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Abstract: In the field of industrial wastewater treatment, membrane separation technology, as an
emerging separation technology, compared with traditional separation technology such as precipita-
tion, adsorption, and ion exchange, has advantages in separation efficiency, low energy consumption,
low cost, simple operation, and no secondary pollution. The application has been expanding in
recent years, but membrane fouling and other problems have seriously restricted the development
of membrane technology. Natural cellulose is one of the most abundant resources in nature. In
addition, nanocellulose has characteristics of high strength and specific surface area, surface activity
groups, as well as being pollution-free and renewable, giving it a very wide development prospect in
many fields, including membrane separation technology. This paper reviews the current status of
nanocellulose filtration membrane, combs the widespread types of nanocellulose and its derivatives,
and summarizes the current application of cellulose in membrane separation. In addition, for the
purpose of nanocellulose filtration membrane in wastewater treatment, nanocellulose membranes
are divided into two categories according to the role in filtration membrane: the application of
nanocellulose as membrane matrix material and as a modified additive in composite membrane in
wastewater treatment. Finally, the advantages and disadvantages of inorganic ceramic filtrations and
nanocellulose filtrations are compared, and the application trend of nanocellulose in the filtration
membrane direction is summarized and discussed.

Keywords: nanocellulose; membrane separation technology; filtration membrane; industrial wastewater
treatment

1. Introduction

Industrialization, growing population, and rapid urbanization have led to serious
water and land pollution [1]. Wastewater mainly contains pollutants such as saturated salts,
heavy metals, organic compounds, oil emulsions, dyes, and even microorganisms. Nanocel-
lulose materials have broad prospects in wastewater purification and mitigation [2–4]. At
present, the more effective and widely used methods for industrial wastewater treat-
ment are various low-cost adsorbents [5]. In the field of industrial wastewater treatment,
membrane separation technology is an emerging separation technology. Compared with
traditional separation technologies of precipitation, adsorption, and ion exchange, mem-
brane separation technology has many advantages [6] such as high separation efficiency,
low energy consumption, low cost, simple operation, and no secondary pollution; therefore
this technology has broad application prospects in removal of radioactive elements and
heavy metal ions from industrial wastewater [7,8], and the extraction of rare earth elements
from ion-type rare earth smelting wastewater [9].

Plants such as wood are the most abundant renewable materials in nature. For their
applications, they are mainly concentrated on two aspects: reprocessing them in macrog-
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raphy, or decompose them into micro materials for research (such as nano materials).For
example, wood is a very environmental protection and practical material, which has been
widely used in construction, furniture and other fields since ancient times [10,11]. In view
of how to improve the quality of wood, many scholars have made good achievements in
different performance research, such as flame-retardant treatment [12], improve physical
performance [13], superhydrophobic treatment [14], research on transparent wood [15,16],
etc. At the micro level, wood is mainly composed of cellulose, hemicellulose and lignin, in
which cellulose is the main component.

Because of its non-toxic, renewable, and degradable properties, cellulose is currently
widely used in the development and application of emerging materials. Cellulose can
be converted into nanocellulose (CNs) through various physical and chemical methods.
Owing to its high specific surface area and nano-size [17,18], NCs are more suitable for
effective removal of pollutants than micro-size materials. The surface of NC contains a large
number of free hydroxyl groups, which are easily modified by some functional groups [19].
The abundant free hydroxyl groups on surfaces of CNs are easy to form a large number
of hydrogen bonds between molecules, which lead to good film-forming properties [20].
Cellulose has high crystallinity, specific surface area and mechanical strength, and large
number of hydrophilic groups; thus nanocellulose is often used as a filter membrane
reinforcement material to improve the mechanical and hydrophilic properties of functional
membranes [21]. Meanwhile, as the most abundant raw material in nature, cellulose has
lots of advantages such as broad resources of raw material, easy processing, and low cost,
which lead to it having extremely broad prospects in membrane separation technology.
This article reviews the application of nanocellulose in filter membranes and the research
in industrial wastewater treatment using nanocellulose filter membranes, summarizes the
advantages and disadvantages of the application of nanocellulose filter membranes, and
finally puts forward a prospect for further research.

2. Nanocellulose Filtration Membrane
2.1. Nanocellulose (NC)

Cellulose, a renewable natural polymer compound, is a single water-insoluble polysac-
charide composed of 1.4-β-D-pyran-type dehydrated polydextrose [22]. Cellulose is cur-
rently widely used in the development and application of emerging materials due to it
being nontoxic, renewable, and degradable. Cellulose can be chemically and physically
treated into nanocellulose (NC), which is cellulose crystals or fibers in nanoscale [23].
Nanocellulose can be divided into four categories: cellulose nanofiber (CNF), cellulose
nanocrystal (CNC), electrospun nanocellulose (ECC), and bacterial synthesis of nanocel-
lulose (BNC). Although the sources of CNF, CNC, and ECC are all plant, there are also
certain differences in structure and function due to different preparation methods.

CNF is obtained by separating microfibrils (bundles) in animal and plant fibers
through mechanical shearing or chemical oxidation. The more mature process is chemical-
mechanical combined treatment [24]. CNC is a nanometer-sized cellulose crystal produced
by hydrolysis of cellulose, and an aqueous CNC suspension is usually produced by acid
hydrolysis (Figure 1). Ranby et al. [25] first reported the process of preparing CNC by acid
hydrolysis in 1951. The method was then further optimized. The main principle is that
acid hydrolysis destroys the amorphous regions of cellulose, while retaining the crystalline
regions with higher crystallinity [26]. Filtration, centrifugation, or ultracentrifugation is
needed to obtain a uniformly dispersed CNF aqueous solution [27,28]. Nanocellulose of
ECC and BNC are classified via preparation and prevention. ECC is a kind of nanocellulose
prepared by the electrospinning method. Nanofibers prepared by electrospinning tech-
nology have large specific surface area, high mechanical strength, and broad application
prospects in medical and pharmaceutical fields [29]. ECC preparation can be roughly
divided into two ways: one is firstly using electrospinning to prepare cellulose deriva-
tives, and then hydrolyzing the cellulose derivatives to prepare ECC [30,31]; another is
dissolving cellulose in a suitable solvent, then using electrospinning technology to prepare
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ECC [32]. The biggest difference between BNC and the other three types of nanocellulose
is its source. CNF, CNC, and ECC are all derived from plants, while BNC is derived from
microorganisms. BNC is a kind of nanofiber synthesized by aerobic bacteria [33]. Currently,
the main strain synthesis of BNC is acetobacter xylinum. The preparation methods of CNF,
CNC, ECC, and BNC are shown in Figure 1.
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Figure 1. Preparation of CNF, CNC, ECC, and BNC.

The principal methods of chemical modification of nanocellulose include oxidation,
esterification, etherification, cross-linking, and graft copolymerization. Cellulose oxidation
is divided into selective oxidation and non-selective oxidation. Non-selective oxidants
include sodium hypochlorite, persulfuric acid, and hydrogen peroxide. These oxidants can
cause the oxidation of hydroxyl groups on cellulose, and the oxidative degradation is severe
and difficult to control; selective oxidation is the oxidation of -OH in a specific position of
cellulose, thus it can effectively inhibit the degradation of cellulose during oxidation [34].
The 2,2,6,6,-tetramethylpiperidine oxide oxidation system (TEMPO/NaBr/NaClO) and pe-
riodate have been widely studied in the field of oxidized cellulose materials because of their
high efficiency, economy, and environmental protection [35]. The TEMPO/NaBr/NaClO
system only selectively oxidizes the primary hydroxyl groups of cellulose but has no
effect on the secondary hydroxyl groups and it can be recycled and regenerated with
a simple reaction process and high selectivity. It is usually carried out in the condition
of alkaline medium [36]. The mechanism of oxidizing C6 primary hydroxyl of cellulose
using TEMPO/NaBr/NaClO system is shown in Figure 2 [37]. Unlike the TEMPO system,
periodate only oxidizes the secondary hydroxyl groups of cellulose, breaking the chemical
bond between C2 and C3, then forming two aldehyde groups. Sodium periodate (NaIO4)
and potassium periodate (KIO4) are considered to be the most effective oxidants for the
selective oxidation of cellulose C2 and C3 hydroxyl groups. The aldehyde content of
oxidized cellulose can reach more than 97% [38,39].
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Esterified cellulose is formed by a series of condensation reactions between -OH
on cellulose and acid, acid anhydride and acid halide, etc. The traditional industrial
production of cellulose esters basically adopts a solid–liquid two-phase two-step process
for lack of effective cellulose solvents: firstly, fully substituted cellulose esters are obtained
through solid–liquid two-phase heterogeneous acylation, and then cellulose esters with
appropriate degree of substitution is obtained by acid catalytic hydrolysis [40,41].

Etherified cellulose refers to a series of derivatives formed by the reaction of -OH
on cellulose chain with alkylating reagents in an alkaline medium. Since the cellulose
etherification reaction must use a strong base as a catalyst, the LiOH/urea and NaOH/urea
aqueous solution systems are very suitable homogeneous etherification reaction media.
The reaction conditions are mild, fast, and efficient, and do not require catalysts and other
organic solvents [42,43].

Cross-linked cellulose refers to the product with a three-dimensional network struc-
ture by cross-linking points between cellulose, cellulose derivatives, or other high polymers
using cross-linking agents such as epichlorohydrin (ECH), N, N’-methylene bisacrylamide
(MBA), etc. As shown in Figure 3, cellulose gel can be produced through MBA cross-
linking, and the hydrogel has high transparency (Figure 3c). Compared with the direct
water dispersion of cellulose solution, the cellulose hydrogel prepared by ultrasonic cutting
after cellulose cross-linking has good dispersibility in water, the dispersion solution is
transparent, and there is no flocculation [44,45] (Figure 3d). Graft copolymerization is
an important method for cellulose chemical modification, which can give cellulose new
characteristics. According to the type of polymerization reaction, cellulose graft copoly-
merization could be divided into radical polymerization, ion polymerization, ring-opening
polymerization (ROP), atom transfer radical polymerization (ATRP), reversible addition
fragmentation chain transfer polymerization (RAFT), nitrogen and oxygen stabilized free
radical polymerization (NMP), etc. [46,47].
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Figure 3. (a) Schematic diagram of hydrogel prepared by dissolving and cross-linking cellulose;
(b) chemical equation of cellulose cross-linking reaction in NaOH/urea aqueous medium; (c) photo
of hydrogel after washing of cross-linked cellulose; (d) the image on the left is an aqueous dispersion
of chopped cellulose hydrogel, and (e) the image on the right is a distilled water dilution chart of the
cellulose solution [37].

2.2. Membrane Separation Technology

Membrane separation technology refers to a technology that can achieve selective
separation when a mixture of particles with various diameters at the molecular level passes
through a filter membrane. The core component of membrane separation technology is
a natural or synthetic filter membrane, which has good selective permeability, and can
separate, purify, and enrich two-component or multi-component solutes and solvents
through external energy or chemical potential difference as the driving force. At present,
filter membranes can be divided into five categories according to driving pressure (Table 1)
which are microfiltration (MF) [3], ultrafiltration (UF) [48], nanofiltration (NF) [49], reverse
osmosis (RO) [50], and forward osmosis (FO) [51]. Compared with the forward osmosis
where the driving force is the penetration pressure difference on both sides of the solution,
the reverse osmosis technique is that the solvent overcomes the pressure difference driven
by an external force.

Table 1. Classification and characteristics of the cellulose-derived membrane separation process.

Type of Filtration Membrane Filtration
Process Pore Size (µm) Operating

Pressure (psi)
Compounds

Separated References

CNC/Polyethylene
Glycol MF 1.1–0.01 15 oil, large solids, clay [3]

Cellulose acetate/Polysulfone UF 0.01–0.001 50 starches, proteins,
heavy metals [52]

CNC/Polyamide50/Polyethersulfone NF 0.001–0.0001 87 salts, mono or
divalent ions [53]

CNC/Poly(acryloyl hydrazide) RO <0.0001 225 heavy metals,
monovalent salts [54]

HTI cellulose triacetate FO 0.0004–0.0001. 290 oils, desalination,
heavy metal [55]

A cellulosic membrane is a kind of membrane material which was studied and applied
earliest and most widely used currently. Nitrocellulose (CN) is made by nitrification of
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cellulose and is widely used in dialysis membranes and microfiltration membranes. CN can
also be mixed with cellulose acetate to increase its strength [56]. Cellulose diacetate (CA)
and cellulose triacetate (CTA) are the basic materials for the preparation of RO membranes,
and they are also used in the application fields of UF, NF, and MF. Ethyl cellulose (EC) is
produced by the reaction of alkali cellulose and ethyl halide, and is often used for nitrogen
and oxygen separation. In addition, other cellulose-derived materials such as cellulose
acetic acid and mixed esters of butyric acid are also used in membrane materials.

Membrane separation as the core technology has gradually been widely used in the
field of water treatment. The “ultrafiltration + nanofiltration + concentrated water reverse
osmosis” membrane treatment with nanofiltration membrane as the key technology has
been widely and steadily applied in the field of drinking water purification fields such
as water plants. Seawater contains inorganic salt ions (such as calcium ions) that are
difficult to remove. The study on seawater desalination technology is of great significance
to seawater utilization. In current seawater desalination, reverse osmosis technology can
be effective to remove carbonate and bicarbonate from seawater when adding inhibitors
and acids at the same time [57]. In addition to the application in drinking water, membrane
separation technology also has greater prospects in industrial wastewater treatment. For
example, the removal of radioactive elements [7], the removal of heavy metal ions, and the
extraction of rare earth elements from ionic rare earth smelting wastewater [9]. In the field
of water treatment, membrane separation has become one of the core technologies due
to its unique advantages. However, the pollution of the membrane and other problems
have severely restricted its further development [58,59]. How to solve the pollution of the
membrane is also a direction of further research for scholars.

2.3. Nanocellulose Filtration Membrane

Because cellulose has high crystallinity, high specific surface area and mechanical
strength, and a large number of hydrophilic groups on the surface, nanocellulose is often
used as a filter membrane reinforced composite material to improve the physical properties
of functional membranes such as mechanical strength, hydrophilicity, etc. [60]. Mokhena
et al. [61] prepared a nanofiber composite membrane by coating the extracted corn stalk
nanowhiskers (CNs) on electrospun alginate nanofibers treated with CaCl2. They found
that the membrane can completely remove water pollutants of 10–100 nm particles, and
the retention rate of chromium (Cr(VI)) is 80% at pH 11. This indicates that the membrane
can be used for short-term wastewater treatment and/or domestic water purification. Ma
et al. [62] functionally improve traditional commercial filter membranes using TEMPO
oxidized nanocellulose and prepared microfiltration and nanofiltration membranes with a
2–10 times higher membrane flux than that of commercially available membranes.

In addition, nanocellulose and its derivatives are also used as the matrix material of
the filter membrane due to its special advantages such as being, green, pollution-free, and
recyclable, as well as good film-forming properties. Hugo et al. [4] studied the filtering
performance of CNF membranes for particles with various diameters. Furthermore, in
view of the deficiencies of the cellulose film, such as small membrane flux, low retention
rate, and low service life, some scholars have tried adding nano-unit silica particles to
modify it. Varanasi [63] prepared a cellulose nanofiber composite membrane through
filtering the suspension of cellulose nanofibers, SiO2 nanoparticles (22 nm), and polyamide
amine-epichlorohydrin (PAE). The silica nanoparticles were used as a spacer to control of
the pore size of the nanofiber network, which controlled the pore size of the membrane
and thus improved the flux of the membrane, while PAE can make the negatively charged
nanoparticles adhere to the nanofibers and improve the wet strength of the membrane.

A large number of free hydroxyl groups on the surface of nanocellulose can easily react
with other chemical reagents, thus improving its various properties. Nanocellulose are often
used as a carrier or a framework material in the filter membrane, which are combined with
other materials to form a composite filter membrane. Ma [64] and other research groups
have invented a new type of TFC membrane, which contains various fiber structures with
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various diameters and lengths. This new structure is called a thin-layer nanofiber composite
(TFNC) structure. The nanofiber composite membrane is usually composed of three
layers: the bottom layer is a conventional nonwoven substrate (polyethylene terephthalate,
PET non-woven fabric mat); the middle layer is an electrospun nanofiber scaffold which
replaces the porous layer prepared by the traditional phase transformation method; the top
filter layer could be a hydrophilic polymer coating or another finer nanofiber layer. The
TFNC membrane combines the property of high porosity of electrospun nanofibers and
hydrophilic filter layer, which greatly improves the permeate flux, and is widely used in
the field of UF [65,66]. The TFNC membrane with nanocellulose filter layer maintains the
same retention rate, while the permeate flux is 5–10 times that of commercial ultrafiltration
membranes [67–70].

3. Application of Cellulose Filter Membrane in Industrial Wastewater Treatment

The main sources of industrial wastewater pollutants are heavy metals, suspended
solids, polycyclic aromatic hydrocarbons, and biomolecular pollutants [71]. NC has great
advantages in wastewater treatment due to its excellent specific surface area and mechanical
strength, adjustable surface chemistry, surface groups for cationic or anion selective grafting,
and hydrophilicity [72].

Functionalized CNF could be used to extract oil and organic pollutants from wastew-
ater [73]. Membrane fouling occurs on the surfaces. Generally, the biofilms are formed
on the surface of the membranes due to non-specific interactions between the membrane
surface and pollutants. The membrane performance of permeability and selectivity are
reduced because of the biofilm formation or clogging of membrane pores. The CNC-based
nanocomposite membrane has good hydrophilicity, porosity, and surface permeability,
which makes it have good antifouling performance. The surface modification of NC can
improve the adsorption performance for various pollutants in aqueous solution and guide
its selectivity. The possible reason is that the available active binding sites are increased
after modification, thereby improving the ion exchange characteristics and generating new
functional groups that promote the absorption for the metal backbone [1,74]. Table 2 shows
the application of some nanocellulose and their derivatives in wastewater treatment.

At the same time, how to increase the membrane flux as much as possible while
ensuring the rejection rate is still a problem that many scholars are trying to solve. At
present, in order to improve the permeability of the filtration membrane, in addition
to adding a hydrophilic modifier, increasing the specific surface area of the filtration
membrane is a very effective method for improving the permeability [75,76]. Teng prepared
CNF-supported high-water content polyamide (PA) nanofiltration membranes with an
arched structure through the interfacial polymerization (IP) method. During the IP process,
the hydration of BCN promoted Marangoni along the water/organic solvent interface.
Convection and produce a thin PA active layer with an arch bridge structure. These arch
bridge structures enable the resulting PA active layer to have a significantly larger active
area to achieve water penetration. Therefore, the PA NF membrane exhibits excellent
desalination performance, with a permeability as high as 42.5 Lm−2 h−1 bar −1 and can
remove Na2SO4. The permeability is as high as 99.1%. The total desalination performance
is better than almost all reported so far for existing NF membranes.
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Table 2. Application of nanocellulose and its derivatives in wastewater treatment.

Application Nanocellulose Craft The Degree of Separation The Type of
Wastewater References

Extraction
of metals

ions

Ag+
CNF/CNC

sulfonation/CNC
phosphorylation

Sorption 34.38 mg/g/ wastewater of Ag+ [8,77]

Cd2+
CNF

succination/CNC-
xanthate

Sorption 0.72–1.95 mmol/g/
154.26 mg/g

aqueous solutions of
Cd(II) ions [78,79]

Ni2+
CNF-

CRBOX/CNF
TEMPO oxidation

Sorption 55 mg/g waste pulp wastewater [78,80]

Zn
CNF-NT-

MOD/CNF-
CRBOX

Sorption 135 mg/g wastewater of Zn2+ [78,80]

Fe3+ CNF-P and
CNC-P Sorption 99% removal of and Fe3+ the mirror making

industry [77]

Extraction
of dyes

from water

CNMs based
nanocomposites:

CNC-PAN/CNC-maleic
anhydride/CNC-

hydrolyzed
polyacrylamide/CNF-

GTMAC/dialdehyde-CNC
polyvinylamine

MF Mem-
brane/Sorption/Sorption/

Sorption/Sorption

16 times higher adsorption
capacity over a commercial

nitrocellulose-based MF
membrane./30.0 to 348.9

mg/g/ had an adsorption
efficiency of more than 90%

positively charged
dye/crystal violet,

methylene blue,
malachite green and

basic
fuchsin/methylene blue

(MB) dye/anionic
dye/869.1 mg/g, 1469.7

mg/g, 1250.9 mg/g

[81–85]

functionalized CNMs:
CNC-S/CNC ammonium
persulfate oxidation/CNC
obtained by sulfuric acid

hydrolysis/CNC-
carboxylation

Sorption/Sorption

16 times higher adsorption
capacity over a commercial

nitrocellulose-based MF
membrane/118 mg/g

positively charged
dye/cationic dyes [82,86]

Hydrocarbon
(oil)/water
separation

BNC tri-methylsilylation
reaction with

trimethyichlorosilane
Sorption 185 g/g organic solvents and

oils [87]

Removal of
virus and
bacteria

two-layered PET/nanoscale
PAN fibrous

scaffold/ultrafine CNF
MF membrane 100 mg Cr (VI) or 260 mg Pb

(II) per gram MS2 virus [88]

PET/PAN fibrous
scaffold/cellulose

nanowisker
MF Membrane

16 times higher adsorption
capacity over a commercial

nitrocellulose-based MF
membrane

bacteria [81]

cladophora algae derived
CNF filtration paper MF Membrane xenotropic murine

leukemia virus [89]

3.1. Research on NC as a Membrane Matrix Material in Industrial Wastewater Treatment

The application of NC as a matrix material in filter membranes mainly includes two
aspects: 1. NC filter membrane; 2. NC polymer composite filter membrane [90]. There are
three main ways to prepare NC membranes: impregnate electrospinning scaffolds with
NC; impregnate coating after vacuum filtration of NC; self-assembly films forming after
NC solution losing water.

Phase inversion technology is an efficient method for the preparation of asymmetric
membranes. Lingling [91] prepared cellulose triacetate (CTA) ultrafiltration membranes
by phase inversion, and then used TEMPO oxidized cellulose (TOCNs) as hydrophilic
modification. The filtration membrane was modified and characterized separately, and the
effect of TOCN on the performance of the CTA filtration membrane was analyzed. The
results showed that the addition of TOCN greatly improved the properties of hydrophilic
and mechanical of the filtration membrane, which improves the antifouling performance
of the membrane.
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CNC composite film has a high density of negative surface charges, resulting a strong
adsorption capacity for positively charged dyes. Studies have shown that, compared with
commercial MF membranes, NC doped with MF membranes has higher dye adsorption
efficiency [92,93]. Ma et al. [81] also coated nanocellulose (NC) on the surface of PAN
electrospun nanofiber membranes. The composite nanofiber membranes can be used
to remove aquatic viruses, such as MS2 (bacteriophages), showing a high retention rate.
Meanwhile, due to the carboxyl, hydroxyl, aldehyde, and other functional groups on
the surface of cellulose and its derivatives, nanocellulose can form a new nano-network
structure in electrospun nanofibers, this resulting high adsorption performance, and reten-
tion rate of the composite nanofiber membranes. Compared with traditional membranes,
the composite membrane structure has abundant functional groups on the surface of
nanocellulose as adsorption sites to remove contaminants such as viruses, dyes, heavy
metal ions, and toxins, providing more applications of the ultrafiltration membrane in
industrial wastewater treatment. Compared with commercial membranes (PAN10 and
PAN400) at the same working pressure, the nanofiber composite membrane maintains
high permeation flux and high retention rate. Goetz et al. [94] prepared CA membranes
by electrospinning, and then impregnated the CA membranes in different concentrations
of CNC solutions. The membranes showed a nanostructured surface post impregnation,
and the mechanical properties were significantly improved. The contact angle of nanofiber
composite membranes was reduced to 0◦ from 102◦ of the original CA membranes. This
indicates that nanofiber composite membranes have completely hydrophilic property. In
addition, the membranes also exhibit a high adsorption capacity of 80–99% for dyes.

The surface of CNF contains a large number of hydroxyl groups, which are interwoven
into a colloidal form in the aqueous solution. During the water losing process of CNF
solution, the hydroxyl groups between adjacent nanofibers combine to hydrogen bonds and
then form a dense membrane, which is a CNF self-assembled membrane. The membrane
has excellent mechanical properties, and its permeability is far lower than that of high
and low-density polyethylene membrane with the same thickness [95]. Hassan et al. [96]
subsequently reported the papermaking wastewater treatment using a filter membrane
made by copper terpyridine modified oxidized cellulose nanofibers (OXCNF-Cu-Tpy). The
OXCNF-Cu-Tpy was prepared by modifying the OXCNF using 4′-chloro [2,2′,6′,2”] terpyri-
dine copper(II). The modification was verified by elemental analysis and Fourier transform
infrared spectroscopy. The results showed that the pure water flux of OXCNF-Cu-Tpy was
30% higher than that of the unmodified OXCNF membrane. Mokhena et al. [61] prepared
a nanofiber composite membrane by coating the extracted corn stalk nanowhiskers (CNs)
on electrospun alginate nanofibers treated with CaCl2. They found that the membrane
can completely remove water pollutants of 10–100 nm particles, and the retention rate of
chromium (Cr(VI)) at pH 11 is 80%, which indicates that the membrane can be used for
short-term wastewater treatment and domestic water purification.

Cellulose acetate is one of the most widely used ultrafiltration membrane materials
for industry [97]. The adsorption and deposition of biological macromolecules on surfaces
and inside pores of the membrane cause serious pollution, this greatly limits the efficiency
and application of ultrafiltration [58,59,98]. Therefore, almost all research on ultrafiltration
focuses on improving its antifouling performance and pure water flux, especially introduc-
ing hydrophilic materials into ultrafiltration membranes, while cellulose and its derivatives
are ideal hydrophilic modification materials due to the rich hydrophilic groups on the
surface. Presently, there have been many studies on the modification and enhancement
of cellulose acetate filter membranes based on CNF and CNC [99,100]. Battilola [101] pre-
pared asymmetric membranes based on CA and CNF through a phase inversion method,
and studied the effect of CNF addition on the shape of CA membranes, water flux, and
filtration performance. The results showed that the pore size and pure water flux of the
filter membrane increased with the increase of CNF. Meanwhile, its filtration performance
is fully satisfied for the clarification of juice whey. Zhou et al. [102] used CNC as a modified
additive to prepare blended membranes using CNF and CA blend phase inversion method,



Materials 2021, 14, 5398 10 of 18

and measured the porosity, hydrophilicity, pure water flux, tensile strength, and antifoul-
ing activity of the membrane before and after modification. The results indicated that the
addition of CNC can improve the pure water flux and the porosity of the CA membrane,
and can greatly improve the antifouling activity and tensile strength of the CA membrane.

3.2. Research on CN Composite Membranes in Industrial Wastewater Treatment

The composite membrane comprises at least two membrane structures—a porous
support layer and a dense filter layer [103]. Because nanocellulose is easy to form a dense
membrane structure and its excellent hydrophilicity, it is often used as a dense layer
structure for preparing composite filter membranes.

A membrane with high porosity structure can be prepared using nanocellulose by
some special methods and can also be used as a porous support layer for composite mem-
branes. Yoon et al. [62] prepared thin-layer nanofiber composite (TFNC) membranes using
electrospun nanofiber scaffolds as substrates. The porosity of the electrospun nanofiber is 80
to 95%, presenting high porosity characteristics; thus the electrospun nanofiber membranes
are used as high-flux membranes. Wang et al. [104] composited nanofiber membrane using
cross-linked polyethylene glycol (PEG) and ultrafine nanocellulose (CN), which can filter a
bovine serum albumin (BSA) solution. The water flux of the membrane is approximately
twice that of commercial membranes, and the retention rate remains above 90%. The
regenerated cellulose membrane prepared from trimethylsilyl cellulose was studied and
used to treat artificial dye wastewater [105]. The results showed that the membrane reached
a flux of 600LMH at 80 ◦C and 4 bar and maintained a nearly 98% high dye retention rate.
In the extended experiment, the membrane showed good antifouling activity up to 75 h,
and the flux recovery was close to 100%. This research may provide a promising alternative
method for dye wastewater treatment with a large amount of monovalent salts.

Interfacial polymerization (IP) technology is an efficient method for preparing com-
posite filter membranes that has been widely used in recent years. Wang et al. [104] studied
a high-flux nano-filtration membrane using the thin-film nanofibrous composite (TFNC)
based on the interfacial polymerized polyamide barrier layer on the polyacrylonitrile (PAN)
nanofiber scaffold. The results showed that under the same chemical composition, the
permeation flux of TFNC membrane is 2.4 times higher than that of conventional composite
membrane. Later, Teng et al. [106] used nanocellulose to improve the structure of the TFNC
membrane. In a high-humidity salt solution, they prepared a polyamide (PA) nanofiltra-
tion membrane (PANF) with arched structure by the IP method based on the BNC/PTFE
(polytetrafluoroethylene) composite membrane. They found that the pure water flux of
the PANF membrane is as high as 42.5 Lm−2h−1bar−1 and the retention rate of NaSO4 is
as high as 99.1%. Its osmotic selective desalination capacity is stronger than any of the
membranes currently reported. Yung et al. [107,108] have prepared TFNC membrane using
cellulose nanofibers by IP method and obtained good results. Using polyethylene tereph-
thalate (PET) as a non-woven substrate supporter, Ma et al. [81] prepared a MF membrane
using reinforced composite electrospinning polyacrylonitrile (PAN) by dipping method.
The absorption rate of MF membrane to cationic dye is 16 times that of the commercial MF
membrane and the retention rate of bacteria and other particles is also excellent. Wang
et al. [53] coated an appropriate amount of CNCs on the surface of PES microfiltration
membrane as an intermediate layer and then prepared a nanofiltration membrane using
interfacial polymerization method. The experiment showed that the permeability of the
membrane using modified CNCs as intermediate layer has been greatly improved. The
pure water penetration rate is 34 Lm−2h−1bar−1, and the retention rate of sodium sulfate
is above 97%.

4. Comparison of Inorganic Ceramic and CN Membranes

An inorganic filtration membrane is a solid separation membrane with selective per-
meability made of inorganic materials such as metals, ceramics, porous glass, zeolites,
metal oxides, etc. Among them, the most widely applicable materials are ceramic materi-
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als. The structure of ceramic filtration membranes can be divided into symmetrical and
asymmetrical structures. Compared with traditional filtration devices, ceramic microfil-
tration membranes with symmetrical structures have relatively small pores ranging from
0.01 to 10 µm, the separation efficiency of the ceramic filtration membrane depends on
the pore size distribution of the filtration membrane and the size of the particles to be
separated [109].

Generally speaking, the flux of the filtration membrane is inversely proportional to
the thickness of the filtration membrane, that is to say, the greater the thickness of the
filtration membrane, the smaller the flux of the filtration membrane. The greater the flux
of the filtration membrane, the higher the separation efficiency, and the lower the time
and economic cost. Therefore, the ideal filtration membrane thickness should be thinner.
However, the thinner the filtration membrane is, the lower its mechanical strength is, and
it is easy to be damaged during the filtration process or the cleaning process. Therefore,
researchers have developed an asymmetric filtration membrane structure. It is mainly to
coat a very thin filtration layer on a support with relatively high mechanical strength, which
significantly increases the flux of the filtration membrane while ensuring the mechanical
strength of the filtration membrane. This is also one of the important advancements made
in membrane preparation technology in the past few decades [109]. The thickness of
commercial ceramic microfiltration membranes is usually about 10–20 µm. According to
the shape of the support, the membranes can be divided into flat, tubular, and hollow
fiber shapes. The corresponding ceramic membranes are called flat membranes, tubular
membranes and hollow fiber membranes. The structure is shown in Figure 4.
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4.1. Inorganic Ceramic Filtration Membrane

Ceramic microfiltration membranes and ultrafiltration membranes are relatively
widely used in the food processing industry and industrial wastewater treatment. Labora-
tories, pilot projects, and some business cases show that ceramic membranes have great
potential in drinking water production and large-scale urban sewage treatment. However,
the current production cost of ceramic filtration membranes is relatively high, and it is
difficult to meet market demand. Therefore, reducing the production cost is one of the
important development directions of ceramic filtration membranes [110]. The high cost
of preparation of ceramic filtration membranes mainly comes from two aspects: (1) the
cost of raw materials is higher; (2) the energy consumption of the preparation process is
higher [111].

The raw materials of ceramic filtration membranes are mostly high-purity inorganic
oxides such as Al2O3, SiO2, ZrO2, and TiO2, which are suitable for food and medicine filtra-
tion, while its preparation cost is relatively high. For wastewater treatment with relatively
low safety-level requirements, such as oily wastewater, printing, dyeing, wastewater, etc.,
the necessity of high-purity oxides is questionable. For these applications, more and more
researchers have used relatively cheap raw materials in recent years, including kaolin, clay,
fly ash, apatite, quartz sand, mullite, natural zeolite, etc. [112] (Figure 5). For example,
Bouazizi et al. [113] mixed bentonite particles (particle size <45 µm, 95 wt%) and pore
former (starch, 5 wt%) uniformly, and prepared a flat support body by dry pressing. After
drying and firing at 950 ◦C, the resulting support has a pore size of about 1.70 µm and a
porosity of 32.12%. It can be used for filtration printing and dyeing and tanning wastewater.
The suspended solids removal rate is 94% and 99%, respectively.
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In addition, reducing energy consumption in the preparation process is also a way to
reduce costs. The raw materials of ceramic filtration membranes are mostly high-purity
oxides, and the firing temperature is usually higher, which increases energy consumption.
In order to lower the firing temperature, sintering aids such as kaolin, potash feldspar, and
titanium oxide can usually be added. Wang et al. [114] used CuO and TiO2 as sintering
aids to reduce the firing temperature of α-Al2O3 hollow ceramic fiber membranes. When
the CuO content is 3 wt% and the firing temperature is 1250 ◦C, the prepared ceramic
membrane has a porosity of 34.6%, an average pore size of 700 nm, and a pure water flux
of 1255 Lm−2h−1bar−1.

To improve the membrane flux of ceramic membranes, common methods are the
pore former method and template method. The principle of the pore former method is to
increase the porosity by adding an organic or inorganic pore former during the molding
of porous ceramics, and the pore former decomposes to form pores during firing, thereby
increasing the porosity. Liu et al. [115] studied the influence of different particle sizes
of graphite on the porosity of SiC porous ceramics and found that when 25% of 10 µm
graphite pore former was added, the porosity of SiC ceramics increased from 28% to 44%.
The type of pore former also has a great influence on the porosity of porous ceramics.
The main principle of the template method is to control the accumulation of ceramic
particles through a regular and uniform pore former to prepare a porous material with
an orderly and uniform pore structure and increase the porosity. Ahmad et al. [116] used
polymethacrylate (POEM) as a template and combined dipping-lifting and sol-gel methods
to prepare TiO2/Al2O3 composite ceramic membranes (membrane pore size of about
100 nm).

4.2. Comparison of Inorganic Ceramic Membranes and CN Filtration Membranes

The proper selection of wastewater filtration membranes depends on a number of
factors, such as productivity, service life, cost, separation selectivity, and chemical and
mechanical integrity under operating conditions [117]. Compared with cellulose-based
membranes which usually work at low temperature, ceramic membranes can work at
high temperature; meanwhile the ceramic and other inorganic filtration membranes have
excellent pH tolerance and strong resistance to chemical degradation [118–120]. The disad-
vantages of ceramic wastewater treatment are high investment cost and high treatment
temperature.

Generally, the advantage of NCs that are different from the microstructures is the
large length-to-diameter ratio, high porosity, and improved internal diffusion. In addition,
the NC-based porous membranes have lower density, excellent mechanical properties,
and higher specific surface area and pore volume. Due to their low toxicity and carbon
emissions, CNCs are a viable and renewable option that could replace most adsorbent



Materials 2021, 14, 5398 13 of 18

materials for wastewater treatment [121]. Table 3 shows a detailed comparison between
cellulose-based membrane filtrations and ceramic membranes.

Table 3. Comparison of the advantages and disadvantages of nanocellulose membranes and ceramic membranes.

Membrane Type Advantage Disadvantage

Nanocellulose membrane

High flexibility Usually shorter life span
Light in mass Prone to membrane fouling

Lower cost Weak chemical resistance
Low working temperature Weak high temperature resistance
Low energy consumption

Raw materials are environmentally
friendly and nontoxic

Simple manufacturing method
Reusable and recyclable

Has strong mechanical properties
High wastewater treatment efficiency

Easy to operate

Ceramic/metal membrane

High thermal stability Inflexible
Strong chemical resistance High investment cost

High pressure Low degradability
Long life Less selectivity based on aperture

Compared with the CN base, it is less
likely to be contaminated Cumbersome to make

High energy consumption

5. Conclusions

NC can be easily modified on the surface to generate new binding sites and provide
specific characteristics to adsorb different types of pollutants. The synthesis and modi-
fication methods of NC membranes are different, no matter if CNC, CNF, or BNC was
transformed into the membrane itself or as their composite material. The advantages of NC
filtration membrane are its high porosity and good hydrophilicity, high mechanical stability,
excellent chemical inertness, and antifouling performance, which makes it an advantage in
industrial wastewater treatment. The use of nanocellulose for modification can improve the
performance of the filtration membrane in terms of separation and adsorption, especially
the adsorption capacity of heavy metal ions and dyes.

This review has attempted to provide a broad vision of application of nanocellulose in
filtration membranes in industrial wastewater treatment, and summarizes the advantages
and disadvantages of the application of nanocellulose filtration membranes, in order to
stimulate the increasing interest in the nanocellulose filtration membranes research and
developments.

In terms of performance, the filtration efficiency of nanocellulose membranes is ap-
proaching commercial membranes, but nanocellulose is often used as an important func-
tional composite material in membrane separation technology, rather than a matrix material.
The reason is due to nanofibers. Because its cost is much higher than other polymer ma-
trix materials, due to economic considerations it cannot be the preferred matrix material.
Therefore, in recent years, nanocellulose-based functional filtration membranes are usually
mixed membranes containing two or more functional agents. The next phase of NC-based
filtration membrane research should focus on hybrid membranes, using NC and other
nanomaterials to improve adsorption capacity. In addition, more research is needed to de-
velop nanoscale NC hybrid composite materials that can interact with different pollutants
at the same time.

Therefore, the current development focus of membrane separation technology based
on nanocellulose is still focused on its use as an important modification additive to coat
or modify the membrane to improve membrane performance. Because nanocellulose
and its derivatives have high hydrophilicity, they can improve the hydrophilicity of the
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filtration membrane, increase the membrane flux, and reduce membrane pollution, thereby
increasing the service life and efficiency of the filtration membrane. However, the current
technical problem in the nanocellulose-based membrane separation technology is still how
to ensure the high membrane flux of the filtration membrane, increase the rejection rate
of the filtration membrane according to different filtration conditions, reduce membrane
pollution, and ensure the filtration membrane service life. In addition, how to reduce the
material cost of nanocellulose to improve its economic utilization is also a corresponding
difficulty that needs to be further overcome. In the future, we can focus on simplifying the
production process of raw materials and optimizing the filtration membrane manufacturing
technology to achieve the purpose of reducing costs.

6. Patents

This section is not mandatory but may be added if there are patents resulting from the
work reported in this manuscript.
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