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Abstract: Since the start of the COVID-19 pandemic, understanding the pathology of the SARS-CoV-2
RNA virus and its life cycle has been the priority of many researchers. Currently, new variants of
the virus have emerged with various levels of pathogenicity and abundance within the human-host
population. Although much of viral pathogenicity is attributed to the viral Spike protein’s binding
affinity to human lung cells’ ACE2 receptor, comprehensive knowledge on the distinctive features of
viral variants that might affect their life cycle and pathogenicity is yet to be attained. Recent in vivo
studies into the RNA structure of the SARS-CoV-2 genome have revealed certain long-range RNA-
RNA interactions. Using in silico predictions and a large population of SARS-CoV-2 sequences, we
observed variant-specific evolutionary changes for certain long-range RRIs. We also found statistical
evidence for the existence of one of the thermodynamic-based RRI predictions, namely Comp1, in
the Beta variant sequences. A similar test that disregarded sequence variant information did not,
however, lead to significant results. When performing population-based analyses, aggregate tests
may fail to identify novel interactions due to variant-specific changes. Variant-specific analyses can
result in de novo RRI identification.

Keywords: COVID-19; SARS-CoV-2; RNA-RNA interaction; RNA structure; compensatory mutations;
viral evolution

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the
pandemic disease COVID-19 and was first identified as a novel coronavirus by the China
CDC [1]. As a result of being infected by SARS-CoV-2, a patient could have a fever,
cough, fatigue, sputum production, shortness of breath, and myalgia/arthralgia [2]. As of
November 2021, there have been an estimated 260 million cases and 5.2 million deaths [3].
Variants have emerged due to mutations in regions across the globe [4], with four main
variants being Alpha, originating in the United Kingdom, Beta, from South Africa, Delta,
originally from India and Omicron, which also first emerged in South Africa [5]. Both the
Alpha and Beta variants have an estimated increase in transmission of 40–70% due to a
mutation in the receptor binding domain [5]. The Alpha variant saw a huge decline in
circulation upon the emergence of the Delta variant, although it was noted that the Alpha
variant had a slight increase in both transmissibility and severity compared to previous
strains. The Beta variant has an additional two mutations that could supplement the
virus with a potential resistance to antibodies [5]. The Delta variant also has increased
transmissibility that is associated with higher viral load, longer duration of infectiousness,
and high reinfection rate, allowing it to become the globally dominant variant over the other
two [3]. The Omicron variant has three deletions and one insertion in the Spike protein,
increasing its binding affinity to human cell receptor angiotensin-converting enzyme 2
(ACE2), as well as having increased viral replication, viral load, and aid in immune escape
after prior infection or vaccination [6].
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SARS-CoV-2 is part of the betacoronavirus genus and is a single positive-strand RNA
approximately 30 kilobases long [7]. The process of infection begins with the inhalation
of airborne particles [8] and then the virus’ spike glycoprotein attaches to ACE2 receptors
on the host cells [9]. The virus’ cycle of replication involves continuous and discontinuous
transcription processes. RNA-dependent RNA polymerase (RdRp) utilizes the compli-
mentary negative-strand RNA in continuous transcription to generate the genomic RNA
and is mediated by a frame shift element (FSE) [10]. For discontinuous transcription, the
transcription process is regulated by the transcription regulating sequence-leader (TRS-L)
at the 5′ end of the genome and the transcription regulating sequence-body (TRS-B) at the
5′ end of each open reading frame (ORF) by a long-range RNA-RNA interaction that brings
the two regions in proximity [11], allowing template switching to terminate transcription
at the TRS-L [12]. Thus, the structure of RNA is an important regulator for transcription,
translation, and regulation [13].

Long-range RNA-RNA Interactions (RRIs) are crucial for the life cycle of coronaviruses,
including betacoronaviruses [14]. One of the roles of genomic long-range RRIs is their
involvement in discontinuous transcription, leading to sub-genomic messenger RNA
(sgmRNA) production [7]. The interactions bring the TRS-L, located at the 3′ end of
the leader sequence, and TRS-B, preceding each viral gene, in proximity, resulting in
discontinuous transcription. These interactions have been experimentally verified using a
simplified sequencing of the psoralen crosslinked, ligated, and selected hybrids (SPLASH)
approach [15]. The long-range RNA-RNA interactions between the TRSs of SARS-CoV-2
are not the only long-range RNA-RNA interactions utilized in the genome. Recent studies
used SHAPE-MaP ex vivo [16] and in vivo [17] methods to identify more interactions.
A different procedure based on mutational profiling, known as DMS-MaPseq, has also
been developed to identify novel interactions in viral RNAs, including SARS-CoV-2 [18].
Another study uses crosslinking of matched RNAs and deep sequencing (COMRADES) to
identify long-range RNA-RNA interactions [11]. A few identified long-range interactions
in SARS-CoV-2 have been linked with tertiary folding of the genome inside virion [19].
The data obtained from experimental methods such as SHAPE can be used to constrain
RNA-RNA interaction prediction. SHAPE directed homology and motif analysis has
recently become the preferred method for identifying local RNA-RNA interactions and
structures [20]. Often, SHAPE constrained predictions focus on local RNA structure and
accessibility; however, it has been shown that long-range RNA-RNA interactions can also
be obtained using SHAPE methods [17]. Little work, however, has been conducted to
investigate the evolutionary changes of these interactions in the virus’ variants that have
emerged over time.

One specific RNA-RNA interaction with a known function in SARS-CoV-2 is the Frame
Shifting Element (FSE). The FSE is a cis-acting element known to cause a −1 frameshift
at the junction of orf1a and orf1ab. It contains a slippery sequence (UUUAAA) where
the ribosomal frameshift occurs, a downstream three-stem pseudoknot, and an upstream
stem-loop attenuator [10]. The FSE serves to slow the ribosome, which is essential to allow
frameshifting to occur. The functional region of the FSE has recently been shown to reside
within a 1.5 kb super-structure, labeled as the FSE-arch [11]. Experiments have shown
that altering the framshifting mechanism in SARS-CoV-2 has a deleterious effect on viral
replication. The FSE has also been shown to be conserved across different coronaviruses [21]
and, recently, the stability of the pseudoknot was found to be affected by the tertiary
structure of the FSE, as well as take on multiple conformations [22]. Despite the FSE having
known features and a known function, the evolution of its features within SARS-CoV-2
variants has not been fully explored.

The rate of evolution changes within SARS-CoV-2 coding and non-coding regions
and can be tracked by their mutation rates, which can be different from one another. The
genome of SARS-CoV-2 consists of the ORF1a, ORF1b, spike (S), envelope (E), membrane
(M) and nucleocapsid (N), where ORF1a and ORF1b encode for 16 non-structural proteins
that produce the viral replication and transcription complex [23] and the other genes



Int. J. Mol. Sci. 2022, 23, 11050 3 of 15

produce structural proteins by RNA synthesis [24]. Both the membrane and envelope
proteins are resilient to high mutation levels. The non-structural ORFs 6, 7a, and 10 have
the same properties. On the other hand, the ORFs S, N, ORF3a, ORF8, and ORF1ab are all
sources of variation within the genome [25]. Gene ORF8 has had a major deletion in viral
strains known as ∆382, which were associated with low symptoms [26]. Across the variants,
the S gene has many mutations that have caused changes in virulence. ORF1a began with a
few mutations in the first variants, but quickly became a gene with high variation. The rest
of the genes follow this same pattern of little initial variation in the variants but increasing
over time, but to a much lower degree [6].

One of the major approaches to study the evolution of an RNA structure, however,
is through observing co-varying nucleotide changes. Observed changes on either side of
an RNA base pair within a population of sequences, i.e., compensatory mutations, can be
indicative of how adaptive these intervals are to preserve the stability of the structure of the
RNA. Recently, a comparative analysis on long-range RNA-RNA interactions revealed a
putative interaction between Orf8 and Spike of SARS-CoV-2 [27]. In this work, we investigate
long-range RNA-RNA interactions of SARS-CoV-2 to expand our knowledge of their
evolutionary changes within the major viral variants. A selection of experimentally verified
long-range RRIs taken from the literature were chosen in this study. We also included
several computationally predicted long-range RRIs in our analysis as an exploration into
novel long-range RRI and their associated changes.

2. Results

Genomic intervals of the RRIs are shown in Table 1. Computational (Comp) RRIs
predictions were the result of the IntaRNA [28,29] software on the reference genome
(See Materials and Methods). The top 5 hits for each genomic interval were recorded
and, subsequently, all interactions were ranked based on energy residuals. The p-values
reported by IntaRNA all showed significance, and thus were not used to rank computational
RRIs (see Methods). The experimentally validated RRIs (Exp) were taken exclusively
from [11], where long-range RRIs were reported via COMRADES methodology. All base-
pairings for experimental RRIs were obtained from the literature, while the computational
RRI structures were obtained from intaRNA. In the eight long-range RRIs there were no
pseudoknots or stem-loops; however, these interactions serve as candidates for further
exploration. Additionally, the IntaRNA predictions were performed with and without
SHAPE data to provide a more constrained prediction. The SHAPE reactivities used were
acquired from [17], which performed an in vivo SHAPE mapping of SARS-CoV-2. The
results from IntaRNA with the SHAPE constraint showed the identical top hit (Comp2,
see Table 1) as the run without SHAPE constraint. In addition to the eight long-range
RRIs, the Frame Shifting Element (FSE) was also selected for analysis. The FSE is not
a long-range interaction; however, it contains experimentally validated features such as
stem-loops and pseudoknots. The structure of the FSE, as well as the labeling of stem-loops,
was obtained from [30]. The examination of the FSE was performed to determine if there is
any feature-specific evolution across variants.

A total of 32,714 full-genome sequences were downloaded from GISAID.org for the
RRI analyses. The data contained sequences from the four variants under study, namely
Alpha, Beta, Delta, and Omicron. The sequences originated from 92 different countries,
with France being the most prevalent country of origin. A full breakdown of the countries of
origin is available in Supplementary Table S1. Collection data, as well as the genome-wide
mutation rate of each variant, is shown in Table 2. Average pairwise distances between
variants were calculated as a measure of dissimilarity. Table 3 demonstrates the differences
between the variants of SARS-CoV-2. Delta and Omicron have the largest distance between
them and the two closest are Alpha and Beta. Generally, the more recent the variant, the
larger the distance between it and the other variants. Despite having the highest average
distance, Delta and Omicron still only differ by an average of 87 bases, within a genome of
almost 30,000 bases. Within the sample, the genome-wide mutation rate does not follow a
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chronological pattern, with each variant having different rates of background mutation.
Notably, Omicron has the highest background mutation rate and Delta with the lowest rate
(See Table 2). These values track, with a daily rate of 2.38 × 10−6, or an average of 0.0714,
mutations within a genome of SARS-CoV-2 from [31]. Having slightly divergent genomes,
the sample was verified as sufficient for our investigation of long-range RRI.

Table 1. List of experimentally reported and computationally predicted long-range RRIs used in the
analysis. The first four are reported from a COMRADES experiment, the last four were predicted
using IntaRNA, both with and without SHAPE reactivities as a constraint.

NAME 5′
START

5′
END

5′
GENE 3′START 3′END 3′ GENE ENERGY

# NEARBY LOCAL
STRUCTURES/

RESIDUAL
EXP1 15,424 15,433 orf1ab 17,442 17,452 orf1ab −7.4 6
EXP2 18,541 18,554 orf1ab 21,107 21,119 orf1ab −12.3 1
EXP3 2070 2081 orf1a 5688 5699 orf1a −20.5 4
EXP4 5652 5661 orf1a 9076 9084 orf1a −11 2

COMP1 1394 1411 orf1a 10,951 10,968 orf1a −21.55 −6.94
COMP2 11,912 11,950 orf1a 18,905 18,944 orf1ab −21.88 −8.97
COMP3 3047 3073 orf1a 28,809 28,836 N −20.67 −8.74
COMP4 3177 3194 orf1a 25,546 25,563 orf3a −20 −8.89

FSE 13,462 - orf1a - 13,545 orf1ab −27.2 FUNCTIONAL
IMPORTANCE

Table 2. Dates of sequences from each variant as well as calculated background mutation rate.
Previous reports are 2.38E-06 per base per day.

Variant Oldest Sequence Most Recent Sequence Background/Genome-Wide Mutation Rate
(per Base, per Day)

Omicron 8 November 2021 17 May 2022 2.51 × 10−6

Delta 22 September 2020 15 August 2021 1.96 × 10−6

Beta 18 February 2020 5 November 2021 2.03 × 10−6

Alpha 1 December 2020 20 April 2021 2.43 × 10−6

Table 3. Pairwise distances between variants (mean number of differing bases for all sequences).
Calculated from the GISAID data using the MEGA software [32]. Number of sequences: Omicron-
8457, Delta-10000, Beta-4237, Alpha-10000.

Pairwise Distances

Omicron

Delta 86.88513

Beta 79.98906 56.01551

Alpha 78.80249 60.95150 49.47034

Omicron Delta Beta Alpha

2.1. Mutational Analysis of 8 RRI Candidates

To better understand how each SARS-CoV-2 RRI is conserved, regardless of variant,
the average mutations per base over all sequences were compared for each of the 8 RRIs.
Comp4 had the greatest number of mutations, whereas Exp1 had the least number of
mutations (See Table 4). Next, the mutations were categorized as compensatory, meaning
they accommodated for the RNA base pairings (A:U, G:C, G:U), and non-compensatory,
meaning they disrupted an RNA base pair. Exp2 and Comp1 RRIs showed higher than
90% compensatory mutations, meaning less than 10% of the single nucleotide variations
(SNVs) did not comply with the proposed structure. Comp4 had the lowest percentage
of non-structural mutations, at just over 12%. This was due to an “identifying mutation”
within the Beta sequences in orf3a (Q57H), which did not accommodate the structure, and
it is present in nearly all Beta sequences but no other variants. To understand whether
certain RRIs experience more/less variation, or if they just fall within highly variable
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regions of the genome, we compared the per base variation of each RRI to its surrounding
region (100 nt up and down stream). As expected, Comp4 showed twice the mutation
rate as its surrounding region due to the identifying Beta mutation. Additionally, Exp1,
Exp4, and Comp3 showed very little variation relative to their surrounding regions, which
corresponds with their lower mutation rates. The mutation analysis for the FSE revealed
that it has a mutation rate comparable to the eight long-range RRIs. Unexpectedly, FSE
also had more variation per base than the surrounding region, despite it being known that
alterations have deleterious effects. This is likely due to the presence of the super-structure
it resides in, as the surrounding bases would also be under selective pressures. Finally, the
ratio of compensatory mutations for the FSE was quite high as expected, providing further
evidence that the FSE structure is under structural constraints.

Table 4. Analysis of 8 RRI candidates across 32,714 SARS-CoV-2 genome sequences. Mutations per
sequence were calculated and normalized by interacting sequence length.

Name Mutations per Base per Sequence Relative Variation Ratio of Compensatory Mutations

Exp1 4.29 × 105 0.016 0.654

Exp2 3.96 × 104 1.209 0.947

Exp3 1.28 × 104 0.307 0.440

Exp4 6.31 × 105 0.059 0.725

Comp1 1.51 × 104 1.510 0.924

Comp2 1.08 × 104 1.440 0.521

Comp3 9.36 × 105 0.009 0.315

Comp4 7.62 × 103 2.203 0.125

FSE 1.35 × 104 1.383 0.882

A covariation analysis did not reveal any significantly co-varying base-pairs within
any of the 8 RRI candidates; however, the survival plots of exp4 and comp2 came close
to having a co-varying nucleotide pair that passes the 0.05 significance threshold (See
Figure 1). Additionally, the FSE showed no significant covariation. R-scape reports the
power and covariation scores that it uses to compute E-values. To know if an alignment
has sufficient variation, one must look at the power value which ranges from 0 to 1. A
low power indicates the covariation analysis is inconclusive. High power (>0.6) and no
covariation can serve as evidence against a conserved structure. Despite no significance
being found, it does not mean that the interactions do not exist, as Exp1–4 have already
proven to exist by experimental means, but rather that there may not be enough variation
to pass the statistical test or certain interactions may be well conserved in specific variants
and thus are hidden in the population. For Exp4, specifically, the power level was high,
and the amount of covariation was near significant. This is contrasted by Comp2, which
had a low power level and yet was close to significance due to just a few covarying bases.
The FSE showed moderate power levels for most base-pairs, with a few having low power.
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Figure 1. Survival Plots of two of the 8 RRI candidate regions. Each plot has two lines: Black indicates
a null distribution; Blue is all base pairs in the interaction. Exp4 is shown on Panel (a), with Comp2
on Panel (b). Significance cutoff used was 0.05.

2.2. Variant-Specific Analysis

Following the initial analysis of the 8 RRI regions, the sequences were then grouped
by their corresponding variants to investigate any trends specific to a variant or group
of variants. The calculations performed were identical to the initial analysis. First, the
variation relative to the surrounding region showed similar overall trends compared to
the first analysis, as expected (see Table 5). However, it was observed that there are
differences between the variants for certain RRI regions. For example, Comp1 had lower
variation compared to the surrounding region for all variants except Delta (number1 vs.
other numbers), and Exp1 had lower relative variation in Delta and Omicron but not in
Alpha and Beta (similarly give numbers). Additionally, Comp4 had much less relative
variation in Omicron, while it was much higher for the other three variants (See Table 5).
However, Comp2 and Comp4 each saw two variants with a higher variation relative to their
surrounding regions. Finally, the mutations were categorized as compensatory mutations
or non-compensatory mutations. Most RRIs show discrepancies across variants in terms of
% compensatory mutations. For instance, in the RRI Comp4 where the identifying mutation
was seen in the Beta variant, only 3% of Beta mutations accommodate the structure while
90% of Alpha mutations do. Additionally, it was observed that Exp2 and Exp4 both
showed an increase in the ratio of mutations which accommodated the structure in Alpha
to Omicron. Finally, the variant-specific analysis of the FSE revealed a stark difference
between variants with respect to both relative variation and compensatory mutations. The
results of our data are suggestive of the fact that long-range RRIs may be undergoing
different evolutionary pressures in different SARS-CoV-2 variants.
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Table 5. Variant-specific analysis of the 8 RRI candidates. Relative variation is normalized by the number
of sequences (value of 1 indicates an equal per base variation in the surrounding region, 100nt in each
direction). E-value reports the significance value of the R-scape covariation analysis, with the level of
power categorized as low if it is reported to be <10% (power is fraction of base pairs expected to covary).
Dispersion represents the standard deviation of % compensatory mutations for all variants.

Name Variant Variation Relative
to Context

Ratio of
Compensatory

Mutations

E-Value of Significantly
Covarying Base Pairs

(Low/High Power)
Dispersion

Exp1

Alpha 0.409 0.500 NA (low)

0.208
Beta 0.935 0.571 NA (low)

Delta 0.011 0.833 NA (low)

Omicron 0.006 0.333 NA (high)

Exp2

Alpha 0.180 0.684 NA (low)

0.140
Beta 3.916 0.993 NA (low)

Delta 1.919 0.943 NA (low)

Omicron 0.281 0.800 NA (high)

Exp3

Alpha 0.141 0.714 NA (low)

0.200
Beta 1.070 0.250 NA (low)

Delta 0.499 0.377 NA (low)

Omicron 0.160 0.545 NA (high)

Exp4

Alpha 0.344 0.600 NA (low)

0.155
Beta 0.892 0.500 0.05 (low)

Delta 0.025 0.750 NA (high)

Omicron 0.765 0.846 NA (high)

Comp1

Alpha 0.277 0.714 NA (high)

0.256
Beta 0.316 0.750 0.05 (low)

Delta 2.377 0.978 NA (low)

Omicron 0.667 0.357 NA (high)

Comp2

Alpha 0.673 0.722 NA (low)

0.229
Beta 0.505 0.909 NA (low)

Delta 1.982 0.360 NA (low)

Omicron 1.932 0.708 NA (low)

Comp3

Alpha 0.007 0.208 NA (low)

0.157
Beta 0.016 0.400 NA (low)

Delta 0.016 0.309 NA (low)

Omicron 0.004 0.577 NA (high)

Comp4

Alpha 3.307 0.898 NA (low)

0.357
Beta 6.028 0.033 NA (low)

Delta 1.329 0.500 NA (low)

Omicron 0.051 0.424 NA (low)

FSE

Alpha 1.626 0.968 NA (low)

0.208
Beta 0.668 0.571 NA (low)

Delta 0.982 0.887 NA (low)

Omicron 1.383 0.571 NA (low)

To determine whether any of the RRI candidates were evolving in a variant-specific
manner, sequences from each variant were separated and an identical R-scape analysis was
performed. The results showed that a majority of the RRIs still show no significance for any
variant; however, the Exp4 interval of Beta sequences, namely Beta Exp4, and Beta Comp1,
both showed significantly covarying base pairs (Figure 2a,b), despite having low power.
The Omicron Exp4 and Beta Comp3 analysis also showed some covariation; however,
neither were below the significance cutoff. Conversely, Comp1 showed little covariation
in all variants other than Beta. Again, most of the analysis resulted in low power values,
indicating a lack of variation in many RRIs for most variants.
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2.3. SHAPE Constraint Results

Once the predicted RRIs were analyzed, IntaRNA was used again, this time with added
SHAPE constraint data. These results were ranked (See Methods) and the top 5 selected
for further variant-specific analysis. Interestingly, the number one ranked prediction is the
same region as Comp2. Because of this, the next four were selected (Table 6) for covariation
analysis through R-scape. All these computational RRIs with SHAPE data did not have any
significant covariation. Omicron Shape1 and Delta Shape3 came close (Figure 3); however,
the rest did not. In the case of Omicron Shape1, it had low power and Delta Shape3 had
high power for some base pairs. The rest were mostly low power, again.

Table 6. List of computationally predicted RRIs with SHAPE data used in the analysis.

NAME 5′ START 5′ END 5′ GENE 3′START 3′END 3′ GENE ENERGY RESIDUAL

SHAPE1 15,893 15,970 orf1ab 28,383 28,454 N −25.77 −8.40

SHAPE2 20,068 20,193 orf1ab 22,327 22,433 S −27.22 −8.32

SHAPE3 9077 9222 orf1a 12,748 12,876 orf1a −27.86 −8.19

SHAPE4 5367 5402 orf1a 24,114 24,157 S −24.21 −8.14
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3. Discussion

Long-range RRIs have are critical to the life cycle of coronaviruses in general. Identifi-
cation of these high-order RNA-RNA interacting regions can enhance our knowledge of the
viral life cycle. In addition, SARS-CoV-2 is a persistent virus which is constantly evolving
into new variants. Knowledge on the evolutionary changes of long-range RRIs can also aid
more effective characterizations of different variants and potentially help predict emerging
ones. In this work, we focused on monitoring meaningful changes in long-range RRIs
within the population of gathered sequences. For this purpose, we selected a total of eight
long-range RRIs from both the literature (four RRIs) and computational predictions (four
RRIs). Our computational predictions were a result of an in silico fragment-based approach
that deployed IntaRNA software. We then selected four candidates based on the thermody-
namic stability of predictions. The purpose of including computational predictions was to
further explore the space of possible long-range RRIs and possibly predict emerging RRIs
that were not yet experimentally validated. We first investigated RRI co-evolution by inves-
tigating mutational patterns within the population of gathered sequences. Subsequently, to
investigate any variant-specific RRI changes, we investigated the same mutational patterns
within the population of sequences belonging to a specific variant. Our study included
Alpha, Beta, Delta, and Omicron variants.

Genomic coordinates of the four long-range RRIs in this study are shown in Table 1.
The coordinates of both experimental (Exp) and computational (Comp) RRIs include a
variety of genes and regions on the genomic RNA. Data consisting of over 32,000 sequences
obtained from GSAIDwas investigated for assessing evolutionary changes. To explore RRI
structural changes, we looked at distinctive features such as the number of compensatory
mutations, conservation (relative variation), and significance of co-varying mutations for
each RRI. Table 4 summarizes the statistics for sequence conservation and co-evolution. We
can generally see that mutation rates are heterogeneous across RRI regions, reconfirming
different evolutionary rates and constraints on different regions of the genomic RNA.
Certain RRIs such as Exp1 and Exp4 showed relatively high conservation, while other
RRIs such as Exp2 and the predicted RRI Comp1 contained high numbers of compensatory
mutations. Statistical analyses performed via R-scape, however, did not indicate any
significantly co-varying mutation for any of the eight RRIs, as all p-values were higher
than the 0.05 threshold. These values are not corrected for multiple testing and the real
significance values should be even less than individually obtained p-values. Computational
predictions were repeated, using SHAPE data as a constraint, and no significance was found
in the top hits when using SHAPE. Although imputing SHAPE data for RRI prediction is
becoming more popular, especially for local structure prediction, it should be used with
caution when mapping long-range RRIs. Given our data and analysis, there is no evidence
that the two regions of any investigated RRI are co-evolving within the population of
sequences. The low significance of results were likely due to two factors. First, it could have
been that not enough mutation had occurred within the tested population of sequences,
which could be due to other constraints on these genomic intervals [33]. Rivas et al. mention
that a lack of significant E-values does not necessarily argue against a conserved structure;
an alignment could simply have too little variation for the co-varying bases to be deemed
significant [34]. Second, it could have been that different sub-categories or variants of SARS-
CoV-2 virus are evolving differently, causing the overall aggregate insignificant results. For
the latter, we chose to further investigate variant-specific compensatory mutations.

The SARS-CoV-2 variant had different mutation rates and evolutionary patterns. On a
genomic level, Table 2 shows the average pairwise distance between the variants. Omicron,
being the more recent variant, had the highest sequence divergence from other variants.
Omicron is also observed to have a higher mutation rate than the other three variants (See
Table 3). Delta, on the other hand, had the lowest mutation rate. Table 2 suggests that
Alpha and Beta variants are closer to each other than to other variants.

Mutational rates and patterns were different across the RRIs, as well as across variants.
Variant-specific analysis shown in Table 5 suggests heterogeneity of sequence conservation,
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as well as that of compensatory mutation. Long-range RRIs Exp1 and Comp4 showed the
highest dispersion of compensatory mutation rates across variants, where dispersion is
quantified by the standard deviation in average observed compensatory mutation rates
across variants. Here, we will briefly discuss some of the RRIs for which we observed
extreme values.

3.1. FSE Mutations Were Not Consistent across Variants

Overall, the somewhat high relative variation seen for the FSE across all sequences was
expected, due to the surrounding super-structure also being under selection. The ratio of
compensatory mutations was quite high, indicating it is under selection in the population.
For the variant-specific analysis, Alpha and Delta had a higher ratio of compensatory
mutations compared to Beta and Omicron. The FSE in both the Alpha and Omicron
variants showed a higher mutation rate than the surrounding region. However, the ratio of
compensatory mutations in Alpha was much higher than that of Omicron. Additionally,
the mutation rate for the FSE in Beta and Delta was lower than the surrounding region.
Despite this, Beta and Delta show a similar difference in compensatory mutations as Alpha
and Omicron. To better understand the feature-specific variation within each variant,
mutations were grouped by feature. The slippery sequence had no mutations in any
variant, which was expected because the specific bases UUUAAA are required for ribosomal
frameshifting to occur in SARS-CoV. The upstream stem-loop attenuator showed only a
few mutations, none of which were consistent across variants. Finally, analysis of features
within the FSE revealed some differences between variants. Both Beta and Omicron had
most mutations within unpaired bases of the FSE, as expected. The Alpha variant, however,
had most of the mutations reside in the pseudoknot of the FSE, all of which accommodated
the structure. Overall, stem-loop 1 and stem-loop 3 contained very few mutations in
all variants except for Delta. Delta contained nearly 75% of the FSE mutations within
stem-loop 1, most of which accommodate the structure, and almost no mutations within
the pseudoknot. The differences in mutations for specific features of the FSE indicate
variant-specific selection. (NO mutations at all in slippery sequence upstream of FSE.)
Additionally, high relative variation makes sense because FSE resides in FSE-arch super
structure which is also conserved. Additionally, the attenuator hairpin upstream of the
slippery site experienced mutations at about half the rate of the FSE, showing 5.50E-05
mutations per base per sequence. The results suggest the variant-specific evolution of
the FSE and further analysis of the function and structure of this feature should consider
variant specificity.

3.2. Exp1 Is Variant Specificity for Orf1ab-Orf1ab RRI (Exp1)

The Delta variant had the highest percentage of compensatory mutations in Exp1 (0.83)
compared to those of other variants. Omicron variant had the lowest percentage (0.33),
while showing lower sequence conservation in this region. While the average percentage of
compensatory mutation was only 0.6538 (Table 4), variant-specific tests revealed divergent
behavior. It is suggested that Exp1 RRI is more structurally conserved in the Delta variant
than other ones. In addition, heterogeneous sequence conservation seen in Table 5 further
suggests that this region is undergoing different evolutionary changes in different variants,
where it is much less conserved in the Omicron variant than others. Given that the average
percentage of compensatory mutations had the fourth highest dispersion amongst the eight
RRIs, we speculate that the Exp1 long-range interaction may be undergoing variant-specific
evolutionary changes over time. The covariation analysis provided no further insight, as
the low power values indicate there is not enough variation for the statistical test.

3.3. Another Orf1ab-Orf1ab RRI (Exp2) Is Consistent across Variants

The Exp2 long-range RRI had the highest percentage of compensatory interactions
observed amongst the eight studied RRIs, with the percentage of compensatory mutations
being 0.9472 (See Table 4). The two intervals of Exp2 both occur in Orf1ab and, interestingly,
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contain more mutations than their surrounding regions, where relative variation is around
1.2 (See Table 4). Variant-specific tests do not suggest any heterogeneity across variants as
the percentage of compensatory mutations are above 0.5 for all variants and the dispersion
of values is the lowest among the eight RRIs (See Table 5). Overall, our results suggest
that Exp2 is consistently present in all four SARS-CoV-2 variants and does not undergo
any dramatic changes. This is also supported by the covariation analysis, which shows
low variation for this RRI in all variants. The biological relevance of this interaction and
Exp1 has not been explored, though it was proposed that they play roles in discontinuous
transcription and/or replication [11].

3.4. Orf1a-Orf1a RRI (Exp4) Is Consistent across Variants with Significant Covariation

The Exp4 long-range RRI had a percentage of compensatory mutations ranging from
0.5 in Beta to 0.85 in Omicron, with the average rate being 72.5%, ranking it as third
highest among the eight RRIs (see Tables 4 and 5). Additionally, the relative mutation
rates for all variants were low, indicating conservation of this region relative to flanking
regions. Both interacting regions of Exp4 lie within Orf1a, so the consistent low relative
variation was unexpected. The 5′ region of this interaction is also reported to interact
with two other regions of Orf1a, one being the Exp3 interaction and the other being 2 kb
upstream [11]. These three interactions likely play a role in the discontinuous transcription
or viral replication by bringing elements into physical proximity. Exp4 was found to
be consistent across variants, as the low dispersion value suggests (see Table 5). Thus,
similar to Exp2, it was concluded that Exp4 likely is not undergoing any dramatic changes.
The covariation analysis did report significant covariation in the beta variant; however,
covariation was also present in Alpha and Omicron despite it not being significant. Overall,
it was concluded that Exp4 likely is not showing variant-specific conservation, but future
analysis after more mutation accumulation is needed due to Exp4 showing near significance
for the analysis of all sequences (see Figure 1).

3.5. Predicted Orf1a-Orf1a RRI (Comp1) Shows Evidence Suggestive of Variant Specificity

The computationally-predicted RRI Comp1 was observed to have a high percentage of
compensatory mutations. Comp1′s interacting regions have similar statistics to Exp2 in that
they contain both high compensatory mutations and higher mutations than surrounding
regions (See Table 4). Both intervals of Comp1 are in Orf1a. Table 5 suggests a high disper-
sion of average compensatory mutation values across variants, with Omicron containing
less compensatory mutations than the other variants in this region. Given the ranking of
this region in our computational analysis and the high percentage of observed compen-
satory mutations in this interval, we speculate that Comp1 may be a novel long-range RRI.
Dispersion values, however, are not extreme enough to suggest variant specificity for this
putative RRI. The likelihood of variant specificity is especially low, since the variant with
lower compensatory mutation, namely Omicron, has a more divergent sequence. Given
that our computational predictions were based only the reference sequence, it is expected
that the Omicron and Delta variants would have diverging percentages of compensatory
mutations and base-pairing mismatches. Additionally, the covariation analysis showed
significant covariation for Beta Comp1. The lack of significance in other variants does
not mean the interaction is specific to Beta, as the low power values reported by R-scape
indicate not enough variation has occurred for the test to be relevant. Overall, the high
percentage of compensatory mutations along with the lower relative mutation rate and
significant covariation in Beta serve as evidence for the existence of this RRI.

3.6. Orf1a-Orf1ab RRI (Comp4) Shows Statistical Evidence of Variant Specificity

The Comp4 prediction occurs between Orf1a and Orf3a. This is an interesting predic-
tion. At first glance, there seems to be high sequence variation (low sequence conservation)
in this region and there is a low percentage of compensatory mutations associated with
it (See Table 4). When we break the data into variants, however, we observed the highest
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dispersion amongst variants, SD = 0.3566861. Sequences in the Alpha variant contained
as high as 0.9 compensatory mutations, while this value was dramatically lower in the
Beta variant, dropping to 0.03 (See Table 5). This is rather surprising since both Alpha
and Beta variants were observed to have relatively high mutations in Comp4 intervals
and in regions surrounding it. The Beta variant’s high number of mutations are due to an
identifying mutation in the interacting region, not present in the other variants. Unlike
Alpha, the mutations occurring in the Beta variants do not accommodate for the long-range
RRI prediction. Figure 2a,b show the trend of Comp4 mutation over time. As we can see,
mutations occurring from the summer of 2021 to winter of 2021 in the Beta variant, shown
in green, contain a much lower percentage of compensatory mutations. No significant
covariation was observed for any of the variants; however, like many of the other RRIs, the
covariation analysis reported low power values, indicating an overall lack of variation in
all variants other than Beta, due to its identifying mutation.

4. Materials and Methods
4.1. Long-Range RRI Selection

Four experimentally verified long-range interactions were chosen to be included in
the analysis. These ranges were chosen from the COMRADES experiment performed by
Ziv et al. [11]. Of the eight reported long-range interactions, those which were located
near a known conserved RNA structure were prioritized, assuming that their likelihood
for being structurally functional would be higher [35]. Additionally, long-range RRIs
were predicted using IntaRNA 3.2.0 (University of Freiburg Breisgau, Germany) [28,29].
The reference genome for SARS-CoV-2, NC_045512.2, was used to make the interaction
prediction, utilizing slices of 200 nt and 500 nt windows with an overlap of 50 nt of the
reference genome. The focus of this study is on long range interactions, so any predicted
RRI where the beginning of 5′ end and beginning of the 3′ were less than 2000 nt apart were
filtered out. Additionally, since the 5′ and 3′ UTR have been studied in detail and bind to
many locations in the genome, any interactions predicted in these regions were filtered
out as well in order to focus on regions in the SARS-CoV-2 genome that are less studied in
detail. In order to rank the results, the residual values from performing generalized linear
regression on the length of the 5′ end of the interaction, plus the length of the 3′ end of
the interaction normalized by the interaction energy value, were used. The most negative
residual values were chosen as the highest ranks because that shows the RRI has a much
lower energy level than would be expected based upon the regression. This method was
used instead of the p-values, because they were all significant. The overall top hits were the
cumulative top hits across all runs (see Table 1). To provide more context to make a more
constrained prediction, IntaRNA was again used with SHAPE data from [17], following
the same procedure for filtering and ranking the results.

4.2. Sequence Collection

Data were collected from the GISAID database (www.GISAID.org, accessed on 20 May
2022). Only sequences labeled as the variants Alpha, Beta, Delta, and Omicron were used.
Additionally, the sequences were required to be complete with high coverage, along with a
collection date. All the available Beta (4237) and Omicron (8457) sequences at the time of
collection were selected to not overly unbalance the dataset while still collecting a large
sample set; 10,000 sequences of Alpha and Beta were sampled. The sequences used have
different ranges of submission dates for each variant, as shown in Table 2. Additionally, the
sequences used come from 92 different countries, with about half of the data originating
from France, Italy, USA, or Mexico. The sampled genomes were then aligned using
MAFFT [36,37]. Once the sequences were collected and aligned, preprocessing was carried
out such that the interacting regions from the chosen experimentally determined RRIs
from [11] and the top computationally predicted RRIs were selected and collated into
Stockholm formatted files, first grouped only by the RRI, and then by each variant within the

www.GISAID.org
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RRI group for further analysis. Interaction sequences that contained gaps were permitted
in our analysis and R-scape also has methods to handle them, so they were not filtered out.

4.3. Mutation Calculations

The mutations were calculated by using the Stockholm files generated, and where the
bases in the sampled sequences differed from the reference genome it was counted as a
mutation. The count was then normalized by the length of the interacting sequence. %
Compensatory refers to the percentage of mutations which do not disrupt the structure,
specifically in the case of alternative base pairing such as GU [38]. It is derived by dividing
the number of compensatory mutations by all mutations within an RRI. Relative variation
shows the number of mutations in an RRI per base, divided by that of the surrounding
region (100 nt up and down stream); a value higher than 1 would indicate more variation
within the RRI compared to the context.

4.4. Covariation Analysis

Using R-scape 2.0.0 (Harvard University Cambridge, Massachusetts USA) [33,34,39]
and a proposed structure calculated through the Bifold tool from RNAstructure 6.4 (Uni-
versity of Rochester Medical Center Rochester, New York, NY, USA) [40,41], a covariation
analysis was performed for each RRI across all sequences, with an E-value significance
level of 0.05. This was carried out to assess co-evolving regions of the experimental RRIs
and to validate the existence of the computationally predicted RRIs. Additionally, this
analysis was performed to validate the results of the structural mutation calculations. A
similar analysis was subsequently performed for each RRI but separated by variant to
elucidate any variant-specific co-evolution that may be lost when all variants are grouped
together. For all R-scape analyses, the recommended default parameters were used due to
the two-set test not being sensitive enough for our data. Survival Plots were generated for
each R-scape run. The ‘–gapthresh’ option was used to omit sequences with gaps.

5. Conclusions

Our population-based analyses suggested variant specificity for certain RRIs, despite
the covariation analysis having lower power than many of the RRIs, is the most powerful
way to identify significantly co-varying nucleotides within. One of the computationally
predicted RRIs, Comp1, was found to have statistically significant covariation in the Beta
variant. Interestingly, this significant covariation was only present when the sequences were
not aggregated (Table 4, Figure 1), but rather separated into variant-specific sets, and only
seen within the beta variant, as seen in Table 5 and Figure 2b. This demonstrates the variant
specificity of the interaction, located within Orf1a. It was shown that an experimentally
verified long-range RRI, here Exp1, can have variant-specific behavior as well, see Table 5
and Figure 2a. Thus, our results suggest that when performing population-based analyses,
aggregate tests may not be sufficient to identify novel RRIs. Certain RRIs are evolving
differently in different variants, and it is critical to study their changes in sub-populations of
SARS-CoV-2 sequences. The Comp1 interaction was not detected in the entire population
of sequences (see Table 4); however, when sequences were grouped by variant it was
detected as significantly covarying (see Table 5 and Figure 2). Additionally, evidence was
found for variant-specific evolution of the FSE, which has been proposed as a possible
drug target. Variant specificity should be considered when targeting this structure for
drug treatment of SARS-CoV-2. Furthermore, SHAPE constrained predictions revealed no
significant covariation and should likely be used with caution when mapping long-range
RRIs. As some of the RRIs show variant-specific behavior, it is demonstrated that one
component of evolution of the SARS-CoV-2 virus is how it interacts within itself, alongside
the interactions the virus has with the host. Experimental procedures must be carried out
to further understand the function of the novel Orf1a RRI and the mechanism by which it
acts. Future studies, conducted after more mutations accumulate in SARS-CoV-2 variants,
will provide further insights into the variant-specific evolution of these RRIs.



Int. J. Mol. Sci. 2022, 23, 11050 14 of 15

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms231911050/s1.

Author Contributions: Conceptualization, A.M.; methodology, M.D., D.S. and P.V.; software, M.D,
D.S. and P.V.; validation, A.M., M.D., D.S. and P.V.; formal analysis, M.D., P.V. and D.S.; investigation,
M.D., D.S., P.V. and A.M.; resources, A.M., D.S. and P.V.; data curation, M.D. and D.S.; writing—
original draft preparation, M.D. and D.S.; writing—review and editing, M.D. and D.S.; visualization,
M.D. and P.V.; supervision, A.M.; project administration, A.M.; funding acquisition, A.M. All authors
have read and agreed to the published version of the manuscript.

Funding: The IUPUI Open Access Fund covered publishing costs, provided by the IUPUI Library.

Data Availability Statement: Available upon request.

Acknowledgments: BioHealth Informatics Student Hourly Employment.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from

Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [CrossRef] [PubMed]
2. Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.; et al. Clinical Characteristics of

Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [CrossRef] [PubMed]
3. Karim, S.S.A.; Karim, Q.A. Omicron SARS-CoV-2 variant: A new chapter in the COVID-19 pandemic. Lancet 2021, 398, 2126–2128.

[CrossRef]
4. Vasireddy, D.; Vanaparthy, R.; Mohan, G.; Malayala, S.V.; Atluri, P. Review of COVID-19 Variants and COVID-19 Vaccine Efficacy:

What the Clinician Should Know? J. Clin. Med. Res. 2021, 13, 317–325. [CrossRef] [PubMed]
5. Fontanet, A.; Autran, B.; Lina, B.; Kieny, M.P.; Karim, S.S.A.; Sridhar, D. SARS-CoV-2 variants and ending the COVID-19 pandemic.

Lancet 2021, 397, 952–954. [CrossRef]
6. Akkiz, H. The Biological Functions and Clinical Significance of SARS-CoV-2 Variants of Corcern. Front. Med. 2022, 9, 849217.

[CrossRef]
7. Sola, I.; Almazan, F.; Zúñiga, S.; Enjuanes, L. Continuous and Discontinuous RNA Synthesis in Coronaviruses. Annu. Rev. Virol.

2015, 2, 265–288. [CrossRef]
8. Tang, J.W.; Bahnfleth, W.P.; Bluyssen, P.M.; Buonanno, G.; Jimenez, J.L.; Kurnitski, J.; Li, Y.; Miller, S.; Sekhar, C.; Morawska, L.;

et al. Dismantling myths on the airborne transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J. Hosp.
Infect. 2021, 110, 89–96. [CrossRef]

9. Hosseini, E.S.; Kashani, N.R.; Nikzad, H.; Azadbakht, J.; Bafrani, H.H.; Kashani, H.H. The novel coronavirus Disease-2019
(COVID-19): Mechanism of action, detection and recent therapeutic strategies. Virology 2020, 551, 1–9. [CrossRef]

10. Kelly, J.A.; Olson, A.N.; Neupane, K.; Munshi, S.; San Emeterio, J.; Pollack, L.; Woodside, M.T.; Dinman, J.D. Structural and
functional conservation of the programmed-1 ribosomal frameshift signal of SARS-CoV-2. J. Biol. Chem. 2020, 295, 10741–10748.
[CrossRef]

11. Ziv, O.; Price, J.; Shalamova, L.; Kamenova, T.; Goodfellow, I.; Weber, F.; Miska, E.A. The Short- and Long-Range RNA–RNA
Interactome of SARS-CoV-2. Mol. Cell 2020, 80, 1067–1077.e5. [CrossRef] [PubMed]

12. Kim, D.; Lee, J.Y.; Yang, J.S.; Kim, J.W.; Kim, V.N.; Chang, H. The Architecture of SARS-CoV-2 Transcriptome. Cell 2020, 181,
914–921.e10. [CrossRef] [PubMed]

13. Yao, H.; Song, Y.; Chen, Y.; Wu, N.; Xu, J.; Sun, C.; Zhang, J.; Weng, T.; Zhang, Z.; Wu, Z.; et al. Molecular Architecture of the
SARS-CoV-2 Virus. Cell 2020, 183, 730–738.e13. [CrossRef] [PubMed]

14. Mateos-Gomez, P.A.; Zuniga, S.; Palacio, L.; Enjuanes, L.; Sola, I. Gene N proximal and distal RNA motifs regulate coronavirus
nucleocapsid mRNA transcription. J. Virol. 2011, 85, 8968–8980. [CrossRef]

15. Karthic, A.; Kesarwani, V.; Singh, R.K.; Yadav, P.K.; Chaturvedi, N.; Chauhan, P.; Yadav, B.S.; Kushwaha, S.K. Computational
Analysis Reveals Monomethylated Triazolopyrimidine as a Novel Inhibitor of SARS-CoV-2 RNA-Dependent RNA Polymerase
(RdRp). Molecules 2022, 27, 801. [CrossRef]

16. Manfredonia, I.; Nithin, C.; Ponce-Salvatierra, A.; Ghosh, P.; Wirecki, T.K.; Marinus, T.; Ogando, N.S.; Snijder, E.J.; van Hemert,
M.J.; Bujnicki, J.M.; et al. Genome-wide mapping of SARS-CoV-2 RNA structures identifies therapeutically-relevant elements.
Nucleic Acids Res. 2020, 48, 12436–12452. [CrossRef]

17. Huston, N.C.; Wan, H.; Strine, M.S.; Tavares, R.D.C.A.; Wilen, C.B.; Pyle, A.M. Comprehensive in vivo secondary structure of the
SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms. Mol. Cell 2021, 81, 584–598.e5. [CrossRef]

18. Lan, T.C.T.; Allan, M.F.; Malsick, L.E.; Woo, J.Z.; Zhu, C.; Zhang, F.; Khandwala, S.; Nyeo, S.S.; Sun, Y.; Guo, J.U.; et al. Secondary
structural ensembles of the SARS-CoV-2 RNA genome in infected cells. Nat. Commun. 2022, 13, 1128. [CrossRef]

19. Xue, Y. Architecture of RNA-RNA interactions. Curr. Opin. Genet Dev. 2022, 72, 138–144. [CrossRef]

https://www.mdpi.com/article/10.3390/ijms231911050/s1
https://www.mdpi.com/article/10.3390/ijms231911050/s1
http://doi.org/10.1056/NEJMoa2001017
http://www.ncbi.nlm.nih.gov/pubmed/31978945
http://doi.org/10.1056/NEJMoa2002032
http://www.ncbi.nlm.nih.gov/pubmed/32109013
http://doi.org/10.1016/S0140-6736(21)02758-6
http://doi.org/10.14740/jocmr4518
http://www.ncbi.nlm.nih.gov/pubmed/34267839
http://doi.org/10.1016/S0140-6736(21)00370-6
http://doi.org/10.3389/fmed.2022.849217
http://doi.org/10.1146/annurev-virology-100114-055218
http://doi.org/10.1016/j.jhin.2020.12.022
http://doi.org/10.1016/j.virol.2020.08.011
http://doi.org/10.1074/jbc.AC120.013449
http://doi.org/10.1016/j.molcel.2020.11.004
http://www.ncbi.nlm.nih.gov/pubmed/33259809
http://doi.org/10.1016/j.cell.2020.04.011
http://www.ncbi.nlm.nih.gov/pubmed/32330414
http://doi.org/10.1016/j.cell.2020.09.018
http://www.ncbi.nlm.nih.gov/pubmed/32979942
http://doi.org/10.1128/JVI.00869-11
http://doi.org/10.3390/molecules27030801
http://doi.org/10.1093/nar/gkaa1053
http://doi.org/10.1016/j.molcel.2020.12.041
http://doi.org/10.1038/s41467-022-28603-2
http://doi.org/10.1016/j.gde.2021.11.007


Int. J. Mol. Sci. 2022, 23, 11050 15 of 15

20. Rivera, A.P.; Monar, G.V.; Islam, H.; Puttagunta, S.M.; Islam, R.; Kundu, S.; Jha, S.B.; Sange, I. Ulcerative Colitis-Induced Colorectal
Carcinoma: A Deleterious Concatenation. Cureus 2022, 14, e22636. [CrossRef]

21. Plant, E.P.; Sims, A.C.; Baric, R.S.; Dinman, J.D.; Taylor, D.R. Altering SARS coronavirus frameshift efficiency affects genomic and
subgenomic RNA production. Viruses 2013, 5, 279–294. [CrossRef] [PubMed]

22. Yan, S.; Zhu, Q.; Jain, S.; Schlick, T. Length-dependent motions of SARS-CoV-2 frameshifting RNA pseudoknot and alternative
conformations suggest avenues for frameshifting suppression. Nat. Commun. 2022, 13, 4284. [CrossRef] [PubMed]

23. Gorbalenya, A.E.; Enjuanes, L.; Ziebuhr, J.; Snijder, E.J. Nidovirales: Evolving the largest RNA virus genome. Virus Res. 2006, 117,
17–37. [CrossRef]

24. Rahimi, A.; Mirzazadeh, A.; Tavakolpour, S. Genetics and genomics of SARS-CoV-2: A review of the literature with the special
focus on genetic diversity and SARS-CoV-2 genome detection. Genomics 2021, 113 Pt 2, 1221–1232. [CrossRef] [PubMed]

25. Laha, S.; Chakraborty, J.; Das, S.; Manna, S.K.; Biswas, S.; Chatterjee, R. Characterizations of SARS-CoV-2 mutational profile,
spike protein stability and viral transmission. Infect. Genet. Evol. 2020, 85, 104445. [CrossRef] [PubMed]

26. Young, B.E.; Fong, S.W.; Chan, Y.H.; Mak, T.M.; Ang, L.W.; Anderson, D.E.; Lee, C.Y.P.; Amrun, S.N.; Lee, B.; Goh, Y.S.; et al. Effects
of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: An observational
cohort study. Lancet 2020, 396, 603–611. [CrossRef]

27. Omoru, O.B.; Pereira, F.; Janga, S.C.; Manzourolajdad, A. A Putative long-range RNA-RNA interaction between ORF8 and Spike
of SARS-CoV-2. PLoS ONE 2022, 17, e0260331. [CrossRef]

28. Mann, M.; Wright, P.R.; Backofen, R. IntaRNA 2.0: Enhanced and customizable prediction of RNA-RNA interactions. Nucleic
Acids Res. 2017, 45, W435–W439. [CrossRef]

29. Busch, A.; Richter, A.S.; Backofen, R. IntaRNA: Efficient prediction of bacterial sRNA targets incorporating target site accessibility
and seed regions. Bioinformatics 2008, 24, 2849–2856. [CrossRef]

30. Schlick, T.; Zhu, Q.; Jain, S.; Yan, S. Structure-altering mutations of the SARS-CoV-2 frameshifting RNA element. Biophys. J. 2021,
120, 1040–1053. [CrossRef]

31. Liu, Q.; Zhao, S.; Shi, C.M.; Song, S.; Zhu, S.; Su, Y.; Zhao, W.; Li, M.; Bao, Y.; Xue, Y.; et al. Population Genetics of SARS-CoV-2:
Disentangling Effects of Sampling Bias and Infection Clusters. Genom. Proteom. Bioinform. 2020, 18, 640–647. [CrossRef] [PubMed]

32. Kumar, S.; Nei, M.; Dudley, J.; Tamura, K. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein
sequences. Brief. Bioinform. 2008, 9, 299–306. [CrossRef] [PubMed]

33. Rivas, E. RNA structure prediction using positive and negative evolutionary information. PLoS Comput. Biol. 2020, 16, e1008387.
[CrossRef]

34. Rivas, E.; Clements, J.; Eddy, S.R. A statistical test for conserved RNA structure shows lack of evidence for structure in lncRNAs.
Nat. Methods 2017, 14, 45–48. [CrossRef]

35. Rangan, R.; Zheludev, I.N.; Das, R. RNA genome conservation and secondary structure in SARS-CoV-2 and SARS-related viruses.
RNA 2020, 26, 937–959. [CrossRef] [PubMed]

36. Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and
visualization. Brief Bioinform. 2019, 20, 1160–1166. [CrossRef] [PubMed]

37. Kuraku, S.; Zmasek, C.M.; Nishimura, O.; Katoh, K. aLeaves facilitates on-demand exploration of metazoan gene family trees on
MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res. 2013, 41, W22–W28. [CrossRef]

38. Hermann, T.; Westhof, E. Non-Watson-Crick base pairs in RNA-protein recognition. Chem. Biol. 1999, 6, R335–R343. [CrossRef]
39. Rivas, E.; Clements, J.; Eddy, S.R. Estimating the power of sequence covariation for detecting conserved RNA structure.

Bioinformatics 2020, 36, 3072–3076. [CrossRef]
40. Bellaousov, S.; Reuter, J.S.; Seetin, M.G.; Mathews, D.H. RNAstructure: Web servers for RNA secondary structure prediction and

analysis. Nucleic Acids Res. 2013, 41, W471–W474. [CrossRef]
41. Mathews, D.H.; Burkard, M.E.; Freier, S.M.; Wyatt, J.R.; Turner, D.H. Predicting oligonucleotide affinity to nucleic acid targets.

RNA 1999, 5, 1458–1469. [CrossRef] [PubMed]

http://doi.org/10.7759/cureus.22636
http://doi.org/10.3390/v5010279
http://www.ncbi.nlm.nih.gov/pubmed/23334702
http://doi.org/10.1038/s41467-022-31353-w
http://www.ncbi.nlm.nih.gov/pubmed/35879278
http://doi.org/10.1016/j.virusres.2006.01.017
http://doi.org/10.1016/j.ygeno.2020.09.059
http://www.ncbi.nlm.nih.gov/pubmed/33007398
http://doi.org/10.1016/j.meegid.2020.104445
http://www.ncbi.nlm.nih.gov/pubmed/32615316
http://doi.org/10.1016/S0140-6736(20)31757-8
http://doi.org/10.1371/journal.pone.0260331
http://doi.org/10.1093/nar/gkx279
http://doi.org/10.1093/bioinformatics/btn544
http://doi.org/10.1016/j.bpj.2020.10.012
http://doi.org/10.1016/j.gpb.2020.06.001
http://www.ncbi.nlm.nih.gov/pubmed/32663617
http://doi.org/10.1093/bib/bbn017
http://www.ncbi.nlm.nih.gov/pubmed/18417537
http://doi.org/10.1371/journal.pcbi.1008387
http://doi.org/10.1038/nmeth.4066
http://doi.org/10.1261/rna.076141.120
http://www.ncbi.nlm.nih.gov/pubmed/32398273
http://doi.org/10.1093/bib/bbx108
http://www.ncbi.nlm.nih.gov/pubmed/28968734
http://doi.org/10.1093/nar/gkt389
http://doi.org/10.1016/S1074-5521(00)80003-4
http://doi.org/10.1093/bioinformatics/btaa080
http://doi.org/10.1093/nar/gkt290
http://doi.org/10.1017/S1355838299991148
http://www.ncbi.nlm.nih.gov/pubmed/10580474

	Introduction 
	Results 
	Mutational Analysis of 8 RRI Candidates 
	Variant-Specific Analysis 
	SHAPE Constraint Results 

	Discussion 
	FSE Mutations Were Not Consistent across Variants 
	Exp1 Is Variant Specificity for Orf1ab-Orf1ab RRI (Exp1) 
	Another Orf1ab-Orf1ab RRI (Exp2) Is Consistent across Variants 
	Orf1a-Orf1a RRI (Exp4) Is Consistent across Variants with Significant Covariation 
	Predicted Orf1a-Orf1a RRI (Comp1) Shows Evidence Suggestive of Variant Specificity 
	Orf1a-Orf1ab RRI (Comp4) Shows Statistical Evidence of Variant Specificity 

	Materials and Methods 
	Long-Range RRI Selection 
	Sequence Collection 
	Mutation Calculations 
	Covariation Analysis 

	Conclusions 
	References

