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Fusion of anatomic information in computed tomography (CT) and functional 
information in 18F-FDG positron emission tomography (PET) is crucial for accurate 
differentiation of tumor from benign masses, designing radiotherapy treatment plan 
and staging of cancer. Although current PET and CT images can be acquired from 
combined 18F-FDG PET/CT scanner, the two acquisitions are scanned separately 
and take a long time, which may induce potential positional errors in global and 
local caused by respiratory motion or organ peristalsis. So registration (alignment) 
of whole-body PET and CT images is a prerequisite for their meaningful fusion. 
The purpose of this study was to assess the performance of two multimodal reg-
istration algorithms for aligning PET and CT images. The proposed gradient of 
mutual information (GMI)-based demons algorithm, which incorporated the GMI 
between two images as an external force to facilitate the alignment, was compared 
with the point-wise mutual information (PMI) diffeomorphic-based demons 
algorithm whose external force was modified by replacing the image intensity 
difference in diffeomorphic demons algorithm with the PMI to make it appropri-
ate for multimodal image registration. Eight patients with esophageal cancer(s) 
were enrolled in this IRB-approved study. Whole-body PET and CT images were 
acquired from a combined 18F-FDG PET/CT scanner for each patient. The modi-
fied Hausdorff distance (dMH) was used to evaluate the registration accuracy of 
the two algorithms. Of all patients, the mean values and standard deviations (SDs) 
of dMH were 6.65 (± 1.90) voxels and 6.01 (± 1.90) after the GMI-based demons 
and the PMI diffeomorphic-based demons registration algorithms respectively. 
Preliminary results on oncological patients showed that the respiratory motion and 
organ peristalsis in PET/CT esophageal images could not be neglected, although 
a combined 18F-FDG PET/CT scanner was used for image acquisition. The PMI 
diffeomorphic-based demons algorithm was more accurate than the GMI-based 
demons algorithm in registering PET/CT esophageal images.

PACS numbers: 87.57.nj, 87.57. Q-, 87.57.uk
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I. INTRODUCTION

Multimodal image registration and fusion of PET and CT play an important role in clinic 
because they allow accurate localization of tumors, shown straightforwardly by PET, with 
respect to detailed anatomic information by CT.(1-3) Furthermore, the precise identification and 
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localization of potential tumors with respect to CT can ensure the delivery of highly conformal 
doses to the tumors(4) without harming surrounding healthy tissues and organs.(5) Fused PET/
CT images have also been used for cancer staging and recurrent tumor detection.(4,6) The rapid 
emergence of combined PET/CT scanners in recent years confirms their clinical values in 
providing complementary information from these two modalities.

Registration of whole-body PET and CT images is a foundation for the fusion of the two 
modalities; however, the registration could only be performed manually or using software before 
the advent of combined PET/CT scanners. The manual registration approaches are slow and 
tedious and mostly limited to rigid registration. Several software algorithms achieving nonrigid 
image registration have been reported.(6-8) However, the combined PET/CT scanners have sim-
plified multimodal image registration by performing the PET and CT scans successively with 
minimized patient movement and then appropriately moving one scan with respect to another. 
Although the combined scanners have decreased the overall scan time up to 40% by using the 
CT scan for PET attenuation correction,(3) the registration mode remains rigid, which is not 
appropriate for correcting the misalignment between PET and CT caused by nonrigid motions 
of organs. Positional errors in global and local between PET and CT images are unavoidable due 
to different breathing patterns of patients during multimodal image acquisitions. For example, 
CT scan is generally performed with breath-hold or shallow breathing, whereas PET scan may 
be performed with tidal breathing. Therefore, deformable image registration is required to 
correct the local misalignment.

For multimodal images, the most popular deformable image registration method was mutual 
information (MI)-based algorithm, which has been confirmed as the basic method to align 
PET and CT images.(9-11) Jan et al.(12) used a rigid transformation to automatically register 
whole-body PET-CT-SPECT; however, the local nonrigid deformation could not be solved. 
Castillo et al.(13) presented a new 3D elastic transformation algorithm based on normalized 
mutual information (NMI) to automatically align PET and CT images, which showed better 
performance compared with rigid transformation. Suh et al.(14) proposed a novel deformable 
registration method based on a weighted demons algorithm to register whole-body rat CT and 
PET images, and the maximum likelihood Hausdorff distance was used as a similarity mea-
sure. Preliminary results demonstrated the high efficiency of this algorithm compared with 
traditional demons algorithm and NMI-based nonrigid free-form deformation (FFD) method. 
The traditional demons algorithm(15) is a popular and widely used registration method, from 
which many variations have been derived for monomodal or multimodal image registration. 
Vercauteran et al.(16) proposed a nonparametric diffeomorphic image registration algorithm 
based on the classic demons algorithm, and adapted the optimization procedure underlying the 
demons algorithm to a space of diffeomorphic transformation. This algorithm showed compu-
tational efficiency compared with many other diffeomorphic registration methods by replacing 
an addition of displacement fields with only a few compositions. However, the main drawback 
of this method was that it could not be used for multimodal images registration. Lu et al.(17) 
presented a variational approach based on the diffeomorphic demons for multimodal image 
registration. The point-wise mutual information (PMI) was employed to replace the standard 
demons similarity metric (image intensity difference) in the energy function. The accuracy of 
this algorithm was evaluated by comparing against free-form deformation (FFD) approach in 
aligning T1 and T2 brain MR images. Another extended demons algorithm based on gradient of 
mutual information (GMI) was proposed by Jin et al.(18) By adding an additional external force 
based on the GMI between two images, the algorithm could be used for processing multimodal 
images registration. The feasibility of the algorithm was evaluated in 10 esophageal cancer 
patients by using the modified Hausdorff distance as the similarity metric. Although initial 
patient results were reported in the pilot study by Jin and colleagues since it included a limited 
number of patients and assessed only patients with esophageal cancers, the preliminary results 
have shown efficiency and efficacy of this method used for PET/CT registration.
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In our study which aims to perform accurate lesion positioning by incorporating the functional 
information of PET and the anatomical information of CT, we designed a multiresolution strategy 
to evaluate and compare two multimodel registration algorithms, named as PMI diffeomorphic-
based demons algorithm and GMI-based demons algorithm, respectively. Eight patients with 
esophageal cancer(s) were enrolled in this IRB-approved study. In addition, here we want to 
clarify that the patients used in our study are different from patients used in the study by Jin and 
colleagues, which can potentially ensure the universality and the fairness of comparison and 
evaluation. Whole body PET and CT images were acquired from a combined 18F-FDG PET/
CT scanner for each patient. PET and CT images were down-sampled by a factor of 2 for three 
times to reduce the computational time. A rigid registration method was used to preprocess the 
two images to minimize global misalignment. Then the GMI-based demons algorithm and the 
PMI diffeomorphic-based demons algorithm were used to further register PET and CT images 
to correct local misalignment in a multiresolution framework. Modified Hausdorff distance 
was used as the similarity metric to quantitatively evaluate the accuracy of the two algorithms. 
Preliminary results on oncological patients demonstrated that the PMI diffeomorphic-based 
demons algorithm was a superior registration method for PET and CT images. 

 
II. MATERIALS AND METHODS

A.  Patient cohort and imaging study 
Eight patients (four male, four female, mean age of 65.3 yrs) with esophageal cancer(s) were 
enrolled in this prospective study, which was approved by the Institutional Review Board of 
Shandong Cancer Hospital and Institute, and all the patients provided written informed consents. 
All PET/CT scans were obtained prior to the planning CT scan as part of the routine diagnostic 
protocol for esophageal cancer. All patients were positioned head-first supine with the arms raised 
above the head. Vacuum bags were used to immobilize the patients during image acquisition. 

All PET and CT scans were performed on a 18F-FDG PET/CT scanner (Discovery LS; GE 
Healthcare, Waukesha, WI) about 60 min after 370 MBq (10mCi) of 18F-FDG intravenous 
injection. The PET scans were obtained from head to thigh for 5 min per field of view cover-
ing longitudinal distance of 14.5 cm, and the slice thickness of each axial image was 4.5 mm. 
Four-slice helical CT acquisition was acquired, followed by full-ring dedicated PET scan with 
the same axial range. Both CT and PET scans were obtained during free breathing. CT-derived 
attenuation correction was performed for PET reconstruction using ordered-subset expectation 
maximization (OSEM) software. The in-plane resolution of PET was 3.91 × 3.91 mm, with 
reconstruction matrix of 128 × 128. Imaging parameters for CT scans were as follows: 120 kV, 
90 mA, a pitch of 6:1, gantry rotation of 0.8 sec per cycle, reconstruction matrix of 512 × 512, 
field of view of 450 ~ 500 mm, in-plane resolution of 0.98 × 0.98 mm. The attenuation-corrected 
PET images, CT images, and fused PET/CT images were available in axial, coronal, and sagittal 
views, using the manufacturer’s review station (Xeleris; GE Healthcare). 

B.  Classical “demons” algorithm 
The classical ‘demons’ algorithm, proposed by Thirion,(15) used gradient information from a 
static reference image to determine the ‘demons’ force to deform the target image. However, this 
approach may not be sufficient when the gradient of the reference image is small. For a fixed 
image I0 and a moving image I1, the deformation field u→ between two images was calculated as:

     
  (1)
 

u→ =
(i1 – i0) × ∇

→
i0

(i1 – i0)
2

k2||∇
→

i0||
2 +
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where parameters i1 and i0 denote the grayscale of corresponding pixels between floating image 
I1 and reference image I0, respectively; ∇

→
 is the gradient of the images; k is a normalization 

coefficient to compensate the misalignment between the two images. 
The purpose of registration is to find out the offset from the floating image to the reference 

image at each coordinate. As aforementioned, the demons algorithm aligns images depending 
on the external and internal forces, which indicate the difference of grayscale between the two 
images and the gradient of the reference image. So it is easy to cause misalignment due to the 
uncertainty of the movement directions of pixels and the deformation direction of the floating 
image, when ||∇

→ 
i0|| → 0 . Also it can hardly perform accurate transformation between multimodal 

images, due to the greatly varied grayscale distributions.

C.  Gradient of mutual information (GMI)-based demons algorithm 
As a result of the drawbacks of traditional demons algorithm, Jin et al.(18) proposed a variation 
by combining the mutual information method to align multimodal images. An additional exter-
nal force based on the GMI between two images was added to the classical demons algorithm. 
The iterated updated offset calculated by the GMI-based demons algorithm was formulated as

            
                           (2)
 

u→n+1 = G  * u→n + +σ

(i1 – i0) × ∇
→

i0 ∇
→

MI(u→n)α(i1 – i0)
2

k2||∇
→

i0||
2 +( )

where the parameter Gσ is the Gaussian filter used for smoothing the offset between iterations 
to regularize the deformation. For a specific pixel P, ∇

→ 
MI(u→n) represents the GMI between two 

images for current transformation, which is defined as the derivative of mutual information to 
current spatial displacement vector. Parameter α represents the weighting of additional external 
force. The authors compared the GMI-based demons algorithm with the most commonly used 
multimodal registration algorithm based on mutual information in 10 oncological patients, and 
concluded that the GMI-based demons algorithm could perform better registration for PET 
and CT than the MI based method, with the ratio difference ranging from 2.17% to 10.26%. 
 
D.  Point-wise mutual information (PMI) diffeomorphic-based demons algorithm 
Given a reference image R, a floating image F, and a transformation field s, the demons algorithm 
can be described by the energy function with respect to the update field u→ which is calculated as

 
2
iES(u

→) = ||R – F ° (s + u→)||2 + ||u→||2
σ

2
xσ

 (3)

A diffeomorphic extension of traditional demons aiming at solving the drawbacks of inability 
to generate an invertible output transform was proposed by Vercauteran et al.(16) In diffeomor-
phic demons framework the update was done through the exponential map on the Lie group, 
which was described as follows

 s = s ° exp (u→) (4)

Although this extension has been proved to be a robust and efficient method for intensity-
based image registration, it could not be used to deal with multimodal images. Lu et al.(17) 
modified the external forces by replacing the image intensity difference in Eq. (4) with the 
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point-wise mutual information (PMI) to make it appropriate for multimodal images registra-
tion. The global mutual information was described as

     MI =     SMI(x)   xΣ    
1
N

                                                              (5)

where x denoted the pixel in image, and N was the number of pixels in the overlapping area
between two images. SMI(x) = log (                   )  p(iR(x),iF(x))

p(iR(x))p(iF(x))
, with the parameters iR and iF indicating the

image intensities of image R and F, the energy function would then become

  (6)
 

p(iR,iF°(S°exp (u→)))
p(iR)p(iF°(S°exp (u→)))

ES(u
→) = log (                             )

A larger mutual information value indicates better alignment, and maximization of the energy 
is required instead of minimization as in the traditional diffeomorphic demons algorithm. We 
could simply use the gradient of the PMI as the external force when E  reached to the maximum, 
satisfying ∇E(u→) = 0. The forward and reverse forces(19) were utilized to make the optimization 
more accurate and robust. 

The forward force Ff is defined as the gradient of the PMI with respect to the reference 
image. It moves the fixed image to better match the floating image,

 Ff = = 0SMI (iR (x + ), iF° s(x))∈|∈∂
∂∈

 (7)

while the reverse force Fr , which tends to align the points in the moving image with respect to 
the fixed image, is defined as:

 Fr(x) = = 0SMI (iR (x), iF° s(x + ))∈|∈∂
∂∈

 (8)

The update field can finally be defined as: 

 u→ = KE(Ff – Fr) (9)

where the coefficient KE indicates the update step length which controls the optimization speed.
 
E.  Multiresolution strategy and parameters setting 
For both algorithms, a multiresolution strategy was adopted in this study to accelerate registra-
tion speed and avoid local extremum. Within a predefined number of iterations, the registration 
was performed from the coarsest resolution level to the finest resolution level. The reference CT 
and the floating PET were down-sampled by a factor of 2 in three dimensions, so eight times 
fewer voxels of the original data were generated after three times of down-sampling. This could 
largely reduce the computational time. The down-sampled images were then registered in the 
multiresolution framework shown in Fig. 1. The multiresolution registration was performed 
from the coarsest level to the finest level, consisting of 20 iterations each. For the floating 
image (PET image), the initial offset of each pixel was set to 0. Then the PET and CT images 
were down-sampled successively, forming two pyramids. The alignment of PET and CT was 
performed using the proposed registration algorithms, beginning with the third level with the 
least image detail. After 20 times of iteration, the current obtained offset of each pixel could be 
calculated by the registration algorithm and was used as the initial value for the higher  resolution. 



23  Yang et al.: Deformable image registration for PET and CT images 23

Journal of Applied Clinical Medical Physics, Vol. 16, No. 4, 2015

After all the resolution levels were accomplished, the wrapped image was up-sampled so that 
it had the same size as the reference image. By applying the final deformation vector field to 
the floating image (PET), we could achieve precise registration between PET and CT images. 

In addition, for the update field regularization, we used a Gaussian kernel with a sigma σ = 
3 and for deformation field Gaussian regularization, a Gaussian kernel with a sigma σ = 2 was 
used. The GMI-based demons parameter α was set to 1, and the PMI diffeomorphic-based 
demons coefficient kE was set to 5 at the beginning of optimization and decreased proportion-
ally during the iterations to facilitate convergence.

F.  Evaluation and comparison of deformable registration algorithms
Hausdorff distance, which measures the distance of two subsets from each other and is well 
known as an efficient similarity criterion for low-level object or image comparison in computer 
vision, was used as the similarity metric to evaluate the registration performance of the two 
presented algorithms in our study. This similarity measure uses a set of points extracted by an 
edge operator.(20,21) In this paper, we used a three-dimensional version of modified Hausdorff 
distance using Canny edge-detector with a Gaussian smoothing kernel with σ = 2. This auto-
mated edge-detection algorithm has been successfully used by Suh et al.,(14) who indicated 
that the modified Hausdorff distance similarity measure was robust in the presence of outliers 
and occlusions, and can be used to compare the similarity of PET-CT images, even though the 
edges are not fully generated from the PET images. So no extra human observer was enrolled 
to check their consistency.

Given two sets of edge positions X and Y in two  three-dimensional images with size of  
I and J, the Hausdorff distance is defined as:

 dH(X,Y) = max(d(X,Y), d(Y,X)) (10)

where d(X,Y) and d(Y,X) are the Hausdorff distances of x αr y and y αr X, respectively, and 
are defined as
   
 d(X,Y) = max d(x,Y) = max min||xi – yi||  x X∈ xi X∈ yi Y∈

 (11)

 
 d(Y,X) = max d(y,X) = max min||yi – xi||  y Y∈ yi Y∈ xi X∈

 (12)

Fig. 1. Workflow of multiresolution strategy used in this study. The original PET and CT images were down-sampled into 
three resolution levels, and multiresolution registration was performed from the coarsest level to the finest level, consist-
ing 20 iterations each. For the floating image (PET image), the initial offset of each pixel was set to 0. Then the PET and 
CT images were down-sampled successively, forming two pyramids. The first alignment of PET and CT was performed 
using the proposed registration algorithms at the third level with the least image detail, which was served as the coarsest 
level. After 20 iterations, the current obtained offset of each pixel could be calculated by the registration algorithm and 
then treated as the initialization for the higher resolution. After all the resolution levels were accomplished, we can achieve 
precise registration of PET and CT images by applying the final deformation vector field to the floating image (PET).



24  Yang et al.: Deformable image registration for PET and CT images 24

Journal of Applied Clinical Medical Physics, Vol. 16, No. 4, 2015

where ||.|| represents the calculation of distance between two points, and here we restrict it being 
the Euclidean distance metric.

Although the traditional Hausdorff distance is easy to calculate, it is sensitive to image noise. 
The modified Hausdorff distance proposed by Dubuisson et al.(21) which was used in this study 
can avoid the deviation caused by the interference of noisy pixels. The modified Hausdorff 
distance was defined as:

  (13)
 

dMH(X,Y) =           d(x,Y)
x X∈

1
IΣ

where d(x,Y) is the minimum corresponding distance at point, and I is the size of the set X. 
There are many edges from the CT image due to high resolution of anatomical structures. 

However, there are comparatively simple edge lines in the edge image of the PET due to the 
poor image quality. The number of feature points identified by the edge-detection method is 
patient-specific and depends on image quality. In this study, we calculated the modified Hausdorff 
distance values (dMH–b) between the reference image (CT) and the floating image (PET) before 
registration. Then the modified Hausdorff distance values (dMH–r) between the reference image 
(CT) and the floating image after rigid registration was calculated. Further, we calculated 
the modified Hausdorff distance values between the reference image (CT) and the deformed 
floating image after using the GMI-based demons (dMH–G) and the PMI diffeomorphic-based 
demons (dMH–P). The difference values between dMH–r and dMH–b (D1), and difference values 
(D2) between dMH–G and dMH–P were also calculated. 

 
III. RESULTS 

Preliminary results of PET and CT images registration on a total of eight clinically acquired 
whole-body PET/CT image pairs from esophageal cancer patients were reported. The image data 
were collected by a physician who was not familiar with PET and CT registration algorithm, 
only on the basis of available multimodal images without any screening criteria. 

PET and CT images for a representative patient are shown in Fig. 2. Figure 2 shows PET 
(a), CT (b), and fusion (c) of PET and CT, respectively. Tumors in PET and fusion images 
were highly visible due to the high metabolic characteristic of lesions in 18F-FDG PET images. 

In current clinic, positioning tumor target including GTV (gross tumor target) and PTV (plan-
ning target volume) in CT images is usually performed based on PET images. Figure 3 shows 
the registration results of the representative patient in axial, coronal, and sagittal planes. As 
shown in Fig. 3(a), misalignment between PET and CT (indicted by red arrows) were obvious 
after rigid registration, which would undoubtedly affect the accuracy of treatment planning and 
radiotherapy outcome. Through registration of PET/CT, we can accurately position the tumor 
volume and reduce target area and extended range of tumor volume independently, which 
ensures high dose of radiation within tumor volume and low dose within adjacent organs and 
tissues, and achieves the purpose of precise radiotherapy. The highlighted areas in PET images 
represented the lesions. As shown in Fig. 3(b), after using the GMI-based demons algorithm, the 
misalignment was greatly corrected, except for several small errors (indicted by red arrows). As 
shown in Fig. 3(c), after using the PMI diffeomorphic-based demons algorithm, PET and CT 
images were registered each other very well compared with those in Fig. 3(b) identified by an 
experienced physician, which was helpful for physicians to identify tumor target volume based 
on the fused PET/CT image, and for physicists to develop accurate radiation treatment planning. 
After PET and CT images registration, tumor target volume could be accurately positioned 
which ensured high dose within tumor target and reduced radiation hazard to surrounding organs. 
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Figure 4 shows another clinical example illustrating the registration results of the GMI-based 
demons algorithm (Fig. 4(b)) and the PMI diffeomorphic-based demons algorithm (Fig. 4(c)). 
As shown in Fig. 4(a), we found that the misalignment indicated by the red arrows in axial, 
coronal, and sagittal planes were obvious after rigid registration. After using the GMI-based 
demons algorithm, the misalignment was greatly corrected, except for several small errors 
(indicated by the red arrows). After using the PMI diffeomorphic-based demons algorithm, 
the PET and CT images were registered each other very well (indicated by the red arrows).

Table 1 summarizes the measurement results of the modified Hausdorff distance measure-
ments before and after the GMI-based demons and the PMI diffeomorphic-based demons 

Fig. 2. Example of PET and CT images: (a) PET; (b) CT; (c) PET/CT fused.
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registration algorithms in all eight esophageal cancer patients. Table 1 shows the comparison 
of spatial consistency of two images before registration and after rigid, GMI-based demons and 
PMI diffeomorphic-based demons registration. And the unit for the measured values is voxels, 
which shows the comparison of spatial consistency of two images in voxels before and after 
registration. On average, the mean value and standard deviation (SD) of dMH–b was 7.96 (± 1.89). 
The mean (± SD) value of dMH–r was 7.40 (± 1.72) which was reduced compared with that of 
before registration, with the mean difference value of 0.56 (± 0.38). The mean values (7.96 and 
7.40) are calculated by averaging the measured values before and after rigid registration from 
10 patients. The standard deviation values (1.89 and 1.72) are to measure dispersion degree of 

Fig. 3. Example of registration results between CT and PET images from Patient #1: (a) PET/CT fused after rigid registra-
tion; (b) PET/CT fused after using the GMI-based demons algorithm; (c) PET/CT fused after the PMI diffeomorphic-based 
demons algorithm. The highlighted areas in PET images represented the lesions. Obvious global and local misalignment 
between PET and CT (indicted by red arrows) could be detected before registration. After using the GMI-based demons 
algorithm, the misalignment was greatly corrected, except for several small errors (indicted by red arrows). After using 
the PMI diffeomorphic-based demons algorithm, PET and CT images registered each other very well.
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data distribution, that is, the degree of deviating from the mean values. The smaller the standard 
deviation, the less these values deviating from the average. The mean (± SD) values of dMH–G 
and dMH–P were 6.65 (± 1.90) and 6.01 (± 1.90) after the GMI-based demons algorithm and 
the PMI diffeomorphic-based demons algorithm, respectively. It was illustrated that the dMH 
values after deformable registration were reduced compared with those after rigid registration, 
and the dMH values after the PMI diffeomorphic-based demons algorithm were less than those 

Fig. 4. Example of registration results between CT and PET images from Patient #2: (a) PET/CT fused after rigid registra-
tion; (b) PET/CT fused after using the GMI-based demons algorithm; (c) PET/CT fused after the PMI diffeomorphic-based 
demons algorithm. The highlighted areas in PET images represented the lesions. Obvious global and local misalignment 
between PET and CT (indicted by red arrows) could be found before registration. After using the GMI-based demons 
algorithm, the misalignment was greatly corrected, except for several small errors (indicted by red arrows). After using 
the PMI diffeomorphic-based demons algorithm, PET and CT images registered each other very well.
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after the GMI-based demons algorithm, with the mean difference value of 0.65 (± 0.38), which 
demonstrated that the PMI diffeomorphic-based demons algorithm performed more accurate 
registration in aligning esophageal PET/CT images than the GMI-based demons algorithm.

 
IV. DISCUSSION

In this work we evaluated and compared two deformable registration algorithms for PET/CT 
alignment in eight patients with esophageal cancer(s). The modified Hausdroff distance was used 
as a similarity metric to evaluate the registration accuracy of the two presented algorithms. The 
preliminary results showed that the PMI diffeomorphic-based demons algorithm was better in 
aligning PET and CT images than the GMI-based demons algorithm. That is probably because 
the diffeomorphic-based demons combining a Lie group framework on diffeomorphisms and 
optimizing for Lie groups. So this algorithm ensures a smoother invertible transformation. 
Furthermore, the PMI diffeomorphic-based demons algorithm allows estimation of mutual 
information on individual image points; that is to say, every pixel has its own contribution to the 
global mutual information and the global mutual information can be computed locally, while the 
GMI-based demons algorithm is based on gradient of mutual information between two images. 

An accurate deformable registration framework for PET and CT alignment can be used for 
accurate positioning tumor target in radiotherapy treatment planning. Precise definition of tumor 
target can largely reduce toxicity to surrounding organs and tissues and ensure sufficient dosage 
to the tumor target in treatment planning therapy.(14) Currently, in 3D image-guide radiation 
therapy (IGRT) GTVs are usually manually delineated by oncologists in treatment planning 
system on the planning day. In order to exclude the effects caused by respiratory motion and 
other physiological factors, margins or standardized safety margins (SSMs) are often added to 
the GTVs for better lesion coverage. The SSMs are usually defined according to specific cancer 
category rather than patient-specific, which potentially induce the risk of underdosing of tumor 
target and overdosing of surrounding normal tissues and organs. More accurate tumor target 
volume positioning can be realized by considering both structural information and   functional 

Table 1. Measurement results of modified Hausdorff distance (M-HD) (Unit: voxels) before and after using the GMI-
based and PMI diffeomorphic-based demons algorithms in eight esophageal patients

 Deformable Registration
      After PMI
     After Diffeomorphic-
  Before After Global  GMI-based based
  Registration Registration Difference Demons Demons Difference
 Patient (dMH-b)

a (dMH-r )b (D1)c (dMH-G)d (dMH-P)e (D2)f

 1 8.87 7.56 1.31 6.77  6.27  0.5
 2 5.66 5.35 0.31 4.56  4.06  0.5
 3 9.65 9.06 0.59 8.88  8.02  0.86
 4 6.86 6.06 0.80 5.10  4.20  0.9
 5 7.56 7.28 0.28 6.80  5.46   1.34
 6 8.62 8.25 0.37 7.00  6.50  0.5
 7 5.58 5.48 0.10 4.50  4.28  0.22
 8 10.87 10.15 0.72 9.60  9.25  0.35
 Mean  7.96 7.40 0.56 6.65  6.01  0.65
 SD 1.89 1.72 0.38 1.90  1.90  0.37

a Modified Hausdorff distance value between CT and PET before registration.
b Modified Hausdorff distance value between CT and PET after global registration.
c Difference value between a and b.
d Modified Hausdorff distance value between CT and PET after GMI-based demons registration.
e Modified Hausdorff distance value between CT and PET after PMI diffeomorphic-based demons registration.
f Difference value between d and e.
SD = standard deviation.
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metabolism information based on accurate registration of PET and CT. The differences in 
Hausdorff distance between before registration and after using PMI diffeomorphic-based 
method in our study lie within 1–2 voxels. However, typical safety margins in radiation therapy 
lie within 5–10 mm, which will affect planning tumor volume (PTV) contouring, resulting in 
inaccurate radiation therapy.

In this study, we addressed the problem of assessing the performance of two multimodal 
registration algorithms based on the GMI and the PMI diffeomorphic, two previously published 
demons-based algorithms in aligning PET and CT images for radiation therapy. In the work by 
Jin and colleagues,(18) the authors evaluated the GMI-based demons algorithm by comparing it 
with the MI-based algorithm in aligning 10 pairs of PET and CT images. They chose the PET 
images as the reference image and the corresponding CT image as the floating image, which was 
different from our study. Since the authors meant to accurately position the tumor volume target 
in CT images based on accurate registration of PET and CT images, it might be more rational 
to register PET to CT. Comparing to the commonly used MI-based deformable registration 
algorithm, the presented GMI-based demons showed high efficiency in aligning PET and CT 
images evaluated by the modified Hausdorff distance, with the difference ratio improved up to 
10%. In the study by Vercauteren et al.,(16) the authors evaluated the accuracy of the proposed 
PMI diffeomorphic-based demons algorithm by comparing it with free-form (FFD) deformation 
registration method on artificially distorted images. The multimodal registration algorithm was 
tested on T1 and T2 MR images from the BrainWed MRI Simulated Normal Brain Database.(22)  
The quality of the registration was evaluated by the RMS of displacement field, maximum 
distance error (MDE) and global mutual information values. The results showed that the PMI 
diffeomorphic-based demons algorithm outperformed the FFD method in all distortion levels. The 
limitation of this study was that the PMI diffeomorphic-based demons algorithm was not validated 
on real patient subjects. So in this study, we quantitatively evaluated and compared the two cur-
rently proposed algorithms in cancer patients for performing accurate cancer radiation therapy. 

This pilot study included a limited number of patients and assessed only patients with 
esophageal cancer(s). A larger pool of patients is still needed in future studies to answer the 
following questions: 1.) Is this comparison effective to cancers in other locations treated by 
radiation therapy, such as liver or lung cancers? 2.) Since there is no established golden standard 
for evaluation, can we find a more reasonable and robust method to validate the accuracy of 
deformable registration algorithm? 3.) How does the resolution level affect the convergence 
of cost function since we only employed three levels for registration? It is obvious that the 
deformation of lung or liver can be more easily affected by the respiratory motion, compared 
with esophagus investigated in this study. So there might be different results if we used PET/
CT images of lung or liver to evaluate the performance of the two presented deformable image 
registration algorithms, due to the suboptimal contrast of liver CT and the large deformation 
of lung PET/CT. In addition, we found that, for both algorithms, the registration accuracy was 
gradually improved and the convergence speed was gradually slowed with the increasing of 
the standard deviation (σ) of Gaussian kernel. However, after σ was greater than 2, both the 
convergent speed and the registration accuracy were much similar with the increased σ values. 
To balance the registration accuracy and the convergence speed, the parameters in this study 
were set according to the previous literatures.(17,18)   

 
V. CONCLUSIONS

We have successfully evaluated and compared the GMI-based demons algorithm and the PMI 
diffeomorphic-based demons algorithm for PET and CT alignment in patients with esophageal 
cancer(s). Preliminary results demonstrated that the PMI diffeomorphic-based demons algorithm 
showed better alignment of esophageal PET/ CT images compared with the GMI-based demons 
algorithm, which could be helpful for positioning tumor target in radiation treatment planning. 
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However, the evaluation and comparison in the current study was limited by its small sample 
size. A larger follow-up study has a better chance of quantifying the reliability of our results. 
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