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Dental caries is a multifactorial disease that can be caused by interactions between
genetic and environmental risk factors. Despite the availability of caries risk assessment
tools, caries risk prediction models incorporating new factors, such as human genetic
markers, have not yet been reported. The aim of this study was to construct a new
model for caries risk prediction in teenagers, based on environmental and genetic
factors, using a machine learning algorithm. We performed a prospective longitudinal
study of 1,055 teenagers (710 teenagers for cohort 1 and 345 teenagers for cohort 2)
aged 13 years, of whom 953 (633 teenagers for cohort 1 and 320 teenagers for cohort
2) were followed for 21 months. All participants completed an oral health questionnaire,
an oral examination, biological (salivary and cariostate) tests, and single nucleotide
polymorphism sequencing analysis. We constructed a caries risk prediction model
based on these data using a random forest with an AUC of 0.78 in cohort 1 (training
cohort). We further verified the discrimination and calibration abilities of this caries risk
prediction model using cohort 2. The AUC of the caries risk prediction model in cohort 2
(testing cohort) was 0.73, indicating high discrimination ability. Risk stratification revealed
that our caries risk prediction model could accurately identify individuals at high and
very high caries risk but underestimated risks for individuals at low and very low caries
risk. Thus, our caries risk prediction model has the potential for use as a powerful
community-level tool to identify individuals at high caries risk.

Keywords: caries, risk prediction model, preventive dentistry, biomarkers, biomedical informatics

INTRODUCTION

Permanent teeth caries was the most common chronic disease worldwide in 2016. A previous study
reported that the global cost of dental diseases exceeded 540 billion dollars in 2015 and resulted
in major health and financial burdens (Righolt et al., 2018). Therefore, there is an urgent need for
effective caries control.

Frontiers in Genetics | www.frontiersin.org 1 March 2021 | Volume 12 | Article 636867

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.636867
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.636867
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.636867&domain=pdf&date_stamp=2021-03-11
https://www.frontiersin.org/articles/10.3389/fgene.2021.636867/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-636867 March 7, 2021 Time: 16:4 # 2

Pang et al. Constructing Caries Risk Prediction Model

Accumulating evidence has shown a skewed distribution
of caries; the majority of the disease was suffered by the
minority teenagers in the population (Kaste et al., 1996).
The conference of National Institutes of Health Consensus
Development Conference Statement (2001) concluded that a
focus on high-risk individuals was required for the prevention
and control of dental caries (2001). Since caries is largely
preventable, risk prediction models for early and accurate
identification of teenagers at high risk of caries would be useful
tools for designing more cost-effective caries control measures.

As a prerequisite for implementing minimally invasive
treatment programs, caries risk prediction models (CRPMs)
have huge potential in improving patient care because they
allow individuals to choose appropriate non-invasive or invasive
interventions (Domejean et al., 2017). There are four commonly
used standardized caries risk assessment models at present: ADA
(American Dental Association), CAT (Caries-Risk Assessment
Tool), CAMBRA (Caries Management by Risk Assessment), and
Cariogram. All these models included only environmental factors
such as socio-demographic indicators, behavioral factors, plaque
index, the number of Streptococcus mutans, and Lactobacillus,
saliva flow, and salivary buffer capacity (Petersson and Twetman,
2015). Cariogram, one of the better CRPMs, has provided reliable
results for few tests in children, but there is not enough evidence
to prove its effectiveness in caries assessment and prediction.
Cagetti et al. (2018) reported that the sensitivity of Cariogram in
different samples ranged from 41.0 to 75.0%, while the specificity
ranged from 65.8 to 88.0%.

Dental caries is a multifactorial disease caused by complex
interactions between genetic and environmental risk factors.
Environmental risk factors for caries included sugar-rich diet,
poor oral hygiene, dental plaque, high numbers of cariogenic
bacteria, inadequate salivary flow and so on (Selwitz et al.,
2007). Genetic contribution to caries risk score variation has
been reported to be 49.1–62.7% (Haworth et al., 2020). As a
genetically complex phenotype, caries risk may be influenced by
many loci with small contributions individually. These genetic
factors that contribute to caries may include variants in loci for
enamel formation, immune response, saliva, taste, and dietary
habits (Vieira et al., 2014). Enamel formation was tested as
being potentially involved in caries susceptibility. Patir et al.
(2008) reported an association between enamelin (ENAM) and
higher caries experience. Additionally, a relationship between
the genetic variation of tuftelin (TUFT1) and caries could be
detected only when the Streptococcus mutans levels were high
(Slayton et al., 2005).

Therefore, CRPMs based on environmental factors alone may
lead to the loss of useful information. Previous studies have
suggested that constructing a disease risk prediction model with
both environmental and genetic factors can stratify the disease
risk more accurately than either of these factors alone (Li et al.,
2019; Okubo et al., 2020). Accordingly, research is needed to
construct CRPMs based on both genetic and environmental
risk factors and evaluate their abilities to predict caries risk
better. Thus, this prospective study aimed to construct a new
CRPM including both genetic and environmental risk factors in
teenagers of the Chinese population.

MATERIALS AND METHODS

Study Population
This study was approved by the Ethics Committee of the
Guanghua School of Stomatology, Sun Yat-sen University (ERC-
[2018]01). The analysis consisted of two cohorts that began
from March to April 2018 and were followed up for 21 months
until the end, from December 2019 to January 2020, in Foshan,
southern China. The two cohorts included 710 and 345 teenagers
aged 13–14 years. Cohort 1 was used to construct the model,
which included teenagers from two urban and two rural schools.
Cohort 2 was used to evaluate the caries risk prediction model
and included teenagers from one urban and one rural school.
All participants completed an oral health questionnaire, clinical
examination, and donated saliva samples at baseline. Written
informed consent was obtained from the guardians of every
participant before the study.

Oral Health Questionnaire
Under the guidance of their guardians, the adolescents completed
a well-designed oral health questionnaire consisting of three
parts: Part 1 was mainly about demographic information, Part
2 was mainly about socioeconomic information, and Part 3 was
mainly about oral health-related behaviors (Wang et al., 2020a).
The specific variables are as follows:

The variables in part 1: sex, age, residence, whether the child is
an only child in his/her family, and his/her primary caregiver.

The variables in part 2: family income, caregivers’ education
levels, and whether they have dental insurance.

The variables in part 3: frequency of tooth brushing,
flossing or mouthwash habits, toothpaste containing fluoride
or not, professional application of fluoride, frequency of snack
consumption, sweet drink consumption, and attendance in a
dental clinic in the past 6 months.

Clinical Examination
Plaque index (PlI) was evaluated using Silness and Löe’s scale
(Loe, 1967), and six dental indices were recorded. Plaque samples
were collected with sterile swabs, according to the procedural
instructions of the cariostat kit (GangDa Medical Technology Co.
Ltd., Beijing, China). The swabs were then immersed in culture
media in ampules and incubated at 37◦C for 48 h. Finally, the
color of the medium was compared with the reference colors in
the color chart provided by the cariostat kit.

After air drying, each tooth was examined and recorded
as decayed, missing, or filled (DMFT). The caries status was
evaluated according to the International Caries Detection and
Assessment System (ICDAS) criteria (Pitts and Ekstrand, 2013).
Codes 3–6 in the ICDAS system were recorded as decayed teeth.
We also recorded filled and missing teeth due to caries. Oral
examinations were conducted at both the baseline and after
21 months in the classrooms.

The students rinsed their mouths before the collection of
unstimulated saliva. Unstimulated saliva was collected for 15 min.
Students were first asked to swallow all the saliva in the mouth,
then spit all the saliva into the scaled tube every 3 min and
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five times in total. The saliva flow rate (ml/min) was calculated,
and saliva buffering capability was measured according to the
Ericsson method. One milliliter of saliva was added to 3 ml of
3.3 mmol HCl within 5 min after collection and then allowed to
stand for 20 mins. The final pH of the saliva was evaluated by an
electrical pH meter (Wang et al., 2020b).

Selection of Candidate Genetic Markers
and DNA Analysis
Single nucleotide polymorphisms (SNPs) were selected based on
the results of previous studies on caries susceptibility (n = 4)
and screening of tag SNPs (n = 19). We used a candidate
gene approach or related-pathway strategies to screen tag SNPs.
Caries-related pathway genes, such as those involved in enamel
formation, immune responses, saliva secretion, and taste, were
identified based on the pathogenesis of caries. The tag SNPs
were screened as described in our previous study (Wang
et al., 2020b). Thus, 23 target SNPs were detected in all study
participants (Table 1).

From each participant, 2 ml of unstimulated saliva samples
were collected and stored in Oragene DNA Self-Collection kits
(Lang Fu, China) at room temperature until they were processed.
Genomic DNA was extracted from saliva samples according
to the manufacturer’s instructions. DNA samples were first
purified using MassARRAY Nanodispenser (Sequenom,
United States) and then transferred to a SpectroCHIP
(Sequenom, United States) chip. Finally, the SNP markers
were sequenced by matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry (MALDI-TOF MS) (Pang et al.,
2017). First, 10 ng of genomic DNA were amplified by PCR in
a final volume of 0.5 µL containing locus-specific primers at
a final concentration of 10 µmol/L using 0.1-unit HotStarTaq
DNA polymerase (Qiagen, Hilden, Germany). PCR conditions
were 94◦C for 3 min for hot start followed by 40 cycles of
denaturation at 94◦C for 30 s, annealing at 56◦C for 25 s, and
extension for 30 s at 72◦C, and, finally, incubation at 72◦C for
3 min. Then, PCR products were treated with shrimp alkaline
phosphatase (Amersham, Freiburg, Germany) for 40 min at
37◦C to remove excess deoxynucleotide triphosphates followed
by 5 min at 85◦C to inactivate shrimp alkaline phosphatase.
Base extension reaction conditions were 94◦C for 30 s followed
by 40 cycles of 94◦C for 5 s, 52◦C for 5 s, and 80◦C for 5 s,
and, finally, incubation at 72◦C for 3 min. The final base
extension products were treated with SpectroCLEAN resin
(Sequenom) to remove salts from the reaction buffer. A total of
10 nl of the reaction solution was dispensed onto a 384 format
SpectroCHIP microarray (Sequenom, SanDiego, CA). The
MassARRAY Analyzer Compac was used for data acquisitions
from the MassARRAY SpectroCHIP. Genotyping calls were
made in real-time with the Mass Array RT software (Sequenom)
(Pang et al., 2020).

Statistical Analysis
Data of all teenagers in cohort 1 were used to construct a
CRPM with random forest, and those of teenagers from cohort
2 were used to verify this newly constructed model. The logistic

TABLE 1 | Candidate genetic markers evaluated in this study.

Gene Chromosome Marker
public ID

Base pair
exchange

(MAF)

Most severe
consequence

Enamel formation genes

ENAM 4 rs12640848 A/G (0.33) Intron variant

rs3796703 C/T (0.01) Missense(leu)

AMBN 4 rs13115627 A/G (0.30) Intron variant

AMELX X rs946252 C/T (0.31) Intron variant

TFIP11 22 rs134143 T/C (0.35) Non-coding transcript
exon variant

rs2097470 C/T (0.29) Intron variant

MMP20 11 rs1612069 G/T (0.48) Intron variant

rs1784418 C/T (0.42) Intron variant

TUFT1 1 rs17640579 A/G (0.22) Intron variant

rs3790506 G/A (0.25) Intron variant

Immune response genes

DEFB1 8 rs11362 C/T (0.40) 5 prime UTR variant

rs1800972 G/C (0.14) 5 prime UTR variant

LTF 3 rs4547741 C/T (0.07) Intron variant

rs1126478 C/T (0.37) Missense variant

MBL2 10 rs1800450 C/T (0.12) Missense variant

rs11003125 G/C (0.31) Intron variant,
upstream variant 2
KB

MASP2 1 rs10779570 T/G (0.36) Intron variant

Water channel protein gene

AQP5 12 rs1996315 G/A (0.43) Intron variant,
upstream variant 2
KB

rs923911 C/A (0.22) Intron variant,
upstream variant 2
KB

Saliva secretion gene

CA6 1 rs2274327 C/T (0.27) Intron variant,
missense

Taste gene

TAS1R2 1 rs35874116 T/C (0.27) Missense variant

rs9701796 C/G (0.20) missense variant

TAS2R38 7 rs713598 G/C (0.50) Missense variant

regression model was used as a reference for performance
evaluation. When we analyzed the variables associated with the
occurrence and development of caries, the independent variable
included the environmental variables and SNPs. The dependent
variable was DMFT increment (1DMFT) over 21 months of
follow-up, which is the outcome of this study. A previous
study conducted by Chaffee BW (Chaffee et al., 2015) found
that the DMFT increment was about 1.01 in the low caries
risk groups after 18 months of follow-up. Remember that
individuals with DMFT increments of no more than one caries
after 21 months of follow-up should be classified in the low
caries risk group. Chi-square tests were used to identify SNPs
associated with increased risk of caries, and univariate logistic
analysis was used to select environmental factors associated
with caries. Variables with P < 0.1 were considered statistically
significant and used as predictors in the caries risk prediction
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model. R 3.6.1 software was used to construct the model. Using
the data of the training cohort (cohort1), the random forest
package was used to train the random forest model, and the
nTree and mtry parameters were debugged. The random forest
prediction model was the most effective when nTree = 300
and mtry = 2. In the model constructed with cohort 1, we
segmented the population into five different caries risk layers
based on the 5-quantiles: very low, low, moderate, high, and
very high caries risk. Then, we stratified the caries risk in
the cohort 2 (testing cohort) population based on the cutoff
value in cohort 1. The discrimination ability of the model was
evaluated using receiver operator characteristic (ROC) curve
analysis. The calibration ability of the model was measured via
a risk stratification plot, which was used to demonstrate the
similarity of the predicted absolute risk to the absolute observed
risk at different risk levels.

RESULTS

Characteristics of Study Samples
In total, 1,055 teenagers (710 in cohort 1 and 345 in cohort
2) were recruited. The average age at baseline was 13.19 ±

0.40 years (Wang et al., 2020a). The questionnaire was completed
by all teenagers. After 21 months, 953 teenagers (including
633 teenagers in cohort 1 and 320 teenagers in cohort 2)
were followed up. During these 21 months, follow-up was lost
for only 102 (9.66%) teenagers. The main reasons for loss of
follow-up were absence in school or transfer from schools.

The flow chart of the prospective longitudinal study is shown
in Figure 1.

At baseline, 34.37% of the teenagers in cohort 1 and 39.88%
of those in cohort 2 were affected by caries, and the mean (SD)
DMFTs were 0.67 ± 1.25 and 0.84 ± 1.38, respectively. After
21 months, 57.66% of the teenagers in cohort 1 and 63.13% of
those in cohort 2 developed more than one caries (1DMFT > 1).
The mean (SD) increases in DMFTs after 21 months were
2.40 ± 2.97 in cohort 1 and 2.73 ± 3.21 in cohort 2.

Caries Risk Prediction Factors
Table 2 shows the results of a logistic analysis of the
association between environmental variation and caries. Among
the environmental variations, we found that “sex,” “dental
attendance in the past 6 months,” “cariostat score,” and “past
caries experience” were significantly associated with the caries
risk (all P < 0.05).

Table 3 shows the results of the chi-square tests on the
association between SNPs and caries. Among all the SNPs,
rs1996315 (AQP5), and rs3790506 (TUFT1) were significantly
associated with caries risk (all P < 0.05).

CRPM Training and Validation
The CRPM has been developed using logistic regression and
random forest. The performance of CRPM developed using
logistic regression was 0.70 (0.66–0.74) for the training cohort
(Figure 2A) and 0.74 (0.68–0.79) for the test cohort (Figure 2B).
The performance of the random forest was 0.78 (0.75–0.82)
for the training cohort (Figure 3A) and 0.73 (0.67–0.78) for

FIGURE 1 | Flow chart of the prospective longitudinal study.
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TABLE 2 | Logistic analysis of the association between environmental factors and caries.

Characteristics Level 1DMFT ≤ 1
(n = 328)

1DMFT > 1
(n = 305)

P-value

Pit and fissure sealant (%) No 320 (97.6) 296 (97.0) 0.879

Yes 8 (2.4) 9 (3.0)

Sex (%) Female 118 (36.0) 135 (44.3) 0.041*

Male 210 (64.0) 170 (55.7)

Frequency of tooth brushing (%) <1 times/day 7 (2.1) 6 (2.0) 0.127

1 times/day 146 (44.5) 112 (36.7)

2 times/day 175 (53.4) 187 (61.3)

Toothpaste (%) No 1 (0.3) 2 (0.7) 0.95

Yes 327 (99.7) 303 (99.3)

Mouthwash (%) No 243 (74.1) 230 (75.4) 0.771

Yes 85 (25.9) 75 (24.6)

Dental flossing (%) No 301 (91.8) 288 (94.4) 0.247

Yes 27 (8.2) 17 (5.6)

Professional application of fluoride (%) No 313 (95.4) 294 (96.4) 0.68

Yes 15 (4.6) 11 (3.6)

Dental attendance in the past 6 months (%) No 166 (50.6) 122 (40.0) 0.009*

Yes 162 (49.4) 183 (60.0)

One-child family (%) No 250 (76.2) 252 (82.6) 0.059*

Yes 78 (23.8) 53 (17.4)

Activity (%) No 108 (32.9) 107 (35.1) 0.625

Yes 220 (67.1) 198 (64.9)

Cariostat score (%) Low 85 (25.9) 48 (15.7) <0.001*

Medium 198 (60.4) 183 (60.0)

High 45 (13.7) 74 (24.3)

Plaque Index (%) Low 31 (9.5) 23 (7.5) 0.057*

Medium 119 (36.3) 139 (45.6)

High 178 (54.3) 143 (46.9)

Residence (%) Urban 171 (52.1) 151 (49.5) 0.561

Rural 157 (47.9) 154 (50.5)

Toothpaste (%) Non-fluoride 79 (24.1) 91 (29.8) 0.123

Fluoride 249 (75.9) 214 (70.2)

Saliva buffering capability (pH) (%) PH < 3.5 94 (28.7) 94 (30.8) 0.895

PH 3.5–4.24 104 (31.7) 89 (29.2)

PH 4.25–4.75 50 (15.2) 48 (15.7)

PH > 4.75 80 (24.4) 74 (24.3)

Dental insurance (%) No 251 (76.5) 230 (75.4) 0.814

Yes 77 (23.5) 75 (24.6)

Caregiver (%) Mother 194 (59.1) 192 (63.0) 0.151

Father 48 (14.6) 28 (9.2)

Grandparents 17 (5.2) 11 (3.6)

Nursemaid 11 (3.4) 8 (2.6)

No regular
caregiver

58 (17.7) 66 (21.6)

Education of caregiver (%) <9 years 293 (89.3) 272 (89.2) 1

≥9 years 35 (10.7) 33 (10.8)

Household monthly income (CNY) (%) <3,000 54 (16.5) 48 (15.7) 0.97

3,000–7,000 192 (58.5) 180 (59.0)

≥7,000 82 (25.0) 77 (25.2)

(Continued)
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TABLE 2 | Continued

Characteristics Level MDMFT ≤ 1 MDMFT>1 P-value

Frequency of snacks consuming (%) <1 per day 215 (65.5) 211 (69.2) 0.374

Saliva secretion(ml/min)

≥1 per day
<0.1
0.1–0.25
>0.25

113 (34.5)
31 (9.5)
62 (18.9)
235 (71.6)

94 (30.8)
33 (10.8)
60 (19.7)
212 (69.5)

0.801

Frequency of sweet drinks consuming (%) <1 per day 212 (64.6) 193 (63.3) 0.786

≥1 per day 116 (35.4) 112 (36.7)

Past caries experience (%) No 273 (83.2) 170 (55.7) <0.001*

Yes 55 (16.8) 135 (44.3)

1DMFS, mean increment of decayed, missing, or filled surfaces over 21 months. Past caries experience means whether the individual had caries at the baseline
examination or not. Univariate logistic regression was used to analyze the environmental factors related to the occurrence and development of caries. *P < 0.1.

TABLE 3 | Chi-square test analysis of the association between SNPs and caries.

1DMFT ≤ 1 1DMFT>1

SNP Allele 1/2 11 12 22 11 12 22 OR 95% CI P-value

rs10779570 G/T 21 111 196 17 105 183 0.97 0.75–1.26 0.824

rs11003125 C/G 55 173 100 48 170 87 1.02 0.81–1.29 0.860

rs1126478 C/T 163 133 32 144 121 40 1.15 0.91–1.45 0.231

rs11362 C/T 121 161 46 115 138 52 1.06 0.85–1.33 0.604

rs12640848 A/G 219 95 14 198 94 13 1.07 0.81–1.41 0.631

rs13115627 A/G 190 118 20 175 120 10 0.93 0.71–1.21 0.578

rs134143 T/C 152 132 44 129 140 36 1.05 0.83–1.31 0.699

rs1612069 G/T 84 177 67 77 176 52 0.93 0.74–1.18 0.567

rs17640579 A/G 176 133 19 156 121 28 1.17 0.91–1.5 0.214

rs1784418 C/T 95 168 65 77 169 59 1.07 0.85–1.35 0.548

rs1800450 C/T 239 82 7 235 63 7 0.85 0.61–1.16 0.305

rs1800972 G/C 260 60 8 240 63 2 0.93 0.66–1.31 0.671

rs1996315 G/A 110 160 58 116 154 35 0.79 0.62–0.99 0.042*

rs2097470 C/T 170 136 22 150 139 16 1.02 0.79–1.32 0.858

rs2274327 C/T 162 139 27 140 141 24 1.07 0.84–1.37 0.579

rs35874116 C/T 4 58 266 0 77 228 1.31 0.92–1.89 0.138

rs3790506 G/A 187 125 16 158 114 33 1.33 1.04–1.71 0.024*

rs3796703 C/T 309 15 4 287 13 5 1.06 0.64–1.76 0.830

rs457741 C/T 293 32 3 277 28 0 0.76 0.46–1.25 0.283

rs713598 C/G 30 137 161 31 125 149 1.03 0.81–1.31 0.811

rs923911 C/A 199 116 13 201 87 17 0.90 0.69–1.17 0.434

rs946252 C/T 136 54 138 127 66 112 0.93 0.79–1.11 0.440

rs9701796 C/G 204 112 12 194 99 12 0.97 0.74–1.29 0.857

1DMFS, mean increment of decayed, missing, or filled surfaces over 21 months. Chi-square test was used to analyze the SNPs related to the occurrence and development
of caries. *P < 0.05.

the test cohort (Figure 3B). The results showed that the
prediction performance of the CRPM constructed using Random
Forest was stable.

The Gini coefficient of the random forest suggested
that the selected variables in this prediction model could
be arranged as follows according to their importance:
“past caries experience,” “cariostate score,” “plaque index,”
“rs3790506,” “rs1996315,” “gender,” and “whether they were only
teenagers” (Figure 4).

The ability of the CRPM to identify caries risk in individuals
was examined further. A risk stratification plot was created,
in which the data from 320 patients in cohort 2 were sorted
by increasing the predicted risk and separated into five risk
layers: very low, low, medium, high, and very high. Then,
the actual rate of caries incidence after 21 months was
calculated for each risk layer. Figure 5 shows the degree of
discrepancy between the actual and predicted risks for each of
the five risk layers.
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FIGURE 2 | ROC curve of training and testing cohort (Logistic Regression Model). Measurement of the discrimination ability of the caries risk prediction model
(Logistic Regression) with ROC curve. The AUC (95%CI) of the training cohort was 0.70 (0.66–0.74) (A), and the AUC (95% CI) of the testing cohort was 0.74
(0.68–0.79) (B).

FIGURE 3 | ROC curve of training and testing cohort (Random Forest Model). Measurement of the discrimination ability of the caries risk prediction model (Random
Forest) with ROC curves. The AUC of the training cohort was 0.78 (0.75–0.82) (A), and the AUC of the testing cohort was 0.73 (0.67–0.78) (B).

Using the CRPM constructed with the training cohort, we
assigned the participants in cohort 1 into five risk groups based on
the 5-quantiles of the predicted incidence probabilities as follows:
very low, low, medium, high, and very high. The predicted
incidence rates of caries after 21 months in cohort 1 for each
risk layer were 5.60, 16.02, 33.29, 65.06, and 90.51%, respectively,
and the actual incidence rates of caries after 21 months in
cohort 1 for each risk layer were 18.25, 31. 71, 39. 34, 61. 94,
and 87.50%, respectively (Table 4). The numbers of individuals

in the caries layers of cohort 2, i.e., very low, low, medium,
high, and very high, were 48,49,73,102, and 48, respectively, and
the mean DMFT increment in each risk layer are shown in
Table 5; the predicted incidence rates of caries after 21 months
in each risk layer of cohort 2 were 5.41, 16.79, 33.56, 66.20,
and 91.07%, respectively, and the actual incidence rates of caries
after 21 months in each risk layer of cohort 2 were 27.08,
34.69, 47.95, 59.80, and 85.42%, respectively (Table 5). The
risk of new caries was consistently reduced from the extremely
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FIGURE 4 | The Gini coefficient of the random forest.

FIGURE 5 | Risk stratification plot for the training and testing cohort (Random Forest Model). Relationship between observed (orange, 95% confidence intervals) and
predicted (green) scores of new carious lesions for 21 months for the training cohort (A) and the testing cohort (B). The prediction model could accurately estimate
risk for individuals at high and very high caries risk but underestimated risks for individuals at low and very low caries risk.
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TABLE 4 | Actual number of new caries after 21 months: actual and predicted caries incidences in cohort 1.

Caries risk Total number of participants
in cohort 1 (n)

Actual number of new caries
incidence in cohort 1 (n)

Actual caries incidence
in cohort 1 (%)

Predicted caries
incidence in cohort 1 (%)

Very low 126 23 18.25 5.60

Low 123 39 31. 71 16.02

Moderate 122 48 39. 34 33.29

High 134 83 61. 94 65.06

Very high 128 112 87. 50 90.51

TABLE 5 | Actual number of new caries after 21 months: actual and predicted caries incidences in cohort 2.

Caries risk Total number of
participants in cohort 2 (n)

Actual number of new caries
incidence in cohort 2 (n)

Actual caries incidence
in cohort 2 (%)

Predicted caries
incidence in cohort 2 (%)

Caries increment
mean (SD)

Very low 48 13 27.08 5.41 1.25 ± 2.12

Low 49 17 34.69 16.79 1.67 ± 2.63

Moderate 73 35 47.95 33.56 2.39 ± 2.93

High 102 61 59.80 66.20 3.43 ± 3.72

Very high 48 41 85.42 91.07 4.33 ± 2.90

high-risk category to the extremely low-risk category, reflecting
the ability of our newly constructed CRPM to estimate future
caries accurately.

The sensitivity, specificity, positive predictive value, and
negative predictive value of cohorts 1 and 2 are displayed
in Table 6. The positive predictive value was high (>73%)
for those stratified into very high and high caries risk
categories. When the “moderate caries risk” and “low caries risk
“categories were used as a cutoff level, the negative predictive
values were low.

DISCUSSION

In this study, a new caries risk prediction model was constructed,
using both environmental risk factors, such as cariostate score,
plaque index, and past caries experience, and genetic factors as
predictors. To our knowledge, this is the first CRPM constructed
with both environmental and genetic factors, using machine
learning algorithms. We further verified the accuracy of this
prediction model using another independent cohort, and the
results demonstrated that this CRPM could effectively identify
high caries-risk individuals.

It is well recognized that dental caries is a multifactorial
disease. Environmental and genetic factors play important roles
in the occurrence and development of caries (Yildiz et al., 2016).
Combining genetic factors with environmental factors to explain
the incidence of caries is both reasonable and necessary. Being a
polygenetic disease, caries is difficult to predict based on a single
SNP or SNPs of individual genes. Hence, it is necessary to select
SNPs from different candidate genes. In this study, SNPs were
selected based on the results of previous studies, combining tag
SNP screening via related-pathway strategies and candidate gene
approach (Opal et al., 2015). Finally, 23 SNPs from 16 candidate
genes were included in this study. After analyzing the correlation
of each SNP, two SNPs were found to be associated with caries in
the Chinese population.

The SNPs included in the final CRPM described here were
rs3790506 and rs1996315. Of these, rs3790506 is an SNP
of TUFT1, which is involved in enamel development and
mineralization. Previous studies have reported a relationship
between TUFT1 and caries incidence in both children and adults.
Slayton et al. suggested that rs3790506 in TUFT1 interacts with
the Streptococcus mutans present in the oral cavity and further
explained over a quarter of the factors affecting the variability
of caries conditions in teenagers from Iowa, United States

TABLE 6 | Sensitivity, specificity, and predictive values for new caries lesions over 21 months.

Caries risk Sensitivity (%) Specificity (%) PPVa (%) NPVb (%) Youden’s indexc

Cohort 1 Cohort 2 Cohort 1 Cohort 2 Cohort 1 Cohort 2 Cohort 1 Cohort 2 Cohort 1 Cohort 2

Very-high 67.8 65.8 75.0 57.2 95.0 90.0 25.0 22.2 0.43 0.23

High 54.2 59.0 68.7 68.3 73.8 73.5 47.9 52.8 0.23 0.27

Moderate 45.8 34.3 69.0 65.8 48.9 48.0 66.2 52.1 0.15 0.001

Low 41.0 29.4 73.9 62.5 42.1 29.4 72.9 62.5 0.15 0.08

aPPV, positive predictive value.
bNPV, negative predictive value.
cYouden’s index, sensitivity + specificity − 1.
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(Slayton et al., 2005). rs1996315 is a SNP of AQP5, which encodes
a water channel protein expressed in lacrimal and salivary glands
and epithelial cells. Aquaporins play a role in the generation
of tears, saliva, and pulmonary secretions. AQP5 protein also
plays an important role in extracellular matrix hydration during
tooth development (Felszeghy et al., 2004). It has been reported
that variations in AQP5 could contribute to the occurrence and
development of caries (Wang et al., 2012; Anjomshoaa et al.,
2015). Our previous study showed that gene-gene interaction
between rs1996315 and rs923911 was significantly associated
with molar-incisor hypomineralization (Pang et al., 2020). Both
SNPs included in the CRPM constructed in this study were
associated with enamel development. The etiological theory
of dental caries states that enamel characteristics also affect
the pathogenesis of dental caries, although it is not feasible
to detect the physical and chemical characteristics of enamel
in vivo. The identification of variations in enamel-related genes
can indirectly reflect enamel characteristics associated with
the occurrence of dental caries. Although genetic factors were
included in this CRPM, it should be noted that environmental
factors were more dominant than genetic factors. Silva et al.
revealed that, compared to environmental factors, genetic
factors have relatively little influence on the risk of dental
caries, which is consistent with the results of our study
(Silva et al., 2019).

In accordance with the results of traditional CRPMs, such as
the Cariogram model, the CRPM constructed in this study using
a machine learning algorithm identified “past caries experience”
as the strongest predictor of individual risk. Besides the “past
caries experience,” “cariostate score,” “plaque index,” “gender,”
and “whether they were only teenagers in the family” were
also included in this new CRPM. Unlike the Cariogram model,
we used the “cariostate score” instead of “bacterial counts” to
evaluate the cariogenic ability of the dental plaque. Cariostat uses
a colorimetric test to evaluate the acid produced by bacteria in the
plaque (Ramesh et al., 2013). The occurrence of carious lesions is
a dynamic process in which acids produced by bacteria impact
the demineralization of dental tissues (Richards et al., 2017).
When the pH of the tooth surface decreases to a level < 5.5, the
hydroxyapatite (HA) matrix of the tooth starts to demineralize;
Cariostat can assess the activity of the caries microbiology. Unlike
other cariogenic microbiology tests, such as Dentocult SM,
Cariostat assesses bacteria in plaque instead of saliva, leading to
higher accuracy because cariogenic bacteria act on tooth surfaces
in the form of plaque.

An ideal but possibly unrealistic model will correctly
distinguish individuals at risk of a caries event from those who
are not at risk, without any instance of misdiagnosis (Alba
et al., 2017). The extent to which a model can achieve this
goal is represented by two related properties of discrimination
and calibration (Alba et al., 2017). Discrimination refers to
the extent to which the model distinguishes between high-
risk and low-risk participants of an event, usually described
by the receiver operating characteristic (ROC) curve. It is well
recognized that an AUC < 0.6 represents poor discrimination,
while an AUC ≥ 0.7 indicates high discrimination ability
(Fontana et al., 2020). The training set resulted in an AUC

of 0.78 in cohort 1 and 0.73 in cohort 2, indicating high
discrimination ability.

Discrimination alone is not sufficient to evaluate the
performance of a prediction model. The second essential
characteristic of a prediction model is demonstrating the
similarity of the predicted absolute risk to the absolute observed
risk at different risk levels. Calibration is usually considered the
most important characteristic of a prediction model because it
reflects the extent to which a model correctly predicts the absolute
risk (Alba et al., 2017). In terms of accurate estimation, the
model is well-calibrated. The relationship between predicted and
observed risk could be visually represented, allowing efficient
evaluation of the calibration (Alba et al., 2017). We found that
the CRPM constructed in this study can accurately estimate
the risks of individuals at high and very high caries risks but
underestimates those for individuals at low and very low caries
risks. However, this poor calibration may not pose a problem
for low-risk individuals because the purpose of this CRPM is
to identify teenagers at high risk of developing caries for better
prevention and intervention, and the underestimation of patients
at lower risk would be rather irrelevant. Hence, our CRPM
can be considered a useful tool for selecting high caries risk
population in China.

Our study has several limitations. First, although the SNPs
were selected based on the results of previous studies on caries
susceptibility and through screening of tag SNPs from multiple
genes, it cannot be ruled out that some key loci with powerful
diagnostic performance were missed. As an infectious disease,
caries risk will certainly be affected by microorganisms. Even if
we use “cariostate score” to evaluate the cariogenic ability of the
dental plaque, the prediction performance might be influenced
by microbiome markers. Although the ICDAS system was used to
record caries, earlier signs (ICDAS code 1 or 2) of caries were not
detected in our study. In addition, despite external verification
with an independent cohort, further multicenter research is
also highly needed.

In conclusion, we constructed a CRPM based on both
environmental and genetic factors using a machine learning
algorithm. We also estimated the discrimination and calibration
abilities of this CRPM using a separate independent cohort for
validation, demonstrating that this CRPM can accurately identify
a high caries risk population. Our CRPM included specific
patient characteristics, such as SNPs, gender, and whether the
participants were the only child of the respective families, to
provide an estimate of the absolute risk of a specific caries
outcome. Thus, our CRPM can be utilized as a powerful
tool at the community level for identifying high caries risk
groups, enabling policymakers to plan necessary preventive
measures for the future.
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