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Abstract

An increasing number of patients worldwide suffer from bone fractures that occur after 
low intensity trauma. Such fragility fractures are usually associated with advanced age 
and osteoporosis but also with long-term immobilization, corticosteroid therapy, diabetes 
mellitus, and other endocrine disorders. It is important to understand the skeletal origins 
of increased bone fragility in these conditions for preventive and therapeutic strategies 
to combat one of the most common health problems of the aged population. This review 
summarizes current knowledge pertaining to the phenomenon of micropetrosis (osteocyte 
lacunar mineralization). As an indicator of former osteocyte death, micropetrosis is more 
common in aged bone and osteoporotic bone. Considering that the number of mineralized 
osteocyte lacunae per bone area can distinguish healthy, untreated osteoporotic and 
bisphosphonate-treated osteoporotic patients, it could be regarded as a novel structural 
marker of impaired bone quality. Further research is needed to clarify the mechanism 
of lacunar mineralization and to explore whether it could be an additional target for 
preventing or treating bone fragility related to aging and various endocrine diseases.

Introduction

From a medical materials science viewpoint, bone is a 
remarkably hierarchically organized nanostructured 
material with a peculiar organization of mineral and 
organic phases (1, 2, 3). Bone is subject to various 
mechanical demands and must withstand loads, while 
bone also shields organs and serves as a means for 
mineral homeostasis (4, 5). Bone is also a living and 
dynamic tissue, and the bone matrix houses numerous 
living bone cells (6, 7). Therefore, in contrast to most 
materials, human bone has a remarkable ability to 
adapt its volume and structure to the local (8, 9) and 
global needs of the organism (10). Moreover, human 
bone has the ability to repair damage that was induced 
during repetitive loading by renewing packets of bone 
tissue (11). Osteocytes, the most numerous bone cells 
that are strategically distributed through entire bone  

matrix (7) exhibit extraordinary behavior in bone 
renewal processes.

During aging and in some diseases, bone loses its 
ability to successfully withstand mechanical loads (12), 
exhibiting diminished ability to successfully adapt to 
sudden and repetitive mechanical situations (demands) 
(13, 14). Its capacity for damage repair also reduces, and 
targeted bone renewal drastically declines (15, 16). The 
latter might contribute to increased bone fragility and, 
subsequently, fracture risk increases underpinning major 
problems in the elderly population (17). In the year 
2000 alone, 9 million osteoporotic fractures occurred 
worldwide, and epidemiological trends suggest further 
increases in bone fracture burden in aging populations 
(18, 19). However, a deeper understanding of the origins 
and mechanisms of increased bone fragility is essential for 
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the development of preventive and therapeutic strategies 
to combat one of the most common health problems in 
aged individuals worldwide.

Role of osteocytes in bone adaptation

Currently, many bone properties are considered to be 
controlled or mediated by osteocytes (20). Osteocytes 
are primarily considered sensors of mechanical stress, 
which is generally based on: (i) their strategic distribution 
throughout the bone matrix, a network that provides 
intercellular communication, and (ii) their ability to 
respond to mechanical stimuli in vitro by producing 
biochemical signals that are capable of affecting other 
bone cells (21, 22, 23, 24). Although osteoblasts can 
sense and respond to loads, the osteocyte network 
is a necessary ‘antenna’ to detect signals and bone 
mechanosensory potential (25). In addition, in vitro 
studies have demonstrated that osteocytes are the most 
mechanoresponsive bone cells, particularly to fluid flow 
(21, 26). There is growing data on mechanotransduction 
pathways (for a review see: (27)), for example, on how 
bone (osteocytes) detects mechanical signals and converts 
these signals into biochemical signals that can affect 
neighboring cells. The relationship between osteocytes 
and other bone cells is intriguing, given that the same 
osteocytes can exert both positive and negative regulation 
on osteoblasts and osteoclasts (28). However, since 
an osteocyte receives complex information (not only 
mechanical but also biochemical via various cytokines and 
signaling molecules), the sum of the stimuli determines 
whether osteocytes stimulate or inhibit bone formation 
or resorption (28). In the case of loading, increased fluid 
flow stimulates osteocytes to produce biochemical signals 
that inhibit osteoclast formation and resorption (29, 30) 
and promote osteoblast proliferation and differentiation 
(26), with a net bone-forming effect. Nitric oxide (NO) is 
one of the biochemical markers of the osteocyte response 
to mechanical loading (22, 24, 31) that is known to 
induce bone formation (32, 33) and promote osteocyte 
survival (34). In cases of insufficient loading, the lack of 
NO production leads to osteocyte apoptosis, and bone 
resorption is initiated, which adapts the bone structure to 
low-load conditions.

Osteocyte death

The lifetime of osteocytes is variable, but unlike other 
bone cells, osteocytes are capable of exceptional longevity; 

if a bone region remains unaffected by remodeling long 
enough, osteocytes can even live for several decades 
(35). Since the initial report by Frost (36), numerous 
studies visualized or quantified osteocyte death in various 
conditions (37, 38, 39, 40, 41, 42, 43, 44). Osteocyte death 
is, in general, dependent on patient age and tissue age, but 
premature osteocyte death also occurs due to hormonal 
reasons, such as estrogen deficiency or corticosteroid 
excess (38, 39, 45). Moreover, osteocyte death may be 
caused by mechanical factors (36, 46), but the relationship 
between mechanical loading and osteocyte survival is 
actually biphasic (47). Namely, for survival, osteocytes 
need constant ‘stimulation’, for example, a certain level of 
strain and/or fluid flow is necessary. For example, Noble 
et  al. (47) reported that physiological strain decreased 
the number of apoptotic cells and even increased the 
number of young osteocytes. It has been shown that load-
induced fluid flow inhibits osteocyte apoptosis via NO 
production (34). Strain and fluid flow promote osteocyte 
viability possibly by facilitating antiapoptotic pathways 
in osteocytes (34, 47), and fluid flow enhances molecular 
transport and nutrient supply to keep osteocytes healthy 
(48). In addition to insufficient strain, such as during 
weightlessness (44) or long-term immobilization (49), 
too much strain is also dangerous and osteocytes can be 
considered to ‘overdose’. Specifically, excessive strain was 
found to increase the number of apoptotic osteocytes (47). 
It is not exactly clear why osteocytes die under high strain 
conditions; however, Noble et al. (47) suggested that either 
pathologically high strain launches apoptosis machinery 
within osteocytes or matrix damage is responsible for  
cell death.

Mineralization of osteocyte lacunae

Based on basic fuchsin-stained bone samples observed 
under bright field microscopy, Frost noticed unstained 
lacunae and canaliculi and suggested that they had 
been filled with mineral, for which he coined the term 
‘micropetrosis’ (46).

Boyde and colleagues used backscattered electron 
microscopy and observed mineralized lacunae in human 
mandibles, especially in aged individuals, but also in 
calvarial bones, long bones near metal implants, and 
grafted bone (50, 51, 52). They showed that such lacunae 
can express various degrees of mineralization and may 
occupy extensive bone areas with higher mineralization 
levels than the neighboring osteons (51). An ultrastructural 
study that applied scanning and transmission electron 
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microscopy of mineralized lacunae showed apoptotic 
remnants of osteocytes within the mineral matter (53) 
and labeled such lacunae as ‘living fossils’ that preserve 
the fragments of a previous cell (53).

The first quantitative analysis of mineralized lacunae 
(Fig. 1) in cortical bone from human femoral diaphysis 
in young (20–40 years) and aged (>80 years) individuals 
of both sexes was based on backscattered electron 
microscopy and showed a marked age-related increase 
in mineralized lacunae per bone area (54) along with 
a notable reduction in normal appearing osteocyte 
lacunae (54). While these findings confirmed that with 
aging many osteocytes die, we suggest that if the bone 
areas containing dead osteocytes are not remodeled, 
such lacunae would become occluded with a high 
mineral content, as verified via energy dispersive X ray 
spectroscopy (54). The endocortical compartment tended 
to have a higher number of mineralized lacunae per 
bone area than the pericortical compartment in aged 
individuals (1, 54). Considering the concomitant lower 
overall mineralization of the pericortical compartment 
(1), such findings may be explained by the increased 
apposition of fresh bone to the periosteal surface during a 
person’s lifetime (55, 56).

Our backscattered electron microscopy data on 
femoral cortical bone in young females, healthy aged 
females, females with untreated osteoporosis, and females 
with bisphosphonate-treated (BP) osteoporosis showed 
that in addition to the observed age-related increase in 
the number of mineralized lacunae per bone area, lacunar 
occlusion further increased due to osteoporosis (1).  

Namely, aged females with untreated osteoporosis 
displayed nearly twice as many mineralized lacunae per 
bone area as age-matched healthy women (1). However, 
the osteoporosis patients who underwent long-term 
bisphosphonate treatment exhibited a reduced number 
of lacunar occlusions, which was comparable to the 
prevalence in healthy aged individuals (1). Obviously, 
there is a consistent positive influence of bisphosphonates 
on osteocyte viability, reflected by a reduced number of 
mineralized lacunae, compared with individuals with 
untreated osteoporosis (1). This finding is compatible with 
recent cell culture and animal studies revealing osteocyte 
antiapoptotic effects of bisphosphonates (BPs) (57, 58).

It is not yet clear whether there is any difference 
in terms of mineralization starting point, for example, 
whether mineral occlusion starts in lacunae or in 
canaliculi. Indeed, canaliculi can be mineralized even 
before the lacunae are occluded with mineral substance 
(51), which is an important sign of aged bone (6). Namely, 
our study on acid-etched resin embedded mid-cortical 
bone from the proximal femoral diaphysis showed a 
significant reduction in the number of canaliculi per 
osteocyte lacunae in aged individuals compared with 
young individuals (6). As mid-cortical bone is difficult 
to access during remodeling due to its large distance 
from bone surfaces (59, 60), it bears signs of aged tissue, 
especially in aged individuals, evidenced by a higher 
calcium to phosphorus ratio according to EDX and 
increased calcium concentration according to quantitative 
backscattered electron imaging (6). Consequently, the 
decrease in the number of canaliculi leads to a prominent 

Figure 1
The process of lacunar mineralization 
(micropetrosis) passes through different stages 
from normal appearing osteocyte lacuna (A) via 
partly filled lacuna with clearly identifiable 
calcified nanospherites (B and C) and finally 
complete occlusion of the lacuna with mineral (D). 
(Backscattered electron microscopy images, Scale 
bar 1 µm).
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reduction in connections between osteocyte lacunae 
within mid-cortical osteons (6). Moreover, we have 
observed that, in young bone, canaliculi frequently 
cross the cement lines and often have connections with 
interstitial bone osteocyte lacunae; we believe that these 
connections may be essential for the viability of interstitial 
osteocytes by providing them with nutrients through 
canalicular fluid flow and by providing appropriate 
mechanical stimulation for their survival (6). Thus, 
interstitial osteocytes can still be part of a dynamic and 
mechanosensitive lacunocanalicular system (6). However, 
in aged individuals, we found a dramatic reduction in 
canalicular connections between osteonal and interstitial 
lacunae, which could explain why interstitial regions 
are particularly rich in dead osteocytes and represent a 
preferential location for the development of mineralized 
lacunae (1, 54). Indeed, one of the reasons for the lower 
number of canaliculi is their mineralization, while there is 
a possibility that even new osteocytes initially form fewer 
dendrites in aged bone. In future studies, it would be 
interesting to compare the osteocytes in the bone packets 
of similar tissue age in young and aged individuals to 
clarify whether individual’s age or tissue age has a decisive 
role in loss of dendrites. The results from a recent animal 
study on osteocytes isolated from young and aged mice 
showed lower number of dendrites in aged osteocytes 
(61), while study using confocal microscopy reported a 
reduced dendritic number in aged mice (62).

Despite the observations that mineralized 
nanospherites (Fig. 1) appear at both lacunae and 
canaliculi (63), there is some evidence that canaliculi 
are first to be occluded by minerals. It is unknown 
whether this is always a part of the same phenomenon 
of lacunar mineralization, although canalicular reduction 
is associated with tissue age-related increases in calcium 
content in the surrounding bone (6). Likewise, the number 
of mineralized osteocyte lacunae per osteon bone area is 
positively correlated with both osteonal calcium content 
and cement line calcium content, two indicators of tissue 
age (64). Our acid-etching study showed three states of the 
peripheral canaliculi in mid-cortical osteons: preserved 
canaliculi that fully cross the cement line to establish an 
external ‘routing’ of osteons; canaliculi interrupted at the 
cement line; and a complete lack of visible canaliculi on 
the peripheral side of the outermost osteonal lacunae, as 
the mineral that had filled them was removed by acid 
while the lacuna remained patent as it was filled with 
polymethylmethacrylate (6). Canalicular mineralization 
certainly indicates a loss of dendritic processes,  

while dendrite numbers were shown to be inversely 
related to age (61, 62).

Mineralized osteocyte lacunae as indicators 
of impaired bone quality

Our quantitative data on osteocyte lacunae revealed 
that the amount of mineralized osteocyte lacunae is 
associated with differential bone quality, as bone with 
different mechanical properties (young, aged, untreated 
osteoporosis, BP-treated osteoporosis) can be distinguished 
based on the number of mineralized lacunae per bone 
area (1). Namely, mineralized lacunae are related to the 
age of the individual, and the occurrence and density of 
mineralized lacunae are significantly higher in untreated 
osteoporotic patients than in healthy aged individuals 
and BP-treated osteoporotic patients (1).

We recently demonstrated a decreased osteocyte 
lacunar number per bone area of the femoral neck’s 
periosteal cortex in aged females who sustained hip 
fracture compared with aged-matched healthy controls 
(65). However, while there is a general agreement regarding 
osteocyte depletion with aging (66, 67, 68, 69, 70, 71, 
72, 73, 74), data in the literature on osteocyte lacunar 
density in iliac, vertebral, and femoral trabecular bone 
compartments of osteoporotic patients are inconsistent 
and sometimes contradictory (75, 76, 77, 78, 79). Our study 
on femoral diaphysis did not show a significant difference 
in lacunar density between three different groups of 
elderly women (healthy aged, untreated osteoporosis, 
BP-treated osteoporosis), while young cases presented 
with higher osteocyte lacunar density, although without 
reaching significance level (1). Therefore, taken together, 
our findings suggest that differences in mineralized 
lacunae are better than osteocyte lacunar density alone 
in discriminating among different groups of individuals.

Currently, the main mechanisms by which 
mineralized lacunae may promote bone fragility can be 
considered as follows (Fig. 2):

– Mineralized lacunae are ‘plugs’ in the osteocyte 
lacunocanalicular network that cause localized 
dysfunction of the network (63) in terms of blocked 
fluid flow:

Certainly, this would block nutrient supply to 
other osteocytes, especially interstitial osteocytes, 
favoring more cell death. As fluid flow is also essential 
for mechanosensitivity (48, 80, 81), it is apparent that 
obstacles to fluid flow compromise the ability of bone 

This work is licensed under a Creative Commons 
Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-19-0531

https://ec.bioscientifica.com © 2020 The authors
Published by Bioscientifica Ltd

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1530/EC-19-0531
https://ec.bioscientifica.com


P Milovanovic and B Busse Micropetrosis as an indicator 
of bone fragility

R74

PB–XX

9:4

to sense and appropriately respond to mechanical 
signals. Localized dysfunction of the osteocyte network 
may cause local mechanical imbalances, making these 
areas particularly vulnerable to mechanical loading.

– A lack of viable osteocytes hampers bone 
mechanosensitivity and delays or reduces the repair of 
microdamage:

Osteocytes are crucial regulators of bone 
remodeling. In particular, osteocytes are the main 
source of signals needed for targeted repair of damaged 
areas. Here, osteocyte death may result in a loss of 
antiresorptive signals or the secretion of proresorptive 
signals (11, 82). However, it is likely that a certain 
density of osteocytes is needed to detect damage 
and launch remodeling processes (16); in this sense, 
extensive loss of viable osteocytes in a certain area 
would leave significant amounts of bone tissue with 
unprocessed damage which further accumulates and 
hampers bone quality.

Considering the accumulation of such mineral-rich 
spots and delayed/hampered remodeling that leads to 
increased calcium content (increased tissue age), these 
particular tissue areas increase their brittleness and are 
more prone to microcracking (54, 83). More advanced 
tissue age is associated with increased size of mineral 
crystals (13, 65, 84, 85, 86, 87), mostly via crystals’ 
coalescence, which decreases interfibrillar sliding and 
thereby reduces toughness at the level of mineralized 
collagen fibrils (65, 88, 89, 90, 91, 92). Older tissue 
presents altered collagen characteristics as well,  

which may be another important hallmark of increased 
bone fragility (83, 90, 93, 94). Although detrimental 
in skeletal sites subject to load bearing, excessive and 
early micropetrosis occurring in the auditory ossicles 
(sites with low mechanical loads) could be an adaptive 
response conserving the architecture of the auditory 
ossicles and ensuring stable sound transmission from 
early childhood throughout life (95).

Mechanisms of lacunar mineralization

There is a general agreement that lacunar mineralization 
is associated with osteocyte apoptosis (52, 54, 77). 
However, understanding the precise mechanism of 
lacunar mineralization remains of particular importance 
to the bone research community. Lacunar occlusion 
can be regarded as a passive phenomenon, an active 
mineralization phenomenon, or a combination of  
the two.

The theory behind the passive (spontaneous) 
mineralization mechanism is based on the current belief 
that osteocytes are capable of preserving an unmineralized 
pericellular space by inhibiting mineralization (96, 
97) to allow fluid flow-based mechanosensitivity and 
nutrient transfer (98). For this goal, osteocytes produce 
crystallization and mineralization inhibitors (SIBLING 
proteins such as osteopontin and MEPE, fetuin-A or 
tethering elements’ component - perlecan) as well as 
enzymes for active digestion of their direct surroundings 

Figure 2
Schematic representation of the effects of 
accelerated osteocyte death and micropetrosis on 
bone quality.
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(such as matrix metalloproteinases) (96, 99, 100, 101) 
to prevent spontaneous calcium and phosphorus 
precipitation around the cell (102, 103) and are even 
able to dissolve bone minerals, as observed in lactation 
(10). Additional molecules involved in the process may 
be locally produced FGF23 and osteopontin, as animal 
studies suggested that increased local production of FGF23 
by osteocytes reduces activity of alkaline phosphatase, 
leading to increased levels of pyrophosphate, a known 
mineralization inhibitor (104). However, following 
osteocyte death, the lack of crystallization inhibitors 
allows spontaneous mineralization of the lacuna and 
canaliculi, given the normally available calcium in the 
extracellular space. Our rigorous characterization of 
mineralized lacunae revealed that its mineral composition 
significantly differs from that of normal bone matrix (63). 
The higher mineral-to-matrix ratio and the markedly 
reduced collagen content suggest that there is no organic 
deposition in the lacuna that is being mineralized, 
emphasizing how lacunar mineralization processes differ 
from the process of normal bone matrix formation, 
suggesting the existence of a passive mineralization 
process (63).

However, we believe that calcification is not just 
a passive phenomenon but rather an active biological 
solution that is employed when dying cells cannot be 
taken up by phagocytosis, as in the case of mineralized 
tissue. It should also be noted that some other initially 
noncalcified tissues (such as vascular smooth muscle, 
valves, and cartilage (105, 106, 107)) may show 
mineralization processes that are analogous to lacunar 
mineralization, suggesting that mineral deposition in 
osteocyte lacunae is just one example of a more widely 
ranging type of biological mineralization.

Namely, our recent study revealed that mineralized 
lacunae consist of a various number (up to more than 
a hundred) of mineralized spherical entities that we 
labeled nanospherites, based on their average diameter 
of 655 ± 448 nm (63). Considering the shape and size 
of the nanospherites, as well as the fact that apoptotic 
osteocyte material rarely disappears from the lacuna, 
the nanospherites may originate from apoptotic bodies; 
however, they can also originate from matrix vesicles 
released from still living osteocytes (63). The cellular 
origin of the nanospherites is also corroborated by the 
higher magnesium content in nanospherites than in 
bone matrix (63, 108), as magnesium is an important 
intracellular ion (109). Therefore, the question regarding 
the active components of lacunar mineralization remains 
unanswered. Previous studies of cartilage and vascular 
smooth muscle have suggested that both matrix vesicles 
and apoptotic bodies have the specific ability to actively 
concentrate calcium (106, 107, 110, 111) owing to the 
presence of several calcium-binding molecules, such 
as phosphatidyl-serine at the surface of the membrane 
(106, 112). In this context, osteocytes may be initiators 
of lacunar mineralization, which is complemented also 
by spontaneous precipitation of calcium between the 
nanospherites. Finally, our data suggest that mineral 
nanospherites grow by adding new minerals and 
eventually fuse with each other, thus leading to complete 
mineral occlusion of the lacuna (63).

Hormones and osteocyte viability

Postmenopausal osteoporosis is associated with estrogen 
deficiency. Our previous studies in human bone showed 

Table 1 Factors affecting osteocyte death and viability.

Factors affecting osteocyte death and viability References

Factors favoring osteocyte death
 Aging 1, 16, 54
 Low mechanical strain (e.g. immobilization or weightlessness) 44, 47, 49
 Excessive mechanical strain, microcracking 16, 47
 Estrogen deficiency (e.g. postmenopause or treatment with GnRH) 38, 39
 Glucocorticoid excess (endogenous or exogenous) 42, 45, 113
 Vitamin D deficiency 83, 118
 Vitamin D receptor deficiency 118
Factors promoting osteocytes viability
 Normal mechanical loading (load-induced fluid flow in lacunocanalicular network) 34, 47
 Intermittent administration of PTH(1–34) 115, 116, 117
 Bisphosphonates treatment 1, 57, 58
 Nitric oxide (NO) 34
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higher number of mineralized lacunae in postmenopausal 
compared to premenopausal women (1, 54). While aging 
itself likely also plays a role, estrogen deficiency is certainly 
an important contributor to increased osteocyte apoptosis. 
Experimental data supporting the role of estrogen in 
osteocyte viability are available from studies on human 
bone (e.g. estrogen withdrawal due to gonadotropin-
releasing hormone administration was linked to increased 
osteocyte apoptosis in iliac crest biopsies (38)) as well as 
from animal studies (ovariectomy increases osteocyte 
apoptosis in rats, which can be rescued by administration 
of estrogen (39)).

Apart from postmenopausal estrogen deficiency, there 
is no direct data on the amounts of mineralized lacunae in 
conditions with a changed hormonal status. Nevertheless, 
a number of observational or experimental studies 
showed the effects of hormones on osteocyte apoptosis 
and viability (Table 1). Numerous articles reported that 
glucocorticoid excess increases osteocyte apoptosis both in 
human bone and animal models (42, 45, 113). However, 
proapoptotic effects are not the only negative impact 
that glucocorticoids have on osteocytes, since there is 
experimental data showing that glucocorticoids suppress 
osteocytic expression of matrix metalloproteinases 
and consequently impair perilacunar remodeling with 
degeneration of the lacunocanalicular network and 
matrix hypermineralization (114). Unlike glucocorticoids, 
PTH(1–34) is generally linked with prosurvival signals 
for osteocytes (115), and it was shown that intermittent 
administration of PTH can prevent osteocyte apoptosis 
caused by glucocorticoid excess (116) or radiotherapy 
(117). Vitamin D was also found to affect the viability and 
characteristics of osteocytes. Namely, vitamin D deficiency 
was accompanied by reduced osteocyte numbers, 
increased osteocyte apoptosis, and decreased osteocytic 
connectivity; while vitamin D receptor deficiency also 
reduced viable osteocyte numbers (118).

Conclusion

Mineral nanospherites should be investigated more 
closely to determine their impact on mineral homeostasis. 
In particular, experimental studies would be beneficial 
for further clarification of the process of lacunar 
mineralization, including the conditions of endogenous 
or exogenous hormonal excess or deficiencies. A 
better understanding of the lacunar mineralization 
phenomenon may potentially be explored as another 
target for preventing or treating bone fragility.
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