex in cancer and widely debated with suggested functions both as
tumor-suppressor as well as tumor-promoter, depending on the tissue type (4). Therefore, further
studies are required to investigate the key condition responsible in the regulation of sirtuins. This
will help to avoid any unwanted effects of modulation of sirtuins where a specific sirtuin modulator
can be used against one cancer without fostering other cancer types.

According to a recent statistic, ∼100,350 adults will be diagnosed with melanoma in the
United States this year (5). Melanoma incidence has risen dramatically over the past three decades
and is responsible for 80% of the deaths among skin cancer (5). Therefore, further research is
required to define new molecular targets and treatment strategies for this neoplasm. Research on
sirtuins as novel targets for anti-cancer drug development has gained increasing momentum in
recent years. However, limited information is available regarding the role of sirtuins in melanoma.
Recent studies from our laboratory together with other publications suggest the pro-proliferative
roles of SIRT1 and SIRT3 in melanoma (6–12). SIRT2 has been found at higher levels in tissues
from lymph node metastases compared to primary melanomas (13) and contributes to melanomas
resistance against multikinase inhibitor Dasatinib (14). Contrarily, SIRT2 loss has also been shown
to confer resistance to BRAF and MEK inhibitors in BRAF mutant melanoma (15). The role of
SIRT4 and SIRT7 in melanoma have not been explored. SIRT5 has been shown to be dispensable
for BRAFV600E-mediated melanoma development and also does not affect sensitivity to a selective
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BRAF inhibitor (16). Similar to SIRT1 and SIRT3, SIRT6 has
been shown to possess a pro-proliferative role in melanoma (17–
19). Arguably, the role and functional relevance of sirtuins in
melanoma development and progression suggest that inhibition
of specific sirtuin(s) may ultimately lead to novel strategies for
melanoma management. In a recent study, we have shown that
dual inhibitor of SIRT1 and SIRT3 by 4′-bromo-resveratrol (20)
had significant anti-proliferative effects against melanoma cells
(21). Thus, it appears that inhibition of multiple specific sirtuins
could be useful against melanoma. Below, we have discussed our
studies and available literature to support our opinion.

THE SIRTUINS SIRT1 AND SIRT3, AND
THEIR DOWNSTREAM TARGETS IN
MELANOMA

Based on available data from our laboratory and elsewhere,
both SIRT1 and SIRT3 appear to play important roles in
melanoma progression.

SIRT1 deacetylates histone and several other non-histone
proteins that contribute to cellular regulation. SIRT1 also
functions as a regulator of metabolism and cellular stress
response (22). Recent studies implicate the involvement of SIRT1
in tumor initiation, progression, and drug resistance by blocking
senescence and apoptosis, as well as promotion of cell growth and
angiogenesis (23). SIRT1 inhibitors have been shown to display

FIGURE 1 | SIRT1 and SIRT3 in melanoma. (A) Relevant inhibitors of SIRT1 and SIRT3 (B) SIRT1 associated mechanisms in melanoma, (C) SIRT3 associated

mechanisms in melanoma, (D) Mechanisms of dual inhibition of SIRT1 and SIRT3-mediated responses in melanoma.

promising antitumor effects in animal models (24). In early 2014,
three separate studies, including one from our lab, demonstrated
the pro-proliferative role of SIRT1 in melanoma (6, 8, 9). It was
shown that SIRT1 is overexpressed in human melanoma tissues
and cell lines (6). Treatment ofmelanoma cell lines with Tenovin-
1, a SIRT1 inhibitor, resulted in decreased melanoma cell growth
mediated by an increase in the tumor-suppressor P53 as well as
the cyclin kinase inhibitor P21 (6). Interestingly, P53 was the first
non-histone target discovered for SIRT1 and was later shown
to be an important downstream target of this sirtuin. P53 is
generally found to be silenced by missense mutations associated
with tumor growth. However, it is genetically not mutated
in a wide range of melanoma, yet uncontrolled proliferation
remains (25), suggesting that either P53 or its downstream
targets are dysfunctional without mutation in melanoma. In a
separate study, we demonstrated the interactions of P53 with
several proteins in Tenovin-1 mediated SIRT1 inhibition related
proteome network (10), further suggesting that P53 or P53-
associated pathways are potential targets or effectors of SIRT1
in melanoma. We also found that SIRT1 inhibition modulated
several other targets, including a decrease of BUB family-
mitotic checkpoint regulators (10). We validated our findings
using additional SIRT1 inhibitors, viz. Sirtinol and Ex-527,
and found similar anti-proliferative effects against melanoma
cells (12). However, these SIRT1 inhibitors are known to
inhibit other sirtuins, as well, albeit at higher concentrations
(Figure 1A), suggesting the potential of concomitantly inhibiting
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multiple sirtuins for effective melanoma management. Further,
the tumor-promoting phosphoinositide 3-kinase/insulin-growth
factor 1 receptor (PI3K/IGF-1R) signaling cascade is implicated
in regulating SIRT1 stability in the cytoplasm (26). Interestingly,
in ∼65% of the melanoma tissues we tested, SIRT1 was
unexpectedly found in the cytoplasm instead of the nucleus (6).
PI3K has also been found to aid in the formation of growth-
factor-stimulated membrane extensions called lamellipodia (8).
Kunimoto et al. found that nicotinamide, a sirtuin inhibitor,
decreased lamellipodium extension in melanoma by blocking
the phosphatidylinositol-3,4,5-triphosphate (PIP3) by PI3K at
the cell membrane and reducing the accumulation of p-AKT
in response to serum or platelet-derived growth factor (PDGF)
treatment (8). Further, a downstream target of PI3K, melanocyte
inducing transcription factor (MITF), has been found to regulate
SIRT1 levels in melanoma cells (9). In the same study, SIRT1
inhibition was shown to induce a senescence-like phenotype and
G0/G1 cell cycle arrest, which were associated with an increase in
the level of P53 as well as cell cycle inhibitors P27 and P15 (9).
Additionally, Sun et al. found that SIRT1 promotes melanocyte
proliferation and metastasis by inducing epithelial-mesenchymal
transition (EMT) by autophagic degradation of epithelial marker
E-cadherin through deacetylation of Beclin 1 (27). Furthermore,
SIRT1 inhibition decreased mesenchymal markers Vimentin
and N-cadherin, while E-cadherin was increased (27). The
aforementioned studies suggest that targeting SIRT1 might be
crucial to the regulation of several key targets involved in
melanoma progression (Figure 1B).

Similarly, the mitochondrial sirtuin SIRT3 also appears to
be involved in melanoma progression. Based on numerous
studies, SIRT3 has emerged as a metabolic regulator, and its
potential role in cancer is being intensively investigated (1,
3, 28). SIRT3 is known to affect most of the mitochondrial
dynamics, including nutrient oxidation, generation of ATP, and
detoxification of reactive oxygen species (ROS) (29). SIRT3 also
plays a key role in the regulation of several cellular processes,
including transcription, insulin secretion, and programmed
cell death (30). The ability of SIRT3 to regulate numerous
cellular processes that are critical in cancer cell proliferation
suggests it as a valid therapeutic target in the management
of cancers, including cutaneous neoplasm (28, 31). A study
from our laboratory demonstrated that SIRT3 is overexpressed
in human melanoma tissues and cell lines. Further, lentiviral
mediated short hairpin RNA (shRNA) knockdown of SIRT3 in
melanoma cells was found to decrease cell proliferation, colony
formation, and cell migration (7). SIRT3 knocked down also
resulted in enhanced senescence marked by increased beta-
galactosidase, formation of associated heterochromatin foci,
senescence-associatedmarkers P16 and P21, and a decrease of D1
and E1 cyclins and cyclin-dependent kinases (7). Further, SIRT3
knocked down in SK-MEL-2 melanoma cells, when implanted in
nude mice, resulted in a significant decrease in tumorigenicity
(7). Like SIRT1, SIRT3 has also been shown to deacetylate P53
(32). In a recent study, mutant P53 was found to stimulate
the expression and activity of antioxidant MnSOD by SIRT3-
mediated deacetylation, which moderates ROS production to
promote cell proliferation and survival of melanoma cells (11).

Importantly, mutant P53 is known to affect various oncogenic
functions, further contributing to cancer progression (33). A
schematic representation of SIRT3 associated mechanisms in
melanoma is illustrated in Figure 1C.

DUAL INHIBITION OF SIRT1 AND SIRT3 IN
MELANOMA

In a recent study, we determined the effect of 4′-bromo-
resveratrol (4′-BR), a dual inhibitor of SIRT1 and SIRT3
(20), in human melanoma cells (21). Chemically, 5-(2-(4-
hydroxyphenyl)vinyl)-1,3-benzenediol, 4′-BR is derived from the
grape antioxidant resveratrol, which is already being investigated
for cancer management in several preclinical and clinical studies
(34). Resveratrol is known to activate SIRT1 and inhibit SIRT3
(20, 35). However, 4′-BR differs from resveratrol because it
contains a loop of symmetry-related monomer which prevents
binding to the SIRT1 allosteric activation site. 4′-BR interacts
with two binding sites to induce potent inhibition to SIRT1
and SIRT3. An internal site, which overlaps with the active site,
blocks peptide binding and induces a potent inhibitory effect.
Additionally, 4′-BR partially occupies the NAD+ binding C-
pocket and blocks productive NAD+ binding by extending its
bromo-phenyl group into the hydrophobic active site pocket. 4′-
BR occupies this pocket more effectively because the bromine
anchors into the pocket via hydrophobic interactions, whereas,
the more polar resveratrol does not have affinity for this site.
Secondly, 4′-BR also induces competitive inhibition at a second
binding site which is located on the surface of SIRT3 and is
connected through two helices to peptide-binding active site
loops. In SIRT1, this site consists of a residue that is essential
for its activation by small molecules, which allows it to act as
an allosteric SIRT1 activator binding site. Differences in the
crystal packing structure of 4′-BR block the occupation of this
activation site (20). We found that 4′-BR treatment imparted
anti-proliferative effects against human melanoma cells through
metabolic reprogramming, effects on the cell cycle, and apoptosis
signaling (21). Specifically, 4′-BR treatment of melanoma cells
resulted in a decrease in cell proliferation and clonogenic
survival, induction of apoptosis, inhibition of melanoma cell
migration, and cell cycle arrest at the G0/G1 phase. Further, 4′-
BR treatment decreased lactate production, glucose uptake, and
NAD+/NADH ratio, which were accompanied by decreases in
two key genes (LDHA and GLUT1) associated with the Warburg
effect and tumor progression inmelanoma cells (21) (Figure 1D).

It is known that both SIRT1 and SIRT3 play a crucial
role in the control of mitochondrial biogenesis (36). NAD+,
which is necessary for sirtuin-mediated deacetylation, is used
extensively in a variety of metabolic processes and can, therefore,
provide information regarding cellular energy status. A low
energy status is equivalent to high levels of NAD+ and, thus,
stimulates SIRT1 activity. Because SIRT1 is an NAD+ dependent
deacetylase, its ability to modify transcriptional factors and
responses concerning cellular NAD+ levels allows it to act as a
metabolic regulator (37). Likewise, utilizing the mitochondrial
NAD+ pool, SIRT3 can deacetylate a group of mitochondrial
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targets involved in the regulation of both glycolysis and cellular
oxidative stress (38). SIRT3 has been shown to deacetylate and
increase pyruvate dehydrogenase in cancer cells, which can
increase both mitochondrial bioenergetics and glycolysis (39).
SIRT3 promotes the antioxidant activity of MnSOD via direct
deacetylation, and loss of SIRT3 increases the acetylation of
MnSOD, which thereby increases cellular ROS. Increased ROS
stabilizes HIF-1α, resulting in metabolic reprogramming toward
glycolysis, which subsequently facilitates tumor development
(40). Conversely, SIRT3 has been shown to increase lactate
and ATP production, leading to increased glycolysis, which
together with increased mitochondrial MnSOD and decreased
intracellular ROS promote the proliferation of cancer cells
(41). SIRT3 is also known to activate the proteins necessary
for oxidative phosphorylation, the citric acid cycle, fatty acid
activation, and AMPK (36). Overall, these studies suggest that
both SIRT1 and SIRT3 regulate cellular metabolic homeostasis,
further emphasizing the importance of targeting these two
sirtuins in melanoma.

CONCLUSIONS

The demonstrated roles of SIRT1 and SIRT3 in melanoma
suggest that their inhibition may be useful in melanoma
management (Figure 1). Indeed, at the organismal level, there
exists a possibility of genetic redundancy among sirtuins, where
two or more sirtuins encode a given biochemical function or
pathway. In such a scenario, modulation in one of the sirtuins
is likely to have a lesser effect. There is also some evidence
of redundancy among certain sirtuins, such as between SIRT1
and SIRT3, since both of them deacetylate similar target(s) (e.g.,
H4K16Ac) (Figures 1B,C). In general, sirtuin’s functions appear
to have minimal redundancy, partly because of their distinct
localizations: nuclear (SIRT1, 6, and 7), mitochondrial (SIRT3,
4, and 5), or cytoplasmic (SIRT2). However, the delocalization

of sirtuins is known to occur in cancer development and
progression (6). Additionally, sirtuins are known to interact
directly/indirectly with each other. Utilizing the Ingenuity
pathway analysis, a web-based software that enables gene analysis
using scientific literature-based database, we previously found
that SIRT1may have direct interaction with SIRT3, and these two
may further interact with other sirtuins (1).

Overall it appears that concomitant inhibition of multiple
sirtuins, with pro-proliferative functions in melanocytic cells,
could be a useful strategy against melanoma. In this article, we
have presented a case for the combined inhibition of SIRT1 and
SIRT3 for melanoma management. However, recent studies from
our lab supported by another study by Wang and colleagues
have suggested the pro-proliferative role of SIRT6 in melanoma
as well (17–19). These studies warrant a detailed investigation
into the role of all sirtuins in melanoma. This may lead to the
development of an accurate type and nature of sirtuin inhibitors
that may be the most effective against melanoma.
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