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Abstract

Polycystic ovary syndrome (PCOS) is a common endocrine disorder affecting pre-
menopausal women and involves metabolic dysregulation. Despite the high prevalence 
of insulin resistance, the existence of mitochondrial dysregulation and its role in the 
pathogenesis of PCOS is not clear. Exercise is recommended as the first-line therapy 
for women with PCOS. In particular, high-intensity interval training (HIIT) is known to 
improve metabolic health and enhance mitochondrial characteristics. In this narrative 
review, the existing knowledge of mitochondrial characteristics in skeletal muscle 
and adipose tissue of women with PCOS and the effect of exercise interventions in 
ameliorating metabolic and mitochondrial health in these women are discussed. Even 
though the evidence on mitochondrial dysfunction in PCOS is limited, some studies 
point to aberrant mitochondrial functions mostly in skeletal muscle, while there is very 
little research in adipose tissue. Although most exercise intervention studies in PCOS 
report improvements in metabolic health, they show diverse and inconclusive findings 
in relation to mitochondrial characteristics. A limitation of the current study is the lack 
of comprehensive mitochondrial analyses and the diversity in exercise modalities, with 
only one study investigating the impact of HIIT alone. Therefore, further comprehensive 
large-scale exercise intervention studies are required to understand the association 
between metabolic dysfunction and aberrant mitochondrial profile, and the molecular 
mechanisms underlying the exercise-induced metabolic adaptations in women  
with PCOS.

Introduction

Polycystic ovary syndrome (PCOS) is a widely under-
diagnosed syndrome affecting reproductive and metabolic 
health in women of reproductive age (Teede et  al. 2010). 
The prevalence of PCOS varies between 8 and 15% of 
women worldwide depending on the diagnostic criteria 
used and the population studied (Bozdag et  al. 2016).  

PCOS is characterised by a hormonal imbalance with 
increased levels of luteinising hormone (LH) and androgen 
excess, leading to irregular menstrual cycles, anovulation 
and perpetuating hyperandrogenism (Bozdag et al. 2016). 
Women with PCOS present with health manifestations 
across the lifespan, causing a major economic and health 
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burden (Teede et  al. 2010). Currently, the most widely 
internationally recognised criteria for diagnosing PCOS 
are the Rotterdam criteria, which require any two of the 
following features to be fulfilled: (1) oligo- or anovulation, 
(2) clinical or biochemical hyperandrogenism, and (3) 
polycystic ovaries on ultrasound (Rotterdam ESHRE/
ASRM-Sponsored PCOS Consensus Workshop Group 
2004). Insulin resistance (IR) is also an important 
metabolic hallmark of PCOS, leading to compensatory 
hyperinsulinaemia and metabolic dysfunction (Teede 
et al. 2010). IR is present in 38–95% of women with PCOS, 
and is aggravated by, but independent of obesity (Stepto 
et  al. 2013). Other metabolic features present in women 
with PCOS include compensatory hyperinsulinaemia 
and associated risk of type 2 diabetes mellitus (TDM2), 
gestational diabetes (GDM), impaired glucose tolerance, 
dyslipidemia and increased risk factors for cardiovascular 
disease (Rodgers et al. 2019).

Mitochondria, despite being the main organelles 
responsible for cellular energy production, have received 
limited investigation in women with PCOS. However, 
in other metabolic and cardiovascular disorders, 
mitochondria are reported to be dysregulated (Patti & 
Corvera 2010). In obesity and T2DM, mitochondrial 
dysfunction has been associated with IR (Das et al. 2021). To 
date, two proposed mechanisms implicate mitochondrial 
dysfunction in IR: (1) incomplete oxidation of fatty  
acids, resulting in lipid accumulation, which may inhibit 
insulin signalling, and (2) impaired substrate oxidation 
causing increased reactive oxygen species (ROS) and 
oxidative stress, potentially resulting in mitophagy and 
apoptosis (Schmitz-Peiffer et  al. 1999, Fan et  al. 2019). 
This could lead to decreased substrate oxidation, further 
aggravating lipid accumulation. However, mitochondrial 
dysfunction does not always imply IR and vice versa (Irving 
et al. 2011).

Mitochondrial dysfunction has been associated with 
PCOS-specific IR in some animal and human studies, 
yet, the aetiology of this association and whether 
mitochondrial dysfunction has a direct effect on the 
pathogenesis of PCOS is unclear. The majority of studies 
investigating mitochondrial profile in PCOS have been 
done in ovaries, liver, skeletal muscle and blood (Shukla & 
Mukherjee 2020).

Skeletal muscle plays an important role in whole-
body glucose regulation. Defects in skeletal muscle insulin 
signalling contribute to insulin-resistant conditions 
including PCOS (Stepto et al. 2019). However, whether this 
impaired insulin signalling in the skeletal muscle may be 
linked with mitochondrial dysregulation remains to be 

determined. Adipose tissue plays a wide-ranging role in 
metabolic regulation and physiological homeostasis, and 
its excess is associated with IR, T2DM, hypertension and 
cardiovascular disease. Women with PCOS often have a 
higher amount of visceral fat than women without PCOS, 
which exacerbates IR (Cascella et  al. 2008). However, 
whether the adipose tissue abnormalities are primary or 
secondary to mitochondrial dysfunction in adipocytes is 
yet to be determined.

Lifestyle interventions, such as exercise, have been 
used to target the metabolic and reproductive imbalances 
associated with PCOS. Exercise remains the first-line 
treatment to manage the symptoms and improve the 
clinical features of PCOS, including increased insulin 
sensitivity, cardiorespiratory fitness, menstrual cyclicity 
and ovulation, reduced body weight, waist-to-hip ratio, 
waist circumference, total testosterone, hirsutism, and 
improved mental health (Moran et  al. 2011, Teede et  al. 
2018). Exercise can also improve mitochondrial function. 
In particular, high-intensity interval training (HIIT) seems 
to result in larger mitochondrial health benefits in different 
population groups when compared with moderate-
intensity exercise interventions, and it has also been found 
to lead to greater health outcomes in women with PCOS 
(Patten et al. 2020).

This review will summarise the findings on 
mitochondrial characteristics such as mtDNA content, 
mitochondrial respiration and oxidative phosphorylation 
(OXPHOS), mitochondrial dynamics and ROS production 
in the skeletal muscle and adipose tissue of women with 
PCOS and will also discuss the effect of different training 
exercise modalities on metabolic and mitochondrial 
features of women with PCOS.

Characteristics of 
mitochondrial dysregulation

Mitochondria have numerous critical roles in metabolism 
as the main site of oxidation of substrates derived from 
glucose, fatty acids and amino acids. Mitochondria are 
also a major player in 1-carbon metabolism and nitrogen 
metabolism, as well as essential in the steroid biosynthesis, 
synthesis of haem and iron–sulphur clusters. Mitochondria 
can mediate intracellular signaling by the production of ROS 
and interact with other organelles such as the endoplasmic 
reticulum (ER). The ER–mitochondrial communication 
regulates mitochondrial activity and is vital for maintaining 
intracellular calcium homeostasis, as well as metabolic 
processes such as phospholipid metabolism, which relies 
on lipid translocation between ER and mitochondria. 
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However, their most prominent role is energy production in 
the form of ATP via aerobic respiration. Aerobic respiration 
involves glycolysis, citric acid cycle and OXPHOS (Spinelli 
& Haigis 2018). Mitochondrial dysfunction manifests as 
an inability to sustain ATP synthesis sufficiently to satisfy 
cellular energy demands. This can result not only from 
reduced mitochondrial respiration but also from mtDNA 
mutations, abnormalities in mtDNA copy number, defects 
in activity of OXPHOS complexes, reduced mitochondrial 
biogenesis, dysregulated mitophagy and dysregulation 
of other processes such as calcium handling or aberrant 
production of ROS leading to oxidative stress (Heilbronn 
et al. 2007) (Fig. 1). Therefore, mitochondrial dysfunction 
is a broad term that can include impairments in several 
mitochondrial characteristics.

Mitochondrial content

Mitochondrial content represents the amount of all 
mitochondrial constituents within a cell. However, 
because it is not feasible to measure all of these molecules, 
quantifiable markers commonly used to correlate well with 
mitochondrial volume are assessed by the gold-standard 

transmission electron microscopy (Larsen et  al. 2012). 
mtDNA copy number is the most common mitochondrial 
content marker reported in the literature and is used as 
an indicative marker of mitochondrial biogenesis, which 
is thought to augment upon increased energy demands, 
such as exercise (Holloszy & Booth 1976), and also as a 
compensatory mechanism for mitochondrial dysfunction 
(Filograna et  al. 2021). Lower mtDNA copy number have 
been associated with increased risk of T2DM and metabolic 
syndrome in large-scale human studies (Fazzini et al. 2021).

Most of the current studies have measured mtDNA 
content in blood of women with PCOS, with limited 
research conducted in muscle and adipose tissue (Table 1). 
Findings in skeletal muscle of women with PCOS showed 
no alterations in mtDNA copy number or other markers of 
mitochondrial content, citrate synthase (CS) and fatty acid 
oxidation indicated by hydroxyacyl-CoA dehydrogenase 
subunit beta (β-HAD) activity (Hutchison et  al. 2011, 
Rabøl et al. 2011, Konopka et al. 2015) (Table 1). Similarly, 
no alterations in mitochondrial mass were detected in 
primary myotubes of insulin-resistant women with PCOS 
compared to healthy women using the MitoTracker Green 
FM probe (Eriksen et al. 2011). Therefore, current evidence 

Figure 1
Healthy mitochondria vs dysfunctional mitochondria. (A) Schematic representation of regulated functions of mitochondria including sufficient ATP 
synthesis, balanced levels of ROS production, biogenesis and increased fusion/fission ratio. (B) Schematic representation of the mechanisms causing 
dysfunctional mitochondria, including defects in activity of oxidative phosphorylation (OXPHOS) complexes, reduced mitochondrial respiration, increased 
reactive oxygen species (ROS) production, abnormalities in mitochondrial DNA (mtDNA) copy number, reduced mitochondrial biogenesis and 
dysregulated fusion/fission ratio and mitophagy.
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suggests that mitochondrial content is not altered in 
skeletal muscle of women with PCOS, but further research 
using the gold-standard electron microscopy for the 
analysis of mitochondrial content is required to confirm 
these findings.

The mitochondrial content in adipose tissue of women 
with PCOS has not been examined yet, and therefore, 
it would be a valuable addition to this area of research. 
Evidence from people who are obese suggests that decreased 
mtDNA copy number in the adipose tissue is associated 
with higher BMI (Fischer et  al. 2015), but whether there 
is an association with PCOS, independent of BMI, is 
unknown. In addition, no study to date has compared the 
mtDNA copy number between skeletal muscle and adipose 
tissue in women with PCOS to elucidate whether these 
abnormalities may be tissue-specific or distinctive of PCOS 
pathogenesis.

Mitochondrial respiration: OXPHOS

OXPHOS involves the transfer of electrons through the 
mitochondrial electron transport chain (ETC) complexes 
I–IV, while simultaneously pumping protons to the 
intermembrane space. This proton gradient generates 
a membrane potential that is utilized by ATP synthase 
(complex V) to drive phosphorylation of ADP to ATP.

To date, there are conflicting results in regards to 
OXPHOS genes expression in women with PCOS (Table 
2). It was firstly reported that the OXPHOS genes NDUFA3, 
SDHD, UCRC, COX7C and ATP5H are downregulated in the 
five respiratory complexes in the skeletal muscle of obese 
insulin-resistant women with PCOS compared to BMI-
matched healthy controls (Skov et  al. 2007). In contrast, 
Hutchison et  al. found no differences in skeletal muscle 
OXPHOS gene expression and protein abundance between 
overweight and obese women with PCOS and fat mass- and 

BMI-matched women (Hutchison et al. 2012). In line with 
that, no differences were seen either in skeletal muscle 
phosphorylating and uncoupled respiration between 
obese insulin-resistant women with PCOS and lean 
insulin-sensitive women without PCOS (Konopka et  al. 
2015). However, mitochondrial respiration during leak/
state 4 (the rate of oxygen consumption in the absence of 
ADP) was increased in obese women with PCOS, consistent 
with a decrease in mitochondrial coupling efficiency 
(Konopka et al. 2015). In primary myotubes derived from 
insulin-resistant women with PCOS, no differences were 
observed in mitochondrial respiration for complex I and 
complex II and in oxidation of glucose and ATP synthesis 
compared to myotubes from weight- and age-matched 
healthy women (Eriksen et al. 2011, Rabøl et al. 2011). The 
only study of mitochondrial respiration in adipose tissue 
showed decreased maximal oxygen flux in subcutaneous 
abdominal adipose tissue in women with PCOS but no 
difference in the gluteal adipose tissue of these women 
compared to controls (Lionett et al. 2021).

Altogether, the findings reported within each tissue are 
equivocal, with inconsistent findings also reported across 
skeletal muscle and adipose tissue of women with PCOS. 
Therefore, there is a need for further validation studies to 
elucidate whether impaired mitochondrial function is 
indeed existent in PCOS and whether it is tissue specific.

Mitochondrial dynamics

Mitochondrial dynamics involve the dynamic processes of 
mitochondrial biogenesis, fusion, fission and mitophagy 
(Ferree & Shirihai 2012). Biogenesis is the process through 
which mitochondria increase their mass. Peroxisome 
proliferator-activated receptor gamma coactivator-1 
alpha (PGC1A), a transcriptional coactivator, is a major 
regulator of the mitochondrial biogenic programme  

Table 1 Studies of mitochondrial content.

Mitochondrial content 
assessment Population

Tissue
StudySkeletal muscle Adipose tissue

Mitochondrial DNA copy 
number

23 PCOS (9 lean and 14 obese)
17 age- and weight-matched ctrls  

(6 lean and 11 obese) 

↔ – (Rabøl et al. 2011)

Mitochondrial mass by 
MitoTracker Green Probe

8 insulin-resistant PCOS
8 weight- and age-matched healthy ctrls

↔ (cultured primary 
myotubes)

– (Eriksen et al. 2011)

Citrate synthase activity 16 overweight and obese PCOS
13 fat mass- and BMI-matched ctrls

↔ – (Hutchison et al. 2012)

25 obese insulin-resistant PCOS
14 lean insulin-sensitive ctrls

↔ – (Konopka et al. 2015)

9 lean insulin-sensitive PCOS
9 age- and BMI-matched ctrls

↔ – (Hansen et al. 2020) 

(↔), no differences;  (–), not measured; PCOS, women with PCOS, ctrls, control women.
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(Heilbronn et  al. 2007). PGC1A interacts with nuclear 
respiratory factor 1 (NRF1), stimulating transcription of 
many nuclear-encoded mitochondrial genes including 
mitochondrial transcription factor A (TFAM), a direct 
regulator of mitochondrial DNA replication and 
transcription (Heilbronn et  al. 2007). Mitochondria 
undergo fission and fusion (elongation) to adapt to 
changes in the cellular environment (Suárez-Rivero et  al. 
2017). Mitochondrial fusion produces tubular or elongated 
mitochondria which allows exchanging of material between 
mitochondria and may compensate for functional defects 
(Suárez-Rivero et  al. 2017). In contrast, mitochondrial 
fission is needed to create new mitochondria, but it also 
allows the segregation of damaged mitochondria (Suárez-
Rivero et al. 2017). Suboptimal or damaged mitochondria 
can be either eliminated by mitophagy, a mechanism of 
selective elimination of damaged mitochondria, or be 

fused with healthy mitochondria to increase their size and 
activity (Diaz-Vegas et al. 2020). Biogenesis and mitophagy 
are two opposing mechanisms but essential to maintain 
mitochondrial and cellular homeostasis.

Mitochondrial biogenesis has only been assessed in 
a few studies in women with PCOS, mainly in skeletal 
muscle (Table 3). Expression of PGC1A gene was found to 
be significantly downregulated in the skeletal muscle of 
obese insulin-resistant women with PCOS, compared to 
BMI- and age-matched healthy women (Skov et al. 2007). 
This reduction in PGC1A was accompanied by a decreased 
expression of OXPHOS genes but unaltered gene expression 
of the other mitochondrial biogenesis markers PGC1B 
and NRF1 (Skov et  al. 2007). However, another study did 
not find differences in PGC1A, nuclear respiratory factor 
(NRF1) and TFAM gene expression between skeletal muscle 
of overweight and obese women with or without PCOS 

Table 2 Studies of mitochondrial respiration: OXPHOS.

Mitochondrial respiration: 
OXPHOS assessment Population

Tissue
StudySkeletal muscle Adipose tissue

OXPHOS gene expression 16 obese insulin-resistant PCOS
13 age- and BMI-matched  

healthy ctrls

↓ – (Skov et al. 2007)

16 overweight and obese PCOS
13 fat mass- and BMI-matched ctrls

↔ – (Hutchison et al. 2012) 

OXPHOS protein 
abundance

16 overweight and obese PCOS
13 fat mass- and BMI-matched ctrls

↔ – (Hutchison et al. 2012)

ATP synthesis 8 insulin-resistant PCOS
8 weight- and age-matched  

healthy ctrls

↔ (myotubes) – (Eriksen et al. 2011) 

Respiration (state 3) 23 PCOS (9 lean and 14 obese)
17 age- and weight-matched ctrls  

(6 lean and 11 obese) 

↔ – (Rabøl et al. 2011) 

25 obese insulin-resistant PCOS
14 lean insulin-sensitive ctrls

↔ – (Konopka et al. 2015)

18 PCOS
15 age- and BMI-matched ctrls

– ↔ (subcutaneous 
gluteal)

(Lionett et al. 2021)

16 PCOS
10 age- and BMI-matched ctrls

– ↓ (subcutaneous 
abdominal)

(Lionett et al. 2021)

Respiration (state 4) 25 obese insulin-resistant PCOS
14 lean insulin-sensitive ctrls

↑ – (Konopka et al. 2015)

Uncoupling control ratio 
(electron transport 
capacity)

23 PCOS (9 lean and 14 obese)
17 age- and weight-matched ctrls  

(6 lean and 11 obese)

↑ (in obese controls 
than any other 
group) 

– (Rabøl et al. 2011) 

Uncoupled respiration 
(maximal electron flux 
capacity) 

14 obese PCOS
11 age- and weight-matched ctrls

↓ – (Rabøl et al. 2011) 

9 lean PCOS
6 age- and weight-matched ctrls

↔ – (Rabøl et al. 2011) 

25 obese insulin-resistant PCOS
14 lean insulin-sensitive ctrls

↔ – (Konopka et al. 2015)

Phosphorylation efficiency 
(ADP:O)

25 obese insulin-resistant PCOS
14 lean insulin-sensitive ctrls

↓ – (Konopka et al. 2015)

Coupling efficiency  25 obese insulin-resistant PCOS 
14 lean insulin-sensitive ctrls

↓  – (Konopka et al. 2015) 

(↔), no differences; (↓), downregulation; (↑), upregulation; (–), not measured; PCOS, women with PCOS; ctrls, control women.
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(Hutchison et  al. 2012), failing to support the previous 
findings. No studies on mitochondrial biogenesis in 
women with PCOS have been reported in adipose tissue.

To date, mitophagy has only been assessed in ovarian 
tissue and has not been investigated in skeletal muscle or 
adipose tissue of women with PCOS. Fusion and fission 
are yet to be explored in any tissue in PCOS, despite 
dysregulation of these events having been previously 
associated with IR in skeletal muscle (Jheng et  al. 2012). 
It is hypothesised that fusion is associated with higher 
metabolic activity while increased fission is usually noted in 
metabolic disease (Babbar & Saeed Sheikh 2013). However, 
whether this happens in PCOS is currently unknown. 
Therefore, there is a need to uncover the mitochondrial 
dynamics in metabolic tissues such as skeletal muscle 
and adipose tissue of women with PCOS and identify any 
association with the pathogenesis of this syndrome.

ROS production

Mitochondria not only play a central role in metabolism 
through ATP production but also in intracellular signalling 
necessary for the whole cell function (Chandel 2015). 
Production of ROS is one of the mechanisms by which 
mitochondria activate transcription factors to regulate 
intracellular signalling (Chandel 2015). Mitochondria 
are the main site of ROS production, as single electrons 
can leak from a number of sites of the ETC and react 

with oxygen, producing superoxide anion (O2
·) which is 

the primary form of ROS. ROS include other chemically 
reactive molecules containing molecular oxygen, such 
as singlet oxygen (1O2), hydrogen peroxide (H2O2) and 
hydroxyl radicals (·OH) (Bayir 2005). At appropriate levels, 
ROS production is important for cellular signalling, gene 
expression, metabolic regulation and immune responses. 
However, excessive ROS formation can lead to oxidative 
stress, which is defined as an imbalance between oxidative 
and anti-oxidative systems of cells and tissues causing the 
disturbance of redox pathways and molecular damage 
(Jones 2006).

Excessive mitochondrial ROS production and 
oxidative stress can induce mitochondrial dysfunction 
that may contribute to the pathology of many metabolic 
and cardiovascular diseases, such as T2DM, atherosclerosis, 
obesity and IR (Das et al. 2021). Similarly, there is evidence 
that increased ROS may play a role in the pathogenesis of 
PCOS (Uyanikoglu et al. 2013).

Only one study has been conducted in skeletal muscle 
of women with PCOS, while no studies have explored 
ROS production in the adipose tissue (Table 4). In skeletal 
muscle, mitochondrial hydrogen peroxide (mtH2O2) 
emissions assessed by Amplex Red fluorescence has been 
found to be significantly higher in obese, insulin-resistant 
women with PCOS, supporting the relationship between 
mtH2O2 emissions and IR in this tissue (Konopka et  al. 
2015). These findings, however, may be associated with 
obesity as skeletal muscle mtH2O2 emissions have also 

Table 3 Studies of mitochondrial dynamics.

 
Mitochondrial dynamics assessment Population

Tissue
StudySkeletal muscle Adipose tissue

PGC1A gene expression 16 obese insulin-resistant PCOS
13 age- and BMI-matched healthy ctrls

↓ – (Skov et al. 2007)

4 obese PCOS women
4 body composition-matched controls 

↑ – (Dantas et al. 2017)

PGC1A gene expression and 
protein abundance

16 overweight and obese PCOS
13 fat mass- and BMI-matched ctrls

↔ – (Hutchison et al. 2012) 

PGC1B gene expression 16 obese insulin-resistant PCOS
13 age- and BMI-matched healthy ctrls

↔ – (Skov et al. 2007)
NRF1 gene expression ↔ – (Skov et al. 2007)
TFAM gene expression 16 overweight and obese PCOS

13 fat mass- and BMI-matched ctrls
↔ – (Hutchison et al. 2012) 

(↔), no differences; (↓), downregulation; (↑), upregulation; (–), not measured; PCOS, women with PCOS; ctrls, control women.

Table 4 Studies of ROS production.

ROS production assessment Population
Tissue

StudySkeletal muscle Adipose tissue

Mitochondrial H2O2 emissions 25 obese insulin-resistant PCOS
14 lean insulin-sensitive ctrls

↑ – (Konopka et al. 2015)

(↑), upregulation; (–), not measured; PCOS, women with PCOS; ctrls, control women.
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been shown in obesity-induced IR (Fisher-Wellman et  al. 
2014), and therefore, this might be a major contributor 
to mitochondrial oxidative stress in PCOS, exacerbating 
the PCOS-specific IR. Despite an association between 
increased ROS levels and obesity-induced adipose tissue 
inflammation and IR (Han 2016), ROS levels have never 
been investigated in adipose tissue of women with PCOS. 
Altogether, there is a need for further studies in skeletal 
muscle and to explore whether there exists a PCOS-specific 
increase in ROS production in adipose tissue, independent 
of obesity.

Effect of exercise on mitochondrial 
characteristics in PCOS

Exercise intervention in PCOS

Regular exercise is regarded as a first-line therapy of 
lifestyle modification in women with PCOS (Teede 
et  al. 2018). Exercise training induces a multitude of 
positive, health-related outcomes in women with 
PCOS including reproductive, metabolic and mental 
health benefits (Hutchison et  al. 2011, Barber et  al. 2019). 
These improvements are associated with increased 
cardiorespiratory fitness (VO2peak), decreased waist 
circumference and improvement in various markers of 
metabolic health, including insulin sensitivity as measured 
by euglycaemic–hyperinsulinaemic clamp, fasting insulin 
and homeostatic model assessment of insulin resistance 
(HOMA-IR) (Patten et al. 2020). The international evidence-
based guidelines for the assessment and management of 
PCOS recommends 150 min/week of moderate intensity or 
75 min/week of vigorous intensity exercise for all women 
with PCOS (Teede et al. 2018).

Recent evidence suggests that HIIT, which comprises 
repeated, short bouts of high-intensity exercise interspersed 
with rest periods, may have more beneficial metabolic 
outcomes in comparison to other exercise modalities 
with lower intensities in women with PCOS. Specifically, 
an improvement in HOMA-IR and body composition was 
observed after 10 weeks of HIIT with lean and overweight 
women with PCOS (Almenning et  al. 2015). In line with 
that, a cross-sectional study of 326 women with PCOS 
showed that vigorous exercise resulted in lower BMI and 
HOMA-IR compared to moderate exercise (Greenwood 
et al. 2016). In the latter study, 60 min of vigorous intensity 
exercise per week but not moderate intensity exercise was 
associated with a 22% reduction in odds of developing 
metabolic syndrome independent of age, BMI and total 
energy expenditure (Greenwood et  al. 2016). In addition, 

a 16% improvement in insulin sensitivity as determined 
by euglycaemic–hyperinsulinaemic clamp was observed in 
women with PCOS following a 12-week vigorous intensity 
exercise intervention (Harrison et al. 2012).

Despite the beneficial health impact of vigorous 
exercise on women with PCOS, there is a gap in the 
knowledge about the underlying exercise-induced 
mechanisms associated with improvements in metabolic 
outcomes and whether the mitochondrial adaptations are 
related to these clinical changes.

Exercise-induced changes on mitochondrial 
characteristics in PCOS

It is well established that exercise increases mitochondrial 
biogenesis, mitochondrial content and mitochondrial 
function. However, HIIT in particular has been shown to 
provide greater mitochondrial-related benefits compared 
to other exercise training modalities (Robinson et  al. 
2018). It has been previously shown that HIIT increases 
skeletal muscle oxidative capacity in obese insulin-
resistant patients, independent of obesity (De Matos et al. 
2018). These improved mitochondrial characteristics 
were accompanied by a reduction in HOMA-IR and an 
improvement in glucose metabolism in skeletal muscle (De 
Matos et al. 2018). HIIT is also better at improving insulin 
sensitivity than moderate continuous training, particularly 
in those at risk of, or with, T2DM (Jelleyman et al. 2015). 
Together, even though evidence suggests that HIIT might 
have more metabolic health benefits for women with PCOS 
than other exercise intensities (Patten et al. 2020), studies 
examining mitochondrial changes with HIIT in women 
with PCOS are limited.

Training intervention studies in PCOS show diverse 
findings in relation to mitochondrial characteristics and 
most of them include moderate-intensity training or a 
combination of modalities, with only one including HIIT 
alone (Table 5). One of the studies assessing the effect of an 
acute exercise bout of 40 min of moderate aerobic exercise 
in women with PCOS only found an elevated PGC1A gene 
expression within the healthy control group and not in the 
women with PCOS (Dantas et al. 2017). However, the gene 
expression of PGC1A at baseline was higher in the skeletal 
muscle of women with PCOS compared to controls. This 
baseline difference could be explained by the fact that IR 
observed in PCOS could upregulate PGC1A expression in 
an attempt to preserve glucose homeostasis (Dantas et al. 
2017). Therefore, this exercise bout may only upregulate 
mitochondrial biogenesis in the healthy controls as PGC1A 
was not already activated by a compensatory mechanism 
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Table 5 Effect of exercise interventions on mitochondrial characteristics in skeletal muscle and adipose tissue.

Exercise intervention protocol (study)
Mitochondrial 
characteristic Population

Tissue
Skeletal muscle Adipose tissue

Content
(Konopka et al. 2015)

• 12 weeks (5× 1 h/week)
• moderate-intensity AET
• stationary bike HR 65% of 

VO2peak

mtDNA copy number 12 obese insulin-resistant 
PCOS Ex.

13 obese insulin-resistant 
PCOS Non-Ex. 

↔ (within or 
between 
groups) 

-

CS activity 12 obese insulin-resistant 
PCOS Ex.

13 obese insulin-resistant 
PCOS Non-Ex. 

↑ (within PCOS 
Ex. Group and 
between 
PCOS Ex. and 
PCOS Non-Ex) 

-

(Hutchison et al. 2012)

• 12 weeks (3× 1 h/wk)
• moderate- and high-intensity 

AET; 2-min recovery
• treadmill
• moderate-intensity: walking/ 

jogging 70% VO2max

• high-intensity: 6× 5-min intervals 
at 95–100% VO2max 

CS activity 8 obese PCOS Ex. 
7 fat mass- & BMI-matched 

Non-PCOS Ex.

↔ (within and 
between 
groups)

-

(Hansen et al. 2020)

• 14 weeks (3× 45 min/week)
• 2 days AET on a bike; high-

intensity: 60–65% Wmax for a 
minimum of 2 min/period

• 1 day resistance training: nine 
different whole-body exercises 
with three sets of 8–12 reps 

CS activity 9 lean insulin-sensitive  
PCOS Ex.

9 age- & BMI-matched 
Non-PCOS Ex.

↑ (65% increase 
within the 
groups)

-

CS activity 9 lean insulin-sensitive PCOS 
Ex.

 9 age- & BMI-matched 
Non-PCOS Ex.

↔ (between the 
groups) 

-

Respiration-OXPHOS
(Hutchison et al. 2012)

• 12 weeks (3× 1 h/wk)
• moderate- and high-intensity 

AET; 2-min recovery
• treadmill
• moderate-intensity: walking/

jogging 70% VO2max

• high-intensity: 6× 5-min intervals 
95–100% VO2max 

OXPHOS protein 
abundance

8 obese PCOS Ex.
7 fat mass- & BMI-matched 

non-PCOS Ex.

↔ (within and 
between 
groups)

-

Complex III 
abundance

8 obese PCOS Ex. ↔ -

Complex IV (sub.4) 
gene expression 

8 obese PCOS Ex. ↑ -

(Konopka et al. 2015)

• 12 weeks (5× 1 h/wk)
• moderate-intensity AET
• stationary bike
• HR 65% of VO2peak 

 
 
 
 
 
 
 
 
 
 
 
 
 

Respiration (state 3) 12 obese insulin-resistant 
PCOS Ex.

13 obese insulin-resistant 
PCOS Non-Ex.

↑ (within  
PCOS Ex.) 

-

Respiration (state 4) 12 obese insulin-resistant 
PCOS Ex.

13 obese insulin-resistant 
PCOS Non-Ex.

↔ (within and 
between 
groups) 

-

Uncoupled 
respiration 

12 obese insulin-resistant 
PCOS Ex.

13 obese insulin-resistant 
PCOS Non-Ex.

↑ (within  
PCOS Ex.) 

-

Phosphorylation 
efficiency (ADP:O) 

12 obese insulin-resistant 
PCOS Ex.

13 obese insulin-resistant 
PCOS Non-Ex.

↑ (within  
PCOS Ex. and 
between 
groups) 

-

Coupling efficiency  
 
 

12 obese insulin-resistant 
PCOS Ex.

13 obese insulin-resistant 
PCOS  Non-Ex.

↑ (within  
PCOS Ex.)  
 

- 
 
 

(Continued)
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for glucose homeostasis. It is also important to acknowledge 
that this study did not include a bout of high-intensity 
exercise but only moderate, and the sample size was small, 
with only four women in each group. Another study that 
included a slightly larger sample size (eight women with 
PCOS and seven healthy controls) examined the prolonged 
effect of 12 weeks of a combined training protocol 
(Hutchison et  al. 2012) of alternating sessions between 
moderate-intensity continuous training and HIIT. This 
study reported improvements in cardiorespiratory fitness, 
BMI and weight, and an increase in insulin sensitivity with 
training in the PCOS group and a trend for improvement 
in the control group, with no between-group difference. 
However, no improvements were observed in any of 

the groups in gene expression, protein abundance and 
enzyme activity of mitochondrial markers of biogenesis 
(PGC1A, TFAM, NRF1), content (CS) and OXPHOS (CIII, 
CIV) (Hutchison et  al. 2012). Thus, this may suggest a 
dissociation of IR from mitochondrial characteristics, 
which aligns with some studies in T2DM that observed 
improved IR without changes in mitochondrial function 
and vice versa (Hey-Mogensen et  al. 2010, Irving et  al. 
2011). However, more comprehensive studies in women 
with PCOS are needed to clarify the role of mitochondria 
in the PCOS-specific IR.

The only study measuring mitochondrial respiration 
and ROS production in skeletal muscle in women with PCOS 
included a 12-week moderate-intensity continuous aerobic 

Exercise intervention protocol (study)
Mitochondrial 
characteristic Population

Tissue
Skeletal muscle Adipose tissue

(Lionett et al. 2021)

• 16 weeks (3 days/week)
• AET of either low-volume (LV-HIT) 

or high-volume high-intensity 
(HV-HIT) but groups were 
analysed together as a single AET 
HIIT group

• treadmill
• (LV-HIT): 10× 1-min intervals at 

maximal sustainable intensity 
with 1 min of recovery

• (HV-HIT): 4× 4-min intervals at 
90–95% HRmax with 3 mins of 
70% HRmax recovery

Respiration (state 3) 11 PCOS Ex. 
14 age- & BMI-matched 

Non-PCOS Ex.
7 PCOS Non-Ex. 

- ↔ (subcutaneous 
gluteal) (within or 
between groups)

Respiration (state 3) 9 PCOS Ex.
10 age- & BMI-matched 

Non-PCOS Ex.
7 PCOS Non-Ex. 

- ↔ (subcutaneous 
abdominal) (within 
or between 
groups)

Dynamics
(Hutchison et al. 2012)

• 12 weeks (3 × 1 h/week)
• moderate- and high-intensity 

AET; two min recovery
• treadmill
• moderate-intensity: walking/

jogging 70% VO2max
• high-intensity: 6x5min intervals 

95–100% VO2max

PGC1A gene 
expression & 
protein abundance

8 obese PCOS Ex.
7 fat mass- & BMI-matched 

Non-PCOS Ex.

↔ (within or 
between 
groups)

-

(Dantas et al. 2017)
• Acute exercise training: 40 min 

bout
• moderate-intensity aerobic 

exercise 65% VO2peak

PGC1A gene 
expression 

4 obese PCOS Ex. ↔ -

PGC1A gene 
expression

4 body composition-matched 
Non-PCOS Ex.

↑ -

ROS production
(Konopka et al. 2015)

• 12 weeks (5× 1 h/wk)
• moderate-intensity AET
• stationary bike
• HR 65% of VO2peak

mtH2O2 emissions 
(during leak/state-4 
respiration)

12 obese insulin-resistant 
PCOS Ex.

13 obese insulin-resistant 
PCOS Non-Ex.

↓ (within PCOS 
Ex. and 
between 
groups) 

-

(↔), no differences; (↓), downregulation; (↑), upregulation; (–), not measured; AET, aerobic exercise training; HR, heart rate; Wmax, maximal Watts; VO2peak,peak 
oxygen uptake; VO2max, maximal volume of oxygen uptake; PCOS Ex., women with PCOS allocated in the exercise training group; PCOS Non-Ex., women with 
PCOS allocated in the sedentary group; non-PCOS Ex., women without PCOS allocated in the exercise training group.

Table 5 Continued.
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exercise training (Konopka et al. 2015). This study included 
a lean healthy control group with no intervention and a 
group of obese insulin-resistant women with PCOS, which 
were randomised into either the exercise intervention 
or to a non-exercise group. Following training, women 
with PCOS exhibited an increase in insulin sensitivity 
and improvement in mitochondrial respiration and ROS 
production. The exercise intervention led to increased 
mitochondrial respiration, maximal CS activity and 
maximal oxidative capacity and a reduction in mtH2O2 
emissions within the PCOS exercise group. After training, 
mitochondrial phosphorylation and coupling efficiency 
and mtH2O2 emissions were similar between the PCOS 
exercise group and the lean healthy women (Konopka et al. 
2015). It is important to note that cardiorespiratory fitness, 
insulin sensitivity and mitochondrial characteristics were 
all improved following training in the women with PCOS.

The only study that has examined the effect of HIIT on 
mitochondrial function was performed in adipose tissue 
of overweight and lean women with PCOS (Lionett et  al. 
2021). In this study, IR in both women with PCOS and BMI 
and age-matched controls did not change following HIIT. 
Consistently, no changes in mitochondrial respiration were 
detected in subcutaneous abdominal and gluteal adipose 
tissue in either group after the HIIT intervention (Lionett 
et  al. 2021). The outcomes of this study were in contrast 
to the findings of another study reporting that insulin 
resistance, fasting insulin levels and glucose infusion rates 
were all improved after HIIT interventions in women with 
PCOS (Patten et al. 2020). Evidence that exercise training 
alters insulin sensitivity or mitochondrial characteristics of 
the adipose tissue even in non-PCOS populations is scarce, 
and most of the studies have not been able to demonstrate 
such a response (Dohlmann et al. 2018). However, a higher 
abundance of OXPHOS proteins has been previously 
observed in adipose tissue of endurance-trained people 
compared to untrained healthy individuals (Bertholdt 
et  al. 2018), as well as an exercise-induced increase in 
mitochondrial activity and PGC1A gene expression in 
both healthy individuals and patients with T2DM (Dewal 
& Stanford 2019). Therefore, further studies in women with 
PCOS are needed to investigate whether exercise training 
can cause adaptations in mitochondrial characteristics.

A training modality that has had limited research 
in PCOS is resistance training. To date, only two studies 
employed resistance training alone in women with PCOS 
(Almenning et al. 2015, Miranda-Furtado et al. 2016), while 
other studies included a combined protocol of both aerobic 
and resistance training (Bruner et al. 2006, Thomson et al. 
2008, Hansen et al. 2020). None of the studies with resistance 

training alone investigated mitochondrial characteristics, 
and only Almenning and colleagues assessed IR showing 
improvements in HOMA-IR in women with PCOS after the 
intervention. Of the three combined training interventions 
studies including both HIIT and resistance training, two did 
not measure IR but reported significant decreases in fasting 
insulin levels in women with PCOS (Bruner et  al. 2006, 
Thomson et al. 2008), while Hansen et al. showed improved 
insulin sensitivity (euglycaemic–hyperinsulinaemic 
clamp) in healthy women without PCOS, but not in lean 
women with PCOS (Hansen et al. 2020). In this study, the 
only mitochondrial characteristic measured in skeletal 
muscle was CS activity, which was increased by 65% in 
both women with and without PCOS after the 14-week 
intervention with no significant differences between 
groups (Hansen et  al. 2020). Thus, this suggests a lack of 
direct link between increased mitochondrial function and 
whole-body insulin sensitivity.

No studies have investigated the effect of exercise 
training on mitochondrial dynamics in any tissue from 
women with PCOS. A previous study in people who are 
obese reported that an acute exercise bout might enhance 
mitophagy and may alter the expression of mitochondrial 
fusion and fission proteins, promoting the mitochondrial 
network for future bouts (Axelrod et al. 2019). In contrast, 
exercise training may reduce mitophagy by improving 
the integrity of the mitochondrial network or by 
increasing the size and abundance of intact mitochondrial 
networks (Axelrod et al. 2019). However, due to numerous 
confounding variables it is difficult to extrapolate these 
findings to women with PCOS, and therefore, future 
research is necessary to elucidate the effects of exercise on 
mitochondrial dynamics in these women.

Conclusion

PCOS is a complex endocrine disorder with heterogeneous 
clinical manifestations. Despite the high prevalence of 
IR in this complex multifaceted disorder, the existence of 
mitochondrial dysregulation and its potential role in the 
pathogenesis of PCOS is not clear.

Studies in skeletal muscle consistently detect no 
differences between PCOS and control groups in terms of 
mitochondrial content, but none to-date have used the gold-
standard measure of transmission electron microscopy. 
Findings on mitochondrial respiration, OXPHOS and 
biogenesis in skeletal muscle are contradictory, and 
studies have yet to investigate mitochondrial dynamics 
in this tissue. Evidence in adipose tissue shows decreased 
mitochondrial respiration in the abdominal adipose tissue 
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in women with PCOS; however, evidence is limited to  
one study.

To date, most exercise interventions are suggested to 
benefit mitochondrial health in skeletal muscle of women 
with PCOS by enhancing some respiration states and 
decreasing ROS production along with improving insulin 
sensitivity. Besides the fact that some exercise training did 
improve insulin sensitivity, this did not seem to improve 
mitochondrial content or biogenesis markers, and findings 
in OXPHOS complexes expression are contradictory. 
Current data in adipose tissue are limited to one study 
showing no changes in mitochondrial respiration. 
Therefore, further research examining exercise-induced 
mitochondrial changes is needed in this tissue.

Remarkably, despite exercise training studies in women 
with PCOS improving cardiorespiratory fitness, insulin 
sensitivity, HOMA-IR and body composition, this might not 
cause an improvement in mitochondrial characteristics. 
This indicates that mitochondrial function might not 
be linked to IR in PCOS and further comprehensive 
investigations are required. In addition to that, the 
majority of current intervention studies in PCOS did not 
assess HIIT alone in skeletal muscle, which is generally 
known to improve mitochondrial function. Therefore, 
further evidence is needed to elucidate the impact of 
exercise training and intensities, and in particular HIIT, on 
mitochondria profile in these tissues, and whether these 
mitochondrial changes are responsible for the exercise-
induced improvements of IR in women with PCOS.

Taken together, current studies are limited to confirming 
the presence of an existing tissue-specific mitochondrial 
dysregulation in PCOS, independent of obesity, and the 
role this plays in IR. Further comprehensive large-scale 
exercise intervention studies are required to understand the 
association between metabolic dysfunction and aberrant 
mitochondrial profile and the molecular mechanisms 
underlying the exercise-induced metabolic adaptations 
in PCOS. These findings may ultimately contribute to 
improving the metabolic, reproductive and mental health of 
women with PCOS and may help identify new therapeutic 
approaches for the management of this syndrome.
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