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Pathogenic variants in each of the fibrinogen peptides resulting in quantitative or qualitative disorders have
been described.1,2 Quantitative disorders include afibrinogenemia and hypofibrinogenemia. Hypofibrinoge-
nemia may result from mutations that decrease messenger RNA production, alter messenger RNA stability,
cause autophagy of misfolded proteins, or shorten fibrinogen half-life.3 Dysfibrinogenemia has been
described involving mutations affecting thrombin cleavage,4 polymerization,5 lateral aggregation,6 factor
XIII (FXIII) binding,7 fibrinolysis,8 rheology,9 or a combination of functional and structural abnormalities.
Many fibrinogen variants are asymptomatic. Others are associated with mild to severe bleeding,
thrombosis, or a combination of bleeding and thrombosis.10,11

The fibrinogen hexamer contains 29 disulfide bridges without free cysteine residues.12 Mutations affect-
ing 1 residue of a Cys-Cys disulfide pair results in a free cysteine residue, which may form aberrant disul-
fide bridges with cysteines within the same fibrinogen molecule, different fibrinogen molecules, or other
proteins with unpaired cysteines, such as albumin.13 Several fibrinogen variants resulting in unpaired cys-
teines have been described resulting in a range of phenotypes, including thrombophilia.6,8,14-16 Here, we
report the case of an adolescent female with an unprovoked portal vein thrombosis that was subse-
quently identified as carrying fibrinogen Villeurbanne II, a b-chain variant encoding a free cysteine
(Tyr356Cys) that was previously concluded to cause hypofibrinogenemia with an absence of the variant
in circulation.17 Our analyses show that fibrinogen Villeurbanne II is a hypodysfibrinogenemia that forms
complexes with albumin.

The patient is a 16-year-old multiracial female with no significant past medical history who presented
with 3 months of abdominal pain, nausea, and unintentional weight loss. Ultrasonography revealed a por-
tal vein thrombosis with extension into the superior mesenteric vein. Her risk factors for thrombosis were
remote and modest. Six weeks after her symptoms began, she was a restrained passenger in a motor
vehicle accident. She was evaluated and treated in an emergency department and released with no evi-
dence of significant trauma. She started combined oral contraceptives for contraception 6 months prior
to presentation. There was no maternal family history of thrombosis or bleeding. Paternal family history is
unknown.

At presentation, she had a prolonged prothrombin time (14 seconds; 9.6-11.6) with a normal prothrom-
bin time mixing study, normal partial thromboplastin time (29.8 seconds; 24.3-33.6), and low fibrinogen
(114 mg/dL; 200-400, Clauss method, Siemens). Thrombin and reptilase times were prolonged at diag-
nosis. Quantification of factors II through XI were normal except for an elevated FVIII activity (200%).
Complete blood count was normal. Anticoagulation with enoxaparin was initiated. Anti-Xa levels were
appropriately therapeutic. On hospital day 2, she developed severe menstrual bleeding with a 1.6 g/dL
decrease in hemoglobin and a decrease in fibrinogen to ,70 mg/dL. She was placed on norethindrone
for menstrual suppression and switched to unfractionated heparin anticoagulation. Fibrinogen remained
low throughout admission. She required weekly cryoprecipitate to maintain fibrinogen levels .80 g/dL.
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She had no evidence of an inherited or acquired thrombophilia.
Testing included analyses for factor V Leiden, prothrombin
G20201A, antithrombin activity, protein C and protein S antigen
and activity, homocysteine, lipoprotein(a), antiphospholipid antibody
panel, and JAK2 mutational analyses. The patient’s urea clot solubil-
ity test was normal. Fibrinogen antigen and activity levels from sev-
eral separate samples sent to Versiti Laboratory consistently
revealed low fibrinogen antigen and activity levels, generally ,110
g/dL. The activity:antigen ratio was sometimes ,0.72, suggesting a
hypodysfibrinogenemia, but was not consistently abnormal. Genetic
testing via Sanger sequencing revealed a heterozygous pathogenic
variant in FGB, (c.1067A.G; p.Tyr356Cys) previously reported as
a hypofibrinogenemia (fibrinogen Villeurbanne II).17 No variants were
noted in FGA or FGG. The patient’s mother does not carry this vari-
ant. Her father was not available for testing. The patient remains on
anticoagulation and is currently on Apixaban.

The study was approved by the Institutional Review Board of Cin-
cinnati Children’s Hospital Medical Center and informed consent
was obtained.

Fibrinogen was purified from plasma by ammonium sulfate precipita-
tion as previously described.18 Fibrin clots were generated using a
1.77-mg/mL solution of purified fibrinogen by addition of 0.5 U/mL
FXIIIa (HFXIIIa 1314; Enzyme Research Labs) and 0.05 U/mL
thrombin (HT1002A; Enzyme Research Labs), prepared for scan-
ning electron microscopy (SEM) as previously described.19 Three
clot preparations were made from the patient’s fibrinogen, and 3
were made from control (healthy donor) fibrinogen. Two to 3 repre-
sentative sections from each clot preparation were selected based
on image coverage and quality and photographed using a Hitachi
SU8010 electron microscope. Ten fibrils from each micrograph
were randomly selected for measurement.20,21 Figure 1 represents
the average diameter from each selection.

A turbidimetric clot lysis assay was performed following addition of
10 mM CaCl2 and 2 U/mL thrombin to citrated patient and control
plasma in the presence of tissue plasminogen activator (9 mg/mL;

Genentech). Fibrin dissolution was measured in a spectrophotometer
(DU730; Life Science UV/Vis Spectrophotometer, Beckman Coulter)
by change in absorbance at an optical density of 350 nm.

Plasma samples were separated on NuPAGE precast gels
(NP0322BOX; Invitrogen/Life Technologies), transferred using an
XCell II Blot module (#090707-098; Invitrogen/Life Technologies)
onto Immobilon-FL membranes (#IPFL00010; EMD Millipore), and
probed with specific primary antibodies (#sc-69775; Santa Cruz
Biotechnology); albumin (#46293; Santa Cruz Biotechnology). To
analyze fibrinogen interactions with albumin, we performed an immu-
noprecipitation for fibrinogen followed by a Western blot for albu-
min. Coimmunoprecipitation was performed using A/G agarose
beads (sc-2003; Santa Cruz Biotechnology) and 2 mL of antibody
per 1 mL of diluted plasma. The following IRDye-conjugated sec-
ondary antibodies were used: donkey anti-mouse (#926-32212;
Li-Cor Biosciences) and donkey anti-goat (#926-32214; Li-Cor
Biosciences).

To determine if fibrinogen Villeurbanne II alters fibrinogen polymeri-
zation, we compared SEM images of crosslinked fibrin clots formed
from equal concentrations of the patient’s fibrinogen and a healthy
control. The patient’s clots were poorly formed, consisting of long,
thin fibers with little bundling and irregularly spaced branch points
(Figure 1A). Quantitative analyses demonstrated that the patient’s
fibrils were significantly thinner than control fibrils (Figure 1B), sug-
gesting impaired lateral aggregation. To evaluate clot stability, we
performed a clot lysis assay using control and patient plasma. Maxi-
mum absorbance was significantly less with patient plasma vs con-
trol plasma (Figure 1D). This was likely largely driven by the fact that
fibrinogen concentration in the patient’s plasma was lower than that
in control plasma. Clot lysis appeared normal in the patient’s
plasma, but this needs to be interpreted with caution given differ-
ences in fibrinogen concentration. Unfortunately, we did not have
sufficient sample to perform this assay using purified fibrinogen.
Nevertheless, these data suggest that any potential prothrombotic
effect of the mutant fibrinogen is not driven by a significant resis-
tance to fibrinolysis.
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Figure 1. Fibrinogen Villeurbanne II forms abnormal-appearing polymer. Shown are SEM micrographs taken at the same magnification of fibrin clots produced from

a 1.77-mg/mL fibrinogen solution purified from plasma obtained from a healthy donor (A) and the patient (B). Size bars, 20 mm. The patient’s fibrin clot was poorly formed,

consisting of long, thin fibers with little bundling and irregularly spaced branch points. (C) Quantitative analyses of a 40-mm 3 40-mm section of the micrograph show that

the patient’s fibrils are significantly thinner than the control. The data represent the mean and SEM. The P value was generated using a Mann-Whitney U test. (D) Shown are

the results of a turbidimetric fibrinolytic assay performed using the patient’s and control (normal) plasma. OD, optical density.
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Mutations resulting in a free-cysteine residue have been character-
ized in all 3 chains and are associated with dysfibrinogene-
mia.8,15,17,22,23 Fibrinogen variants with unpaired cysteines have
been shown to form disulfide bridges with other plasma proteins,
other fibrinogen molecules, or within the same fibrinogen molecule.
Albumin, the most prevalent plasma protein, has an unpaired cyste-
ine residue, making it a candidate to aggregate with the mutant
fibrinogen.22,24 Western blot analyses utilizing reducing and nonre-
ducing conditions appeared similar between the patient and control
(Figure 2A). When coimmunoprecipitation followed by Western blot
was performed with our patient’s fibrinogen and albumin, we
observed a 66-kDa band corresponding to the molecular weight of
albumin that was not observed in control plasma, suggesting an
interaction between the mutant fibrinogen and albumin (Figure 2B).
Notably, fibrinogen variants previously described to form disulfide
bridges with albumin also displayed the formation of thin protofibrils
and impaired lateral aggregation via SEM imaging, paralleling this
study.16 Although we could not determine the precise concentration
of mutant fibrinogen in our patient’s plasma, these data strongly
suggest that Fibrinogen Villeurbanne II is present in plasma, forms
disulfide bridges with albumin, and is present in sufficient quantities
to impair clot formation. Recently developed time-of-flight mass
spectrometry could represent an approach to accurately measure
Fibrinogen Villeurbanne II in plasma.15 These findings contradict a
previous description of Fibrinogen Villeurbanne II, concluding it is
not present in plasma and represents a hypofibrinogenemia.17

The clinical distinction between hypofibrinogenemia and hypodysfi-
brinogenemia is important, as the evidence suggests hypodysfibrino-
genemia may confer bleeding and thrombotic risks.11 Genotype-
phenotype correlations are difficult to establish because of the high
allelic heterogeneity of hypodysfibrinogenemia and its relative
rarity.25 In 1 review of 51 cases of hypodysfibrinogenemia consist-
ing of 32 causative mutations, 22% were asymptomatic at diagno-
sis; 45% reported abnormal bleeding; 43% had a history of
thrombosis; and 9.8% had both abnormal bleeding and thrombo-
sis.10 Given our patient’s presentation with an unprovoked portal
vein thrombosis, Fibrinogen Villeurbanne II may predispose to throm-
bosis in addition to bleeding.
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Figure 2. Fibrinogen Villeurbanne II forms aggregates with albumin in

plasma. (A) The patient’s fibrinogen and fibrinogen from a healthy control

appeared similar when blotted under reducing and nonreducing conditions.

(B) Western blot analyses of fibrinogen coimmunoprecipitation demonstrating an

interaction between the patient’s fibrinogen and albumin (at 66 kDa; arrow) that

was not observed in fibrinogen from a healthy control, suggesting that the mutant

fibrinogen forms aggregates with albumin. IgG, immunoglobulin G.
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