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Abstract: The aims of this study were to evaluate the feasibility of using IMU sensors and machine
learning algorithms for the instantaneous fitting of ice hockey sticks. Ten experienced hockey players
performed 80 shots using four sticks of differing constructions (i.e., each stick differed in stiffness,
blade pattern, or kick point). Custom IMUs were embedded in a pair of hockey gloves to capture
resultant linear acceleration and angular velocity of the hands during shooting while an 18-camera
optical motion capture system and retroreflective markers were used to identify key shot events and
measure puck speed, accuracy, and contact time with the stick blade. MATLAB R2020a’s Machine
Learning Toolbox was used to build and evaluate the performance of machine learning algorithms
using principal components of the resultant hand kinematic signals using principal components
accounting for 95% of the variability and a five-fold cross validation. Fine k-nearest neighbors
algorithms were found to be highly accurate, correctly classifying players by optimal stick flex, blade
pattern, and kick point with 90–98% accuracy for slap shots and 93–97% accuracy for wrist shots
in fractions of a second. Based on these findings, it appears promising that wearable sensors and
machine learning algorithms can be used for reliable, rapid, and portable hockey stick fitting.

Keywords: wearable sensors; ice hockey; hockey stick; equipment fitting; automation; machine learning

1. Introduction

Ice hockey sticks are a growing segment of the USD 850+ million hockey equipment
market due to increasing global hockey participation and short product shelf life [1]. It is
estimated that hockey sticks alone will reach a market value of USD 320 million by the end
of 2025 [2]. Since players first began to modify their wooden sticks in the mid-20th century,
the technologies, materials, and customizability of hockey sticks has improved greatly [3].
Today, players can purchase off the shelf sticks of various linear bending stiffnesses (“flex”),
blade patterns (“curve” and “lie”), and dynamic flex profiles (“kick point”) with the
rationale that different stick properties can enhance a player’s on-ice performance, such as
shot speed, by “fitting” to their technique and/or style of play. During the shooting motion,
the hockey stick functionally acts as a spring by releasing energy at a faster rate than it was
previously stored, amplifying shot power.

Research on the influence of stick flex on shooting performance to date has been
conflicted; however, it appears that players should select their flex based on the way they
load the hockey stick. Three possible stick “loading styles” have been reported in the
literature. These are Constant Displacement, Constant Force, and Constant Energy [4,5]. In
each loading style, a player affects a constant maximal deformation of the shaft, applies
an identical level of force, or stores the same maximal amount of energy in the stick
regardless of changes in shaft stiffness. At present, the exact origins of these disparate
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stick loading styles remain unknown; however, there is evidence that such differences
may arise due to differences in anthropometrics, kinematics, and levels of experience.
For example, it is believed that larger, stronger players may be able to use a Constant
Displacement model while weaker players may follow a Constant Force model [4]. Others
have proposed that players have adopted new shooting techniques to take advantage of
the spring-like properties of modern carbon composite hockey sticks [3]. These theories
are consistent with previous findings that stick stiffness may negatively affect the shot
velocities of younger [6] or female [7] players by preventing them from realizing the full
power-amplifying benefits of the stick. These findings suggest that players should be
provided tailored recommendations of shaft stiffness based on their specific loading style.

Sticks are designed to have specific kick points to maximize specific shot performance
parameters, such as speed, accuracy, and quickness. Kick points are commonly referred
to by the desired location of maximum deflection within the shaft. For example, a low-
kick-point stick is most flexible at the bottom and increases in stiffness moving up the
shaft while a high-kick-point stick is stiffest at the bottom. Published academic research
on the effect of stick dynamic flex profiles is scarce. However, it is generally believed that
low-kick-point sticks assist with release quickness while high-kick-point sticks are best for
maximizing stick bend and puck velocity [8].

Research on the effect of blade patterns has shown that flatter curves may enhance
shot speed by affecting the spatiotemporal characteristics of blade and stick loading during
the slap shot [9]. This may occur due to systematically decreased lag between blade–toe
and blade–heel ice contact similar to how advanced hockey players achieve higher puck
speeds by “pinning” the stick blade earlier and storing more strain potential energy in the
stick [10]. In contrast, the very origin of blade curves was to provide players with added
levels of puck control [11]. Mechanically, more “open” curves make it easier to apply lift to
the puck and consequently reach the upper net on forehand shots while a more pronounced
curve and proper lie aid in puck control.

While hockey stick technologies have evolved drastically over the past twenty-five
years, the means to fit players for them have been much slower to change; players still
buy sticks mainly in retail stores without much knowledge of which may work best for
them. The data-driven process of matching players with the best stick for them is called
“stick fitting”. In recent years, with the incorporation of scanning technologies for hockey
equipment fitting in retail settings, demand has grown for systems that are able to fit players
quickly with little cost, floor space, or manpower required by the retailer. Previous research
has shown that automated computer vision algorithms can evaluate shot performance
metrics with comparable accuracy to more expensive and cumbersome motion capture
systems [12]; however, the lengthy computation time (111 s/frame) makes it challenging to
implement this automated, low-cost technology in retail settings. Instead, many hockey
equipment retailers use 2D slow-motion video analysis apps, such as CCM Hockey’s Stick
Fitter and Bauer Hockey’s Stick Studio, for stick fitting. No research has yet explored the
combination of embedded sensors and machine learning algorithms for the purpose of
automating stick fitting, providing recommendations of stick parameters more rapidly to
players based on objective measures of shooting performance.

The aim of this study was to evaluate the feasibility of using inertial measurement
unit sensors (IMUs) and machine learning algorithms for the stick fitting of experienced
ice hockey players. This was an exploratory study on the use of in-glove IMUs in a
hockey shooting context; however, motivation was derived from previous studies that
have used kinematic signals obtained using IMUs and machine learning algorithms to
classify athletic movement patterns [13,14], including those specific to ice hockey [15,16]. It
was hypothesized that differences in hand kinematics would be characteristic of different
responses to stick flex, blade pattern, and kick point.
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2. Materials and Methods
2.1. Participants

Ten experienced male ice hockey players were recruited for this study. Two participants
had experience at the Junior A level, five at the Canadian/American university level, and
three at the professional level (Table 1). All participants had played hockey in the past
calendar year and were free of serious injuries at the time of data collection. Descriptive
statistics of the participants are provided in Table 1.

Table 1. Descriptive statistics of study participants.

Measure Mean ± SD

Age (yrs) 25.9 ± 4.9
Height (m) 1.81 ± 0.07

Body Mass (kg) 88.5 ± 7.7
Hockey Playing Experience (yrs) 20.3 ± 3.7

2.2. Instrumentation and Data Collection

Testing took place in the Biomechanics and Performance Analysis Lab at McGill
University’s Currie Gymnasium in Montreal, Quebec. Testing procedures were explained
in written and oral format to the participants, who then provided informed written consent
prior to data collection.

An 18-camera Vicon optoelectronic system (Vicon, Oxford, UK) was used to capture
three-dimensional kinematics of the body, stick, and puck during testing. These data
were necessary to identify key shot events and calculate puck velocity (shot speed), radial
error from target center at net entry (shot accuracy), and contact time with the stick blade
(shot quickness). The formula of Hancock et al. [17] was used to calculate radial error,
where x represents the horizontal distance between the puck center and target center and z
represents the vertical distance between the puck center and target center at net entry:

RE =
√
(x2 + z2). (1)

The Vicon system consisted of eight T10S, two T40S, four Vantage V5, and four Vero
2.2 cameras, which were positioned on tripods of varying heights around a synthetic ice sur-
face (Viking, Toronto, ON, Canada) (Figure 1), providing a capture volume approximately
8.0 m long × 3.4 m wide × 2.0 m high. The cameras were connected to an MX Giganet
connection Hub and desktop computer (Nexus 2.6, Vicon, Oxford, UK) and recorded at a
sampling rate of 240 Hz.
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After obtaining informed written consent, anthropometric measurements were taken
and participants were fitted with a full-body, tight-fitting Velcro suit (OptiTrack, Corvallis,
OR, USA). Fifty-two spherical retroreflective markers with a diameter of 14 mm were placed
on the participant in accordance with an adapted version of the Plug-in Gait full-body
model (Figure 2). Four markers were placed on the puck and ten along each stick (Figure 2)
to measure puck and stick kinematics, respectively. An additional eight markers were
placed along the posts and crossbar of the net to compute puck-to-target accuracy measures.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 16 
 

 

After obtaining informed written consent, anthropometric measurements were taken 
and participants were fitted with a full-body, tight-fitting Velcro suit (OptiTrack, Corval-
lis, OR, USA). Fifty-two spherical retroreflective markers with a diameter of 14 mm were 
placed on the participant in accordance with an adapted version of the Plug-in Gait full-
body model (Figure 2). Four markers were placed on the puck and ten along each stick 
(Figure 2) to measure puck and stick kinematics, respectively. An additional eight markers 
were placed along the posts and crossbar of the net to compute puck-to-target accuracy 
measures. 

 
Figure 2. Reflective marker placement on gloves, stick, and puck for tracking by the Vicon system. 
B1–4 indicate markers used to define the movement of the stick blade during the shooting trials. 

Prior to the start of testing, participants recorded a static calibration pose held by 
each participant for five seconds with the arms parallel with the floor and elbow bent to 
90°. This calibration was required to determine the model of each participant’s initial co-
ordinate system reference frame. After the static calibration trial was recorded, partici-
pants were given time to warm-up and get accustomed to the synthetic ice surface by 
taking practice shots on the net. 

Bespoke IMUs (Motsai Research, Saint-Bruno-de-Montarville, QC, Canada) were in-
serted in an opening in the thumb segment of each glove during testing to capture con-
current kinematics of the hands. This instrumentation configuration was chosen to ensure 
the IMU placement would not affect players’ shooting technique during data collection 
and could be easily replicated in a real-world fitting context. Data capture for the IMU 
system was initiated by a second researcher using a custom-built tablet application (Bauer 
Hockey Ltd., Blainville, QC, Canada) over Wi-Fi connection. The IMUs comprised an ac-
celerometer capturing linear acceleration in gravitational units and a gyroscope capturing 
angular velocity in degrees per second at a rate of 200 Hz. Data collection was synchro-
nized between the sensors and was triggered when either gyroscope signal passed a 
threshold of 4 degrees per second, recording for 199 frames. 

2.3. Testing Protocol 
Testing consisted of 10 stationary wrist shots and 10 stationary slap shots with 4 dif-

ferent sticks for a total of 80 shots. Stick A was the “baseline” stick, and Sticks B-D varied 
from Stick A in bending stiffness, blade pattern, or dynamic bending profile, respectively 
(Table 2). The sticks were all uniform in length and were representative of those com-
monly used by players of similar caliber. The sticks were devoid of graphics to blind par-
ticipants to their differences.  

At the beginning of each trial, participants stood adjacent to the puck placed 5.13 m 
away from the net. Participants did not receive specific instructions with respect to their 
technique but were asked to shoot like they normally would in a game from a stationary 

Figure 2. Reflective marker placement on gloves, stick, and puck for tracking by the Vicon system.
B1–4 indicate markers used to define the movement of the stick blade during the shooting trials.

Prior to the start of testing, participants recorded a static calibration pose held by each
participant for five seconds with the arms parallel with the floor and elbow bent to 90◦.
This calibration was required to determine the model of each participant’s initial coordinate
system reference frame. After the static calibration trial was recorded, participants were
given time to warm-up and get accustomed to the synthetic ice surface by taking practice
shots on the net.

Bespoke IMUs (Motsai Research, Saint-Bruno-de-Montarville, QC, Canada) were
inserted in an opening in the thumb segment of each glove during testing to capture
concurrent kinematics of the hands. This instrumentation configuration was chosen to
ensure the IMU placement would not affect players’ shooting technique during data
collection and could be easily replicated in a real-world fitting context. Data capture for the
IMU system was initiated by a second researcher using a custom-built tablet application
(Bauer Hockey Ltd., Blainville, QC, Canada) over Wi-Fi connection. The IMUs comprised an
accelerometer capturing linear acceleration in gravitational units and a gyroscope capturing
angular velocity in degrees per second at a rate of 200 Hz. Data collection was synchronized
between the sensors and was triggered when either gyroscope signal passed a threshold of
4 degrees per second, recording for 199 frames.

2.3. Testing Protocol

Testing consisted of 10 stationary wrist shots and 10 stationary slap shots with 4 dif-
ferent sticks for a total of 80 shots. Stick A was the “baseline” stick, and Sticks B-D varied
from Stick A in bending stiffness, blade pattern, or dynamic bending profile, respectively
(Table 2). The sticks were all uniform in length and were representative of those commonly
used by players of similar caliber. The sticks were devoid of graphics to blind participants
to their differences.

At the beginning of each trial, participants stood adjacent to the puck placed 5.13 m
away from the net. Participants did not receive specific instructions with respect to their
technique but were asked to shoot like they normally would in a game from a stationary
position and to strive for maximum velocity and accuracy, aiming at a 0.3 m-diameter
circular target suspended from the center of the net crossbar (Figure 1).
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Each participant performed the first 20 trials with the reference stick (Stick A), with
subsequent stick exposure orders (i.e., BCD, CDB, DBC, etc.) assigned using the first ten
orders from a permutation generator to approximate a crossover-balanced design. Shot
exposure order (wrist–slap–wrist... or slap–wrist–slap...) alternated between participants.
Between each block of 10 shots, participants received approximately 1 min of rest.

Table 2. Specifications of the four sticks used during testing. Stick A was used as a “baseline”
implement. Stick B varied in stiffness. Stick C varied in blade pattern. Stick D varied in kick point.

Stick Stiffness Rating Blade Pattern Kick Point

Stick A 95 P92 Low
Stick B 70 P92 Low
Stick C 95 PM9 Low
Stick D 95 P92 High

2.4. Data Processing

Data captured using the Vicon cameras were processed using Vicon Nexus 2.6 software.
Processing consisted of marker data identification (“labelling”) and gap filling (interpolat-
ing missing marker positions). This “processed” data from the Nexus software were then
imported into Visual3D software (Ver 5.01.23, C-Motion, Germantown, MD, USA) where
data were filtered using a 4th-order Butterworth filter with a cut-off frequency of 25 Hz,
and all 3D calculations and event detections were performed. All data were reflected to one
body side to account for kinematic differences due to handedness using the biomechZoo
toolbox [17]. The terms “top” and “bottom” replaced “left” and “right” when identifying
side-specific hand kinematic signals. Shot speed of each trial was calculated as peak puck
velocity in the Y (towards the net) between puck contact/forward movement (START) and
net entry (END) events for slap and wrist shots, respectively (Table 3).

Table 3. Definitions of shot events used to calculate shooting performance metrics with the Vicon
system.

Shot Type Event Description

Slap

START One frame before puck velocity in the Y exceeded 5.0 m/s
(i.e., when the blade made contact with the puck).

END
The frame when the distance between the puck and the net was less

than 0 m in the Y
(i.e., when the puck “entered” the net).

Wrist

START The frame when blade acceleration in the Y exceeded 150 m/s2

(i.e., when the blade begins moving forward).

END
The frame when the distance between the puck and the net was less

than 0 m in the Y
(i.e., when the puck “entered” the net).

For the IMUs, only the Z axis was systematically aligned in the glove due to technical
challenges related to consistency. The +Z axis was aligned in the glove in the direction of
thumb extension with the +X and +Y orthogonal to this axis (Figure 3). For this reason, only
the resultant channels of the IMU’s accelerometer (linear acceleration in gravitational units)
and gyroscope (angular velocity in degrees per second) were used for analysis. IMU data
for both the left and right sensor were combined in the same file for each trial. Acceleration
and gyroscope data were filtered with 4th-order lowpass Butterworth filter with a cut-off
frequency of 20 Hz.
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Figure 3. IMU axis alignment: (a) the +Z axis was orthogonal to the top surface of the IMU puck;
and (b) the +Z was systematically aligned in the “thumbs up” direction of the glove; however, the
direction of X and Y was not consistently maintained across testing.

All trials were inspected for completeness, data quality, and event placement prior
to the statistical analysis. Vicon trials were removed if certain events were unable to be
detected in Visual3D; for example, if the trial ended prematurely or stick or puck markers
had fallen off or went undetected by the Vicon system (n = 43).

Since IMU trials did not have events, trials from this dataset were only omitted if they
ended before the shooting motion had finished (n = 44). Due to differences in the causes of
trial omission, the Vicon and IMU datasets were analyzed separately. Despite the fact they
are of similar size, the datasets should not be confused as identical.

2.5. Model Training and Validation

Three separate models were created for each channel to fit players for flex, blade
pattern, and kick point. Slap and wrist shot data were analyzed separately (3 stick parame-
ters × 4 channels × 2 shot type = 24 models). The algorithms devised in this study were
attempting to classify the responses of players’ shooting performance to stick flex, blade
pattern, and kick point independently while each IMU channel provided different hand
kinematic data throughout the shooting motion. Thus, the purpose of developing different
sets of flex, blade pattern, and kick point models was to evaluate which IMU channel was
best for each shot type and stick parameter combination.

Separate models were trained and tested on their ability to classify (i.e., fit) shooters
using four different channels from the in-glove IMUs:

1. Top hand resultant linear acceleration (Top_A);
2. Top hand resultant angular velocity (Top_G);
3. Bottom hand resultant linear acceleration (Bottom_A);
4. Bottom hand resultant angular velocity (Bottom_G).

Three stick parameters were controlled in this study (flex, blade pattern, kick point).
To determine a subject’s true class on each stick parameter, the shot speed of the stick that
varied along that parameter (Stick B, Stick C, or Stick D, respectively) was compared to that
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of the reference stick (Stick A). True class values of stick fit—for training the algorithms and
evaluating model accuracy—were based on the stick with higher mean shot speed to the
nearest whole meter per second (m/s). For example, if a subject shot at least 1 m/s faster
with Stick A (95 flex) than Stick B (70 flex), this subject would be considered a “high flex
responder”. Shot speed was chosen as the shooting performance metric to define true class
based on its prevalence in the literature [3–5,7,9,18,19] and its simplicity of measurement in
various settings (e.g., using a radar gun).

The inputs of each model were reduced from 199 data points to the 14 to 18 principal
components, or “features”, that explained 95% of the variability within the waveform data
(Table 4). In other words, principal components—rather than complete waveforms—were
the features used to develop the algorithms. The features, in addition to true class values,
were fed into MATLAB R2020a’s Machine Learning Toolbox, and prediction models were
created using k-nearest neighbors (KNN) classification. Five-fold cross validation—such as
the principal components—was used to improve the generalizability of the models.

Table 4. Number of trials (n) and features (PC) used for each algorithm.

Shot Type Characteristic Top_A Top_G Bottom_A Bottom_G

Slap n 374 374 372 372
PC 18 14 16 15

Wrist
n 380 380 380 380

PC 15 15 16 15

For all models, standardized data, a Euclidean distance metric, equal distance weight,
and a default misclassification cost matrix were used, and hyper-parametrization was
disabled.

Model performance was evaluated primarily on classification accuracy (high being
preferable) and secondarily on computation time (low being preferable) after the fifth fold
of cross-validation was used to compare performance between models.

3. Results
3.1. Shooting Performance Variables

One-way ANOVAs revealed significant differences (α < 0.05) in slap shot blade contact
time between sticks (F(3.36) = 3.66, p = 0.021, ηp

2 = 0.234), but not for slap shot speed
(F(3.36) = 0.032, p = 0.992, ηp

2 = 0.002) nor accuracy (F(3.36) = 2.33, p = 0.091, ηp
2 = 0.162)

(Table 5). A Tukey–Kramer post hoc test showed contact time to be significantly shorter for
Stick D compared to Stick B (Figure 4).

Table 5. Ensemble average speed, accuracy, and release quickness metrics with each stick for slap
and wrist shots ± SD (n = 10).

Shot Type Performance Metric Stick A Stick B Stick C Stick D

Slap
Speed (m/s) 31.7 ± 2.2 31.8 ± 1.9 31.9 ± 1.7 32.0 ± 1.8

Radial Error (m) 0.296 ± 0.166 0.282 ± 0.138 0.321 ± 0.157 0.224 ± 0.129
Contact Time (ms) 51 ± 4 53 ± 5 52 ± 4 50 ± 4

Wrist
Speed (m/s) 27.7 ± 1.6 27.9 ± 1.4 27.6 ± 1.5 27.4 ± 1.4

Radial Error (m) 0.171 ± 0.089 0.177 ± 0.089 0.224 ± 0.138 0.159 ± 0.090
Contact Time (ms) 103 ± 12 107 ± 13 104 ± 12 104 ± 13
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For wrist shots, one-way ANOVAs revealed significant differences in accuracy between
sticks (F(3.36) = 6.71, p = 0.001, ηp

2 = 0.359). A Tukey–Kramer post hoc test showed wrist
shot accuracy to be significantly lower for Stick C—by means of a higher average radial
error—than the other three sticks (Figure 5).
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3.2. Machine Learning Model Accuracy

All of the most successful models were nearest neighbor algorithms (i.e., k = 1). Thus,
in the interest of space, only the performances of these models are presented.

3.2.1. Slap Shots

Based on the models created, principal components of the bottom hand angular
velocity (Bottom_G) data were able to recommend the optimal flex (96%), blade pattern
(98%), and kick point (97%) for slap shot speed with the highest accuracy (Table 6).

Table 6. Accuracy of various fine KNN models trained using top and bottom hand linear acceleration
(_A) and angular velocity (_G) data for slap shot speed.

Fit Characteristic Top_A Top_G Bottom_A Bottom_G

Flex 95% 95% 93% 96%
Blade 95% 95% 90% 98%

Kick Point 93% 96% 94% 97%

3.2.2. Wrist Shots

Based on the models created, principal components of the top hand angular velocity
(Top_G) data were able to recommend the optimal kick point (97%) for wrist shot speed
with the greatest accuracy, while principal components of bottom hand linear acceleration
(Bottom_A) best predicted optimal flex (97%) and blade pattern (96%) (Table 7).
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Table 7. Accuracy of various fine KNN models trained using top and bottom hand linear acceleration
(_A) and angular velocity (_G) data for wrist shot speed.

Fit Characteristic Top_A Top_G Bottom_A Bottom_G

Flex 93% 95% 97% 96%
Blade 93% 93% 96% 95%

Kick Point 94% 97% 96% 94%

3.3. Classification Confusion Matrices
3.3.1. Slap Shots

The most accurate flex fitting algorithm for slap shot speed used the first 15 principal
components of the Bottom_G IMU channel. This model had an overall accuracy of 97.3%,
correctly classifying 98.0% of non-responders, 99.3% of high-flex responders, and 93.3% of
low-flex responders (Figure 6). This model never misclassified a high-flex responder for
a non-responder and had the greatest challenge with low-flex responders, misclassifying
5.9% of them as high-flex responders.
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The most accurate blade fitting algorithm for slap shot speed was trained using the
first 15 principal components of the Bottom_G IMU channel. This model also had an overall
accuracy of 97.3% and correctly classified 98.6% of non-responders, 98.1% of P92 responders,
and 95.8% of PM9 responders (Figure 7). This model never misclassified a non-responder
for a PM9 responder and had the greatest challenge with PM9 responders, misclassifying
3.5% of them as P92 responders.
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Figure 7. Confusion matrix of the blade fitting algorithm for slap shot speed trained using bottom
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The highest accuracy kick point fitting algorithm for slap shot speed was also trained
using the first 15 principal components of the Bottom_G IMU channel. This model had
an overall accuracy of 97.0% and correctly classified 95.2% of non-responders, 99.1% of
low-kick-point responders, and 96.8% of high-kick-point responders (Figure 8). This model
never misclassified a low-kick-point responder for a non-responder and had the greatest
challenge with high-kick-point responders, misclassifying 2.5% of them as low-kick-point
responders.
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3.3.2. Wrist Shots

The highest accuracy flex fitting algorithm for wrist shot speed was trained using the
first 16 principal components of the Bottom_A IMU channel. This model had an overall
accuracy of 96.1% and correctly classified 97.9% of non-responders, 92.4% of high-flex
responders, and 95.6% of low-flex responders (Figure 9).
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In addition, the most accurate blade fitting algorithm for wrist shot speed was trained
using the first 16 principal components of the Bottom_A IMU channel. This model had
an overall accuracy of 95.3% and correctly classified 97.2% of non-responders, 95.8% of
P92 responders, and 92.4% of PM9 responders (Figure 10). This model had the greatest
challenge with PM9 responders, misclassifying 5.0% of them as P92 responders.
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The highest accuracy kick point fitting algorithm for wrist shot speed was trained
using the first 15 principal components of the Top_G IMU channel. This model had an
accuracy of 94.5% and correctly classified 97.2% of non-responders, 93.3% of low-kick-
point responders, and 92.4% of high-kick-point responders (Figure 11). This model had
the greatest challenge with high-kick-point responders, misclassifying 5.1% of them as
low-kick-point responders.
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3.4. Computation Time and Misclassification Costs

A key factor of interest in the evaluation of these machine learning algorithms was
computation time. The prediction speeds of the best models, in addition to misclassification
costs for each algorithm, are presented in Table 8. These include the Bottom_G models for
fitting flex, blade, and kick point for slap shots and the Bottom_A, Bottom_A, and Top_G
models for fitting wrist shot flex, blade, and kick point, respectively. All computation times
were less than one second.

Table 8. Total misclassification cost and prediction speed of each of the six most accurate models.

Shot Type Model Total Misclassification Cost Observations/Second

Slap
Flex 10 ~700

Blade 10 ~1200
Kick Point 11 ~1700

Wrist
Flex 15 ~1400

Blade 18 ~1400
Kick Point 21 ~1400

4. Discussion

Using in-glove IMU data, fine KNN machine learning models were capable of fitting
players with their optimal flex, blade pattern, and kick point with 90–98% accuracy for slap
shots and 93–97% accuracy for wrist shots. Perhaps more impressively, these algorithms
were able to achieve these high levels of accuracy with a processing time of less than
one second. Thus, it appears possible—using embedded sensors and fine KNN machine
learning algorithms—to rapidly fit players for stick flex, blade, and kick point with high
levels of accuracy.
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Individual differences in optimal sticks for shot speed reported corroborate trends in
previous hockey stick studies [11] and those of other sporting implements [20]. Anderson
found three players using six different sticks of wood and composite constructions each
shot fastest with a different stick.

More specifically, machine learning algorithms were able to identify individual differ-
ences in hand kinematic signals to predict optimal stick flex, blade pattern, and kick point
based on shot velocity. This agrees with previous findings of Zane [21] and Flemming [22],
who reported player coordinative strategies (or “shooting styles”) that appeared in both
high- and low-caliber groups. It has been established that no two players shoot exactly
the same [22]; however, the methods used in this study were satisfactorily sensitive to the
characteristics of hand kinematics relevant to stick fitting for the purpose of maximizing
shot speed. Thus, further research is warranted to better understand how features of these
kinematic profiles relate to stick fit and employ this technology to assist players in tuning
the flex, blade pattern, and kick point that they use.

The small sample size (n = 10) may have limited the statistical power of the analysis.
A larger sample size (e.g., n = 40) of novel hockey players of differing ability levels would
better permit the comparison of different machine learning algorithms in predicting hockey
stick preferences in future studies [14,23]. Further, it is unknown how the findings of the
present study apply to the larger population of hockey players, since it is not known how
representative this sample is of the kinematic variability across different player demo-
graphics. For example, only experienced adult males participated in this study. Thus, the
inclusion of female, youth, and less experienced athletes for the development of commercial
hockey stick fitting applications is warranted since these groups represent large, growing
segments of the global hockey stick market [24].

Another limitation of this study was that the IMU data were limited to the resultant
magnitude of the accelerometer and gyroscope data due to the lack of systematic alignment
of the IMUs’ X and Y axes in the gloves. Nonetheless, the IMUs provided unencumbered,
direct kinematic measurements of the hands, which makes them practical for application in
stick fitting in retail hockey stores. More work is required to investigate the repeatability of
these findings when accounting for IMU alignment.

Moreover, the current algorithm was delimited to the fitting of sticks based on shot
velocity; however, shot accuracy and quickness may be of greater importance to a player
depending on their position and style of play [3]. Thus, it is suggested that future stick
fitting research considers the contribution of such metrics to shooting performance at large.
This could elucidate additional clusters of hockey shooters. IMU alignment, as mentioned
above, would assist in ensuring the reliability of such algorithms.

An additional limitation of this study was that the sticks were not subjected to a battery
of mechanical tests to understand the physical properties of sticks [25]. Having such infor-
mation would be interesting, particularly for understanding how such parameters relate to
perceptions of shooting performance [26,27]. Further, understanding how perceptual and
performance measures relate to dynamic player behaviors during shooting—such as grip
width on the stick and stick bend—is of great interest.

In summary, these findings suggest that there are promising applications for the
combination of embedded IMU sensors and machine learning algorithms in the fitting of
ice hockey sticks due to the portability, accuracy, and processing speed of such systems.
This technology could be used to recommend hockey stick parameters quickly, accurately,
and scientifically in a format easily accessible to hockey players. In the future, standalone
IMU systems could be used to further differentiate hockey players based on their shooting
kinematics and provide more individualized fitting recommendations. Further research to
investigate the repeatability of these findings within a larger, diverse, and representative
group of hockey players is warranted.
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5. Conclusions

Fine k-nearest neighbors machine learning models were capable of fitting players
with their optimal flex, blade pattern, and kick point with 90–98% accuracy for slap shots
and 93–97% accuracy for wrist shots using select principal components of in-glove IMU
data. Perhaps more impressively, these algorithms were able to achieve these high levels of
accuracy with a processing time of less than one second.

The above results demonstrate the potential of using embedded IMU sensors tracking
hand kinematics and machine learning algorithms to accurately fit individuals for stick
flex, blade pattern, and kick point. Similar research to this study should be conducted with
a greater number of sticks with more subtle differences in flex, blade patterns, and kick
points and a larger pool of hockey players of differing backgrounds to further validate the
findings of this study. This study could be further supplemented through the capture of
shooting performance and stick perception data in retail and on-ice settings using simplified
objective measurement instruments (i.e., a radar gun).

Although it appears that players do not change their shooting style when using
sticks of different flexes in the short run, it is not known how stable these gross kinematic
patterns are and whether they would yield consistent values under test–retest conditions.
Additionally, it is not yet known how habitual exposure to sticks of different flex, blade,
and kick point properties affect shooting technique. Studies aimed at the repeat exposure
and measurement of kinematics in response to sticks with different properties should
be conducted.
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