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Abstract: Circulating tumor cell (CTC) test is currently used as a biomarker in cancer treatment.
Unfortunately, the poor reproducibility and limited sensitivity with the CTC detection have limited
its potential impact on clinical application. A reliable automated CTC detection system is therefore
needed. We have designed an automated microfluidic chip-based CTC detection system and hypoth-
esize this novel system can reliably detect CTC from clinical specimens. SKOV3 ovarian cancer cell
line was used first to test the reliability of our system. Ten healthy volunteers, 5 patients with benign
ovarian tumors, and 8 patients with epithelial ovarian cancer (EOC) were recruited to validate the
CTC capturing efficacy in the peripheral blood. The capture rates for spiking test in SKOV3 cells were
48.3% and 89.6% by using anti-EpCAM antibody alone and a combination of anti-EpCAM antibody
and anti-N-cadherin antibody, respectively. The system was sensitive to detection of low cell count
and showed a linear relationship with the cell counts in our test range. The sensitivity and specificity
were 62.5% and 100% when CTC was used as a biomarker for EOC. Our results demonstrated that
this automatic CTC platform has a high capture rate and is feasible for detection of CTCs in EOC.

Keywords: circulating tumor cells; epithelial ovarian cancer; liquid biopsy; CD13; SKOV3

1. Introduction

Despite recent advances in modern medicine, we are still facing many challenges in
cancer diagnosis and treatment. Tissue biopsy is the only confirmatory diagnostic method
for suspicious lesions while invasive exploratory surgery is required for cancer staging.
Tissue biopsy has its own limitations due to its invasiveness and the fact that some lesions
are in difficult-to-reach areas. In addition, tissue biopsy cannot assess the risk of cancer
metastasis, the progression of the cancer, and the response to treatment [1]. Furthermore, it
is very difficult to detect small metastatic lesions or minimal residual diseases using even
the most advanced imaging technology [2]. Therefore, there is an urgent need to develop
more precise methods to facilitate screening, diagnosis, and treatment of cancers.

CTCs are the cells shed from the primary site of the tumor that then entered the
peripheral blood circulation, which has the potential to develop into new tumor foci [3].
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Although many steps involved in cancer metastasis are still unclear, CTCs obviously play
a critical role in cancer metastasis [4,5]. We can repeatedly take the patient’s CTCs as
a “real-time liquid biopsy” to predict cancer recurrence, monitor the effect of treatment,
and understand potential drug resistance mechanisms [6]. It is estimated that there are
1–10 CTCs per mL of whole blood in the peripheral blood of patients with metastatic
cancer [7]. Because of the scarcity of CTCs in the blood, it not only is technically difficult to
capture CTCs from the blood of cancer patients but also requires a lot of blood for the test.

Since 1990, there have been many technological developments and applications to
enrich and identify CTCs. However, even though considerable progress has been achieved
in recent years, the CTC detection technology is still not widely adopted for clinical practice
because of its limitations including the scarcity and fragility of CTCs, the heterogeneity
of CTCs, the lack of standard detection methods, and the need for sensitivity and speci-
ficity [8]. Most laboratories detect CTC manually which has low interrater reliability and
low throughput. Therefore, the key point to overcome the current limitations is to develop
an automated CTC detection technology providing unbiased result and high sensitivity
will benefit clinicians taking care of the cancer patients. The rapidly improving microfluidic-
based technology over the last ten years can be a sensitive, efficient, and fully automated
system with a portable size [8,9].

Ovarian cancer is a common cancer in women with extremely poor prognosis. With
the current diagnostic techniques, more than half of ovarian cancers are diagnosed at
advanced stage [10]. Therefore, there is an urgent need for new diagnostic tools to assist in
the management of ovarian cancer, including early diagnosis, evaluation before and after
surgery, prognostic judgment, detection of minimal residual disease or early recurrence,
assessment of treatment response, and even drug selection. The purpose of this study is to
evaluate the applicability of a newly designed, fully automated microfluidic CTC platform,
in the clinical evaluation of ovarian cancer.

In the present study, we used an automatic microfluidic immunoaffinity-based system
to achieve reliable reproducibility with high throughput. This automated system consists
of several parts, including a nano-structured microfluidic biochip, an automatic CTC
enrichment and staining system, and an automatic CTC scanning and locating system. The
capture efficiency of the automatic system was tested by spiking tests of SKOV3 ovarian
cancer cell line. A preliminary test for clinical feasibility on epithelial ovarian cancer (EOC)
from consented human volunteers was also conducted.

2. Methods
2.1. Cell Line Preparation

A human ovarian adenocarcinoma cell line, SKOV3 (ATCC® HTB-77TM, Manassas,
VA, US), was used for the cell spiking test. The SKOV3 cells were cultured in McCoy’s
5A medium (BioConcept, Allschwil, Switzerland), supplemented with 10% fetal bovine
serum (FBS), 100 units/mL penicillin (Gibco, Grand Island, NY, USA). Peripheral blood
mononuclear cells (PBMCs) were separated from the whole blood of healthy volunteers by
a density gradient centrifugation method.

Two different enrichment strategies were used for spiking test, including 1:40 biotiny-
lated anti-EpCAM antibody only, and an antibody cocktail combined with 1:40 biotinylated
anti-EpCAM antibody and 0.005 mg/mL biotinylated anti-N-cadherin antibody (Combi).
Prior to their mixture, both SKOV3 cells and PBMCs were incubated with anti-EpCAM
antibody or Combi cocktail at 37 ◦C for 45 min in a 15 mL centrifuge tube. Then 3 mL DPBS
was added to each tube and the tubes were centrifuged at 300× g for 10 min to collect the
cell pallets and remove free antibodies. The cell mixture for spiking test was prepared by
spiking 5 × 103 SKOV3 cells into PBMCs of 2 mL whole blood origin in 200 µL of DPBS.
The SKOV3 cell number was counted using Countess TM II FL Automated Cell Counter
(ThermoFisher, Waltham, MA, USA).
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2.2. Microfluid Chip

The V-BioChip (CytoAurora Inc., HsinChu, Taiwan), with a size of 32 × 34 × 0.7 mm,
is a silicon-based chip with nano-pillar arrays on the inside of microfluidic chambers
(Figure 1). Nanotexturing on the chips can improve CTC adherence relative to a flat
surface [11]. The structure and production process of the predecessor of V-BioChip, Cral
Chip, has been described in detail in Ma’s report [12]. To improve the chip’s capture
efficiency, we modified original design of Coral Chip to adjust the distance between the
nano-pillars on the microfluidic chip and the shape of the nano-pillars. In brief, metal-
assisted chemical etching (MACE) technology was used to form matrix-arranged nano-
pillars on the chip surface. The tip of the pillars is modified into a shape of volcanic cone
to increase the contact surface between the microvilli of the target cells and the nano-
pillars. The pretest of the chips revealed that too wide a groove distance may make the
cells sink into the groove and distort the cells, which causes difficulties in subsequent
immunofluorescence staining and cell identification. Thereafter, the polyethylene glycol-
biotin (PEG-biotin) layer was modified on the surface of the wafer by vapor deposition
method. Streptavidin, a tetrameric protein with high binding affinity to biotin [13], was
then attached to the biotin end of the PEG-biotin using liquid deposition technology. The
streptavidin–biotin interaction is one of the strongest non-covalent biological interactions
currently known and can markedly increase the capture efficiency to the target cells [14,15].
When the mixed cell suspension flows over the chip, the target cells will be captured by the
V-BioChip by the interaction between PEG-biotin-streptavidin layer on the nano-pillars
and the biotinylated antibody on the microvilli of CTCs (Figure 1), and most other cells
will be washed away.

Figure 1. The V-BioChip. (a) The silicon-based microfluidic V-BioChip. (b) An intact SKOV3 cell is captured by the
V-BioChip (under 5000× scanning electron micrography). (c) The microvilli of SKOV3 cells are firmly attached to the surface
of the nano-pillars of the V-BioChip. (d) The illustration of nano-pillars (lateral view). The surface of the nano-pillars was
covered a thin PEG-biotin-streptavidin layer. The head of each nano-pillar was modified like a volcano cone. (e) The chip
captures the CTCs via the interaction between the PEG-biotin-streptavidin layer on the nano-pillars and the biotinylated
antibody on the microvilli of the CTCs.
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2.3. Cell Spiking Test

The Cell RevealTM machine (CytoAurora Inc., HsinChu, Taiwan) was used for the
enrichment and staining of the CTCs. Before the test, the V-Biochip was set up into the
machine and various solutions (capture antibody, immunofluorescent staining solution,
etc.) were put into the container in the machine (Figure 2a). After that, the mixed cell
suspension of SKOV3 and PBMCs was injected into the Cell RevealTM system, and the
system automatically processed all subsequent CTC enrichment and staining procedures.
The inputted cell mixture was then fixed in 4% paraformaldehyde. Subsequently, 0.1% of
Triton X-100 (ThermoFisher, Waltham, MA, USA) and 2% BSA (Bovine serum albumin)
were added to increase the cellular permeability. The cell mixture passes through the
V-BioChip at a flow rate of 0.6 mL/h, allowing the target cells to fully contact the chip to
achieve an optimal capture rate. As the cell-rich concentrate flows through the microfluidic
chips, the streptavidin on the chips captures the target cells bound with biotinylated anti-
EpCAM antibodies. The process of CTC enrichment and staining were done overnight to
achieve the best staining, but this process can be completed within four hours.

In order to distinguish CTCs from white blood cells, microfluidic chips were incubated
with anti-EpCAM antibody (R&D Systems, Minneapolis, MN, USA) conjugated with FITC
(for the detection of CTCs), as well as anti-CD45 (Agilent, Santa Clara, CA, USA) antibody
conjugated with TRITC (for the detection of white blood cells) and 4′,6-diamidino-2-
phenylindole (DAPI; Invitrogen, Carlsbad, CA, USA) (for the detection of nucleated cells).
The CTC was defined as an EpCAM+/CD45-/DAPI+ intact cell.

After the enrichment and staining steps, V-BioChip is moved to the CTC scanning
platform for further analysis. This state-of-the-art CTC scanning platform is composed
three main parts, including a modified upright fluorescent microscope and two sets of
self-developed software (CytoAcqImages system for automatic image scanning and CAT
automatic cell identification system). The upright fluorescent microscope (Leica DM6
B, Leica Microsystems GmBH, Wetzlar, Germany) is equipped with Leica HC PL APO
10x/0.45 microscope objective, spectra III light engine (Lumencor, Beaverton, OR, USA)
with wavelength range: 380 nm~750 nm, Andor Zyla 4.2 sCMOS camera and Marzhauser
scanning stage for 4 slides and is controlled by the CytoAcqImages (CAI) system. The CAI
system can be used with any brand of microscope, light controller, motorized XYZ stages
and sCMOS camera (Figure 2b).

Figure 2. Cont.
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Figure 2. The automatic microfluidic-based CTC platform. (a) The outlook and modules of the Cell RevealTM system.
After the chip and reagents being put in, the system can automatically carry out the enrichment and staining processes
according to the pre-set condition. (b) The automatic scanning and locating system. This microscope is controlled by the
CytoAcqImages system to perform automatic scanning of V-BioChip and positioning of target cells. (c) The CAT (Cell
Analysis Tools) system, which can identify target cells according to the immunofluorescence staining on the cells by using
pre-set parameters and deep learning AI function. (d) The schematic of the laboratory procedure.

Under the control of CAI system, the microscope automatically focuses and scans the
V-BioChip, as well as activates the exposure with a fluorescent carousel. A fully automatic
segmented photographing method was adopted to obtain high-resolution full-area images
of V-BioChips. Then, the image files were montaged together to form a whole biochip TIFF
image file.

V-BioChip is pre-installed with special positioning marks. During the manufacturing
process of V-BioChip, several cross-alignment marks are etched on the chip outside the
microfluidic channel. When the CAI system focuses on these marks, it also records the
coordinate information to the full chip image file. When the image interpretation system
reads the chip image file, it can use the coordinate information to calculate the specific
position of the specific cell on the chip. In addition, this precise positioning function can
also help to find specific cells on the chip again, which can assist in re-evaluating specific
cells and even further single-cell analysis.

The full chip image files were then transmitted to CAT system (Figure 2c). CAT system
can identify target cells according to the immunofluorescence staining on the cells by using
pre-set parameters and deep learning AI function. Count-in/filter-out criteria were used to
identify the cells while EpCAM+/CD45-/DAPI+ for CTCs and EpCAM-/CD45+/DAPI+
for WBCs (Figure 3a).
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Figure 3. Immunofluorescence staining of circulating tumor cells and characterization with cancer stem cell specific
molecular marker CD13: (a) CTC from a patient with endometrioma stained CD13-/EpCAM+/CD45-/DAPI+. The shape
of nucleus seems to be distorted. Alternation in nuclear shape may be due to the cell condition (like during mitosis), in
processes associated with cell death, the lab procedure, and condition of photographing. (b) CTC from an EOC patient
(high-grade serous cystadenocarcinoma, FIGO stage Ic3) showed CD13+/EpCAM+/CD45-/DAPI+ staining.

Figure 2d shows the schematic of the whole laboratory process. The integration
of these automatic systems greatly reduces manual processes and improves the stan-
dardization and output of the CTC test, making the possibility of liberal clinical use one
step forward.

Three separate spiking tests were performed for both the single ant-EpCAM antibody
and Combi strategy. The results are expressed as the mean recovery rate ± standard
deviation (SD).

2.4. Linearity between the Numbers of Captured Cells and Spiked Cells

The relationship between the captured cell numbers and the CTC numbers was
analyzed by spiking SKOV3 cells into DPBS. We incubated 625 SKOV3 cells with 5 µL
cocktail capture antibodies in 200 µL DPBS at 37 ◦C for 45 min and then centrifuged with
400 g for 10 min. A serial of 2-fold dilutions was performed to allow for linear regression
analysis of the estimated cell numbers being 625, 312, 156, 78, and 39. The diluted cell
suspensions were then injected into Cell RevealTM System to capture SKOV3 cells by
streptavidin–coated chip with a flow speed of 0.6 µL/min. The captured cells were stained
by EpCAM/CD45/DAPI on chip and subsequently were scanned and counted by the
automatic CAT system.

Each spiking cell number is tested twice. In addition to linear regression analysis, the
recovery rate of each test was also calculated. The results of recovery rate were expressed
as mean recovery rate ± SD.

2.5. Feasibility Study

In order to examine the clinical feasibility of the test, we recruited participants to join
the study, including 10 healthy subjects without any type of ovarian tumor, 5 women with
benign ovarian tumor, and 8 patients with epithelial ovarian cancer (EOC). FIGO criteria
were used for the staging of EOC. The study has been approved by the IRB committee
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in the Taiwan Adventist Hospital and Changhua Christian Hospital. All methods were
carried out in accordance with relevant guidelines and regulations, and each participant
completed a written consent before they received the test.

In this study, anti-CD13 antibody (Abcam, Cambridge, UK) was also used for ICC
staining to identify CTCs that carry CD13 (Aminopeptidase N) surface marker. Previous
studies have demonstrated that CD13 is a surface marker for semiquiescent CSCs, which
is related to chemo/radiation resistance of the disease [16,17]. Both CD13 and EpCAM
may express in SKOV3 cells and in ovarian cancers [18,19]. When an intact cell shows ICC
staining of CD13+/EpCAM+/CD45-/DAPI+, it is defined as a CD13+ CTC (Figure 3b).

3. Experimental Results

The enrichment and staining processes were achieved within as short as 4 h in the
Cell RevealTM system, but overnight handing will not change the readouts. The automatic
on-chip scanning and cell locating by CAT took about 15 min.

V-BioChip has excellent capture ability for target cells. Figure 1a demonstrates the
gross appearance of a V-BioChip and the image of an SKOV3 cell captured by V-BioChip
under a scanning electron microscope (SEM) at 5000×magnification (Figure 1b). It can be
seen from the SEM image that there were many microvilli on the surface of the SKOV3 cell,
and some microvilli firmly adhered to the nanopillars of V-BioChip (Figure 1c). The cap-
tured SKOV3 cells had intact morphology without distortion, which means that V-BioChip
can capture the targeted cells under the automatic process without obvious damage.

Because of the scarcity of CTC, capture efficiency is critical for a successful CTC test
platform. With EpCAM antibody alone as the capture antibody, the recovery rate was
48.3% with a SD of 11.7%. Considering the mesenchymal characteristics of SKOV3 cells, we
used a mixture of an epithelial marker antibody (anti-EpCAM antibody) as well as an EMT
marker antibody (anti-N-cadherin antibody) to make a capture antibody cocktail (Combi).
The Combi strategy markedly increased the capture rate to 89.6% (SD: 11.8%) (Figure 4a).

Figure 4. Capture efficiency of SKOV3 cells: (a) Capture efficiency of SKOV3 cells by using a single anti-EpCAM antibody
or a combination of anti-EpCAM antibody and anti-N-cadherin antibody as capture strategy. The bar reveals the overall
efficiency, defined as the target cell number counted by the automatic CAT system as a proportion of the spike cell number,
in both PBMCs. CTC is defined as an intact EpCAM+/CT45-/DAPI+ cells. (b) The linearity of Cell RevealTM system in low
spiking number by spiking SKOV3 cells in media. Linear regression was calculated between the number of the captured
cells (Y-axis) and the number of spiked cells (X-axis).

The analysis of the linear relationship between the number of spiking cells and the
number of captured cells at low spiking cell numbers is also an important indicator of the
capture efficiency of the CTC platform. The present study showed a high recovery rate
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and a linear relationship even in low spiking cell numbers (39–625). The linear regression
was y = 0.7888x + 1.5009 (R2 = 0.9639) with an average recovery rate of 73.5% (SD: 11.8%)
(Figure 4b).

The results of clinical validity tests are summarized in Table 1 and Figure 5. No CTCs
were detected in the peripheral blood of the ten healthy subjects. As for patients with
benign ovarian tumors and EOC, the average peripheral blood CTCs were 1.40 (1.40 ±1.51,
ranging 0–3) and 5.88 (5.88 ± 5.96, ranging 1–19), respectively (Figure 5a). If a cutoff
of ≥4 CTCs in 4 mL of blood is used to screen for EOC, the sensitivity is 62.5% and the
specificity is 100%, respectively.

Figure 5. CTC counts and CD13+ CTC counts in healthy volunteers, patients of benign ovarian tumor
and EOC patients: (a) No CTCs were detected in the peripheral blood of the ten healthy subjects.
As for patients with benign ovarian tumors and EOC, the average peripheral blood CTCs were
1.40 (1.40 + 1.51, ranging 0–3) and 5.88 (5.88 + 5.96, ranging 1–19), respectively. (b) Neither healthy
volunteers nor patients with benign ovarian tumors could detect CD13+ CTCs in the peripheral
blood. The average number of CD13+ CTCs in the peripheral blood of EOC patients was 3.375/4 mL
(ranging 0–19).

Table 1. Summary of CTC and CD13+ CTC counts in patients with benign ovarian tumor or epithelial
ovarian cancer.

Case
Number Age Diagnosis Staging Number of

CTCs
Number of

CD13+ CTCs

Benign
1 45 Endometrioma - 3 0

2 48 Endometrioma - 1 0

3 42 Mature teratoma - 0 0

4 32 Endometrioma - 3 0

5 34 Endometrioma - 0 0

Malignant

1 56 High grade serous
cystadenocarcinoma I 6 6

2 56 High grade serous
cystadenocarcinoma I 1 1

3 21 Endometrioid
carcinoma I 5 0

4 61 Endometrioid
carcinoma I 19 8

5 67 High grade serous
cystadenocarcinoma II 2 0
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Table 1. Cont.

Case
Number Age Diagnosis Staging Number of

CTCs
Number of

CD13+ CTCs

6 60 Clear cell carcinoma III 1 0

7 48 High grade serous
cystadenocarcinoma III 4 3

8 58 Endometrioid
carcinoma III 9 9

Our results revealed that neither healthy subjects nor patients with benign ovarian
tumors could detect CD13+ CTCs in the peripheral blood. The average number of CD13+
CTCs in the peripheral blood of EOC patients was 3.375/4 mL (ranging: 0–19) (Figure 5b).
The results showed a sensitivity of 62.5% and a specificity of 100%, respectively, if we used
the presence of CD13+ CTCs or not as the cutoff. Further analysis showed a sensitivity
of 75% and a specificity of 100%, respectively, if we used the cutoff as ≥ 4 CTCs or the
presence of CD13+ CTCs in 4 mL of blood.

4. Discussion

In the present study, we show a fully automated CTC detection platform that can
efficiently capture, identify, scan, locate, enumerate, and even characterize CTCs on-chip.
The development of fully automated systems has greatly increased the possibility of CTC
testing being utilized in clinical practice. This study also preliminarily tested the validity
of the platform for patients with EOC and found that it has considerable potential in the
detection of CTCs in EOC patients and could assist the treatment decision in EOC and even
other cancers.

Due to the rarity of CTCs in the peripheral blood of cancer patients, high enrichment
efficiency is critical for CTC detection platform. The design and manufacture of microfluidic
chips plays an important role in the entire system. V-BioChip is an immunoaffinity-based
microfluidic chip which is mainly based on the affinity binding between CTCs and the
surface of the nanopillar on the chip. The surface of nanopillars is coated with a PEG-
biotin-streptavidin layer and the target cells are pre-labeled with biotinylated monoclonal
antibody. Nanotexturing improved the adhesion of microvilli and invadopodia of CTCs to
the surface of nanopillars which was functionalized with streptavidin [12].

Epithelial cell adhesion molecule (EpCAM) is a cancer-related antigen. Cancer tissues
of epithelial origin often overexpress EpCAM [20–22]. Therefore, in the past few decades,
EpCAM has been used by many enrichment technologies as the main cell membrane
marker to isolate CTCs, and considerable progress has been made in the use of EpCAM-
based CTC detection technologies. However, there are many reasons why EpCAM-based
technologies cannot effectively detect CTCs. The expression of EpCAM in variant cancers
is quite different [23]. In addition, epithelial-to-mesenchymal transition (EMT) is a key
step of the metastatic cascade. This process allows epithelial cancer cells to acquire some
mesenchymal characteristics while losing epithelial cell phenotype, resulting in a decrease
in the cell’s EpCAM expression [24,25]. For example, the expression of EpCAM in patients
with ovarian cancer depends on their histological subtypes. Overall, 73% of ovarian cancers
overexpress EpCAM, but serous ovarian cancers have a lower EpCAM overexpression rate
(55%) [23].

Due to the downregulation of CTC EpCAM expression during the EMT process,
the use of EpCAM-based enrichment techniques may not efficiently capture the CTC
populations that are currently EMT [24–26]. SKOV3 is an EOC cell line with mesenchymal
phenotype. It is reasonable that the present study shows a low capture efficiency of 48% for
SKOV3 cells when using a single epithelial antibody as the capture antibody. For cancer
cells undergoing EMT, further strategies must be taken to achieve better capture efficiency.
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The combined use of epidermal and mesenchymal markers not only increases the
probability of capturing CTCs of different phenotypes but also reduces the omission of
EpCAM-negative CTCs. Po and his colleagues demonstrated that adding anti-N-cadherin
antibodies to anti-EpCAM antibodies can increase the efficiency of capturing CTCs when
using immunomagnetic beads as a strategy for isolating CTCs [27]. Another study showed
that using five different types of antibodies on the CTC platform can offer a significant
improvement in cell-isolation efficiency, even from tiny amounts of blood (250 µL–1 mL) or
in non-metastatic breast cancer [28]. The present research also reached similar conclusion
as the previous studies. Using the Combi strategy by mixing an epithelial antibody and a
mesenchymal antibody as the enrichment antibody combination can significantly overcome
the adverse effect of downregulation of EpCAM expression caused by EMT on the CTC
capture efficiency of the microfluidic system and achieve an optimal capture rate. Most
studies were conducted by using PBMCs suspensions of cancer cells that mimic actual
conditions. The donor’s blood can interact with the spiked cells and markedly affect the
recovery efficiency. Our results show that the automated CTC platform combined with
V-BioChip and Cell Reveal TM system can achieve excellent CTC capture efficiency of 90%
by using Combi strategy. Even in low cell count, the system also demonstrated excellent
capture efficiency and device linearity with R2 of 96%.

Although the Combi strategy can increase the capture rate of CTCs, Po et al. reported
that this method may cause false positives due to the simultaneous capture of circulating
endothelial cells (CECs). They use vascular endothelial-cadherin co-staining to distinguish
CECs from CTCs and therefore reduce the false positive [27]. In the present study, stem cell
specific antibody (anti-CD13 antibody) was used to co-stain the cells, and the preliminary
results show that it may also eliminate the “false positive”. However, further investigation
is still needed to get a solid conclusion for the limited cases in the present study.

Current methods for CTCs identification and analysis depend on immunofluorescence
technologies and fluorescence microscopic imaging by characterizing the tumor cells with
specific markers. Up until now, most of the microfluidic chip-based CTCs platforms still
rely on manual operations for cell screening and interpretation after immunofluorescent
staining of target cells, which is time-consuming and causes inconsistent results. So far,
only a limited number of automated CTCs microscope systems have been reported [29].
The automated CTCs scanning and identification system can complete the scanning of the
target cells in a short time, which not only saves time and manpower but also helps to
establish standard processes. Our state-of-the-art automated microscope control system
and CTCs scanning and identification system can automatically number and locate target
cells in addition to automatic scanning and identification of target cells. Numbering and
positioning functions can find specific target cells when manual inspection or re-evaluation
is required. In addition, these functions can re-locate specific cells on the chip in a very
short period of time, which is very useful when single cell analysis is required.

In the face of the extremely poor prognosis of ovarian cancer, CTC has the potential
to provide more information beyond the current testing technology to assist treatment
decisions. In the past decade, there have been many studies showing the use of CTCs as
a “real-time liquid biopsy” for the diagnosis and treatment of ovarian cancer. However,
these studies show a low positive rate of CTCs and a low median of CTCs [8,30–32]. The
possible reason is the early onset of peritoneal dissemination in EOC, with only one third
of the patient has distant metastases, leading to insufficient CTCs in the peripheral blood
to be detected [33,34]. In addition, most of these studies do not report the sensitivity and
specificity of the technology used [24,35–37]. Therefore, the clinical application of CTCs in
management of EOC still needs further confirmation.

These studies involved different CTC technologies, including immunomegnatic en-
richment, density-gradient separation followed by immunostaining or RT-PCR and mi-
crofluidic technology. The CellSearch TM system, approved by the FDA in 2004, represents
the first-generation CTC test platform and has been used in the advanced stage cancers of
breast, colorectal and prostate [38–40]. The reported detection rates of the CellSearch TM sys-
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tem varied between 14.4–40% [41–45] but might be as high as 60% in stage III-IV EOC [46].
These results revealed that the CellSearch TM system could not effectively detect EOC at
early stage. In general, the density-gradient separation seems to surpass the immunomag-
netic technology in detection rate. However, the detection rates of CTCs in EOC at early
stage remain low. The diverse CTC test technologies and methodologies make it extremely
difficult to compare the results between different studies.

Recently, variant microfluidic chips have been introduced for CTC isolation in EOC.
Rao and his colleagues reported a detection rate of 87% by using IsoFlux system, an
immunomagnetic-based microfluidic CTC platform [37]. A drawback of the IsoFlux system
is that the isolation of CTCs depends solely on expression of EpCAM and cytokeratins.
Lee et al. reported a high detection rate up to 98.1% by using an immunoaffinity based
microfluidic system without indicating the sensitivity and specificity of the test [36]. Guo
et al. used a size-based microfluidic system to detect HE4+ CTCs in patients with suspicious
ovarian cancer and showed a sensitivity of 73.3% and a specificity of 86.7% [47]. The
identification of CTCs in the latter two studies still relied on manual operation, which
is labor-intensive. At the present stage, it is difficult to judge whether the microfluidic
technology can be effectively used as a superior technology as liquid biopsy for EOC.
Although the results seem to be promising, the number of studies and cases are limited.
However, our system seems to have the advantages of full automation and the ability to
perform cell characterization on-chip.

In addition to enumeration of CTCs, single-cell phenotypic characterization can pro-
vide additional biochemical information to assist clinical diagnosis and treatment deci-
sions [19]. Aminopeptidase N (CD13) is a surface marker of cancer stem cells (CSC). It
plays a role in cancer cell invasion and is also a candidate for treatment resistance, recur-
rence, and poor prognosis, which is highly expressed in early stage of EOC [48,49]. Van
Hensbergen and his colleagues found that the expression of CD13 in EOC was associated
with the histological subtype: CD13 expression in tumor cells was observed in 80% of the
patients with a serous carcinoma and 100% of the patients with a mucinous carcinoma and
in only 20% of the clear cell carcinoma patients [49,50]. To the best of our knowledge, this
is the first attempt to isolate and identify CD13+ CTCs in EOC patients.

Although the case number in the present study is limited, there are several meaningful
findings. First, no matter which cutoff is used, there is a high sensitivity, which can greatly
simplify the interpretation of clinicians. Second, the positive rate of CD13+ CTCs in serous
adenocarcinoma is consistent with the histological study by Van Hensbergen. Third, CTCs
or CD13+ CTCs can be detected even in the early stage (stage I) EOC. It means that CTCs
have appeared in the blood at least in some early EOCs, indicating the possibility of
micrometastasis even in the early state of EOC by surgical staging. Finally, due to the full
automation of the laboratory processes, it is technically possible to simultaneously detect
one or more additional cell markers in. In other words, it has the potential to provide a
comprehensive cell profiling for clinical applications, but more experimental validation is
still needed.

5. Conclusions

In conclusion, as the advantage of microfluidic chips and automated systems, CTCs
detection has become more and more efficient and accurate. Although many microfluidic-
based methods have been developed in the past decade, most of them cannot be ap-
plied clinically due to lack of automation, low throughput, and high cost of microfluidic
chips. This study shows that the automated Cell Reveal TM system has the potential for
widespread clinical application to aid in the treatment decisions of EOC and even other can-
cers. However, in spite of the very promising preliminary results, more clinical experience
is needed to reach further conclusions due to the complexity and heterogeneity of cancers.
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