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Abstract

While altered activities in sensory neurons were noticed in neuropathic pain, caused by highly
diverse insults to the peripheral nervous system, such as diabetes, alcohol ingestion, cancer
chemotherapy and drugs used to treat AIDS, other infections and autoimmune diseases, as well as
trauma, our understanding of how these various peripheral neuropathies manifest as altered
neuronal activity is still rudimentary. The recent development of models of several of those
neuropathies has, however, now made it possible to address their impact on primary afferent
nociceptor function. We compared changes in mechanically-evoked C-fiber activity, in models of
painful peripheral neuropathy induced by drinking ethanol (alcohol) or administering 2',3'-
dideoxycytidine (ddC), a nucleoside reverse transcriptase inhibitor for AIDS therapy, two co-
morbid conditions in which pain is thought to be mediated by different second messenger signaling
pathways. In C-fiber afferents, ddC decreased conduction velocity. In contrast, alcohol but not ddC
caused enhanced response to mechanical stimulation (i.e., decrease in threshold and increase in
response to sustained threshold and supra-threshold stimulation) and changes in pattern of evoked
activity (interspike interval and action potential variability analyses). These marked differences in
primary afferent nociceptor function, in two different forms of neuropathy that produce mechanical
hyperalgesia of similar magnitude, suggest that optimal treatment of neuropathic pain may differ
depending on the nature of the causative insult to the peripheral nervous system, and emphasize
the value of studying co-morbid conditions that produce painful peripheral neuropathy by different
mechanisms.

Background

The second messenger signaling pathways in primary
afferent nociceptors that mediate hypersensitivity to
mechanical stimuli differ between models of painful
peripheral neuropathies [1]. Two extreme examples of this
are the neuropathies induced by chronic ethanol con-
sumption, and by acquired immunodeficiency disease
syndrome (AIDS) therapy (nucleoside reverse tran-
scriptase inhibitors). In alcohol-induced neuropathy, pro-

tein kinase Cg(PKCe) has a major contribution to
mechanical hyperalgesia [2], whereas in AIDS therapy
neuropathy, Ca*+, caspase signaling and mitochondrial
electron transport [3-5] but not PKCe or a number of
other second messenger signaling pathways (i.e., protein
kinase A, protein kinase G, extracellular signal-regulated
kinases 1/2 or nitric oxide) contribute [3].
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Enhanced activity in sensory neurons is thought to con-
tribute to pain reported by patients with small-fiber
peripheral neuropathies. Microneurography techniques
have demonstrated pathological responses such as sensiti-
zation to mechanical stimuli, in patients with trigeminal
neuralgia [6], traumatic nerve injury [7], entrapment neu-
ropathy [8], phantom limb [9] and erythromelalgia [10].
However, there are practical limitations in performing
microneurography in patients, including inability to clas-
sify fiber functions fully, small numbers of fibers that can
be evaluated in an individual patient and the potential for
inducing further injury by introducing a microelectrode
into an already damaged nerve. Furthermore, in spite of
the fact that in most patients, metabolic abnormalities,
toxins, drugs or infectious organisms are producing the
neuropathic conditions, most microneurography studies
have been done in patients with a traumatic nerve injury
[7-9].

Single-fiber electrophysiology has been performed in ani-
mal models of metabolic and toxic, as well as traumatic
nerve injury-associated painful peripheral neuropathy.
Following traumatic nerve injury it has been reported that
there is increased spontaneous activity occurring in irreg-
ular bursts [11-13]; in diabetic neuropathy, in addition to
increased spontaneous activity, a decrease in threshold
and increase in response to supra-threshold stimulation
has been reported [14-19]; in models of cancer chemo-
therapy neuropathy, C-fibers have been reported to be
hyperresponsive and to fire irregularly [1,20]; in alcohol
neuropathy, C-fibers also demonstrate a decrease in
threshold and increased response to stimulation [2]; and,
in nucleoside reverse transcriptase inhibitor-induced
AIDS-therapy neuropathy, a change in post-stimulus
interspike interval (ISI) histogram, without change in
threshold or number of action potentials in response to
threshold or suprathreshold mechanical stimulus has
been reported [3]. In this study, we have performed a side-
by-side comparison of evoked C-fiber activity in models
of two frequently co-morbid forms of peripheral neurop-
athy, alcohol and AIDS therapy-induced painful periph-
eral neuropathy, which differ markedly in the nociceptor
second messenger signaling pathways involved [2,3].

Results

Conduction velocity

Conduction velocity, a measure of axonal excitability, has
been used extensively in the classification and diagnosis
of peripheral neuropathies. The conduction velocity of
individual C-fibers, whose mechanical receptive fields
had been identified, was measured in sensory neurons
innervating the dorsum of the hind paw of ethanol-con-
suming and ddC-treated rats that demonstrated mechani-
cal hyperalgesia prior to electrophysiology study, and in
control rats. While there was a decrease in conduction
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velocity in both ethanol (decrease 11.7%) and ddC
(decrease 16.4%) treated rats, the decrease was statistically
significant only in the AIDS therapy model (Figure 1, p <
0.05). Thus, as in patients with diverse forms of peripheral
neuropathy who have a decrease in conduction velocity in
myelinated fibers, a decrease in the conduction velocity in
C-fibers of rats with peripheral neuropathy can also be
shown. Since it is generally considered that slowed con-
duction velocity is a manifestation of alterations in axonal
ionic conductance [21], our findings are compatible with
changes in ionic conductance in C-fiber axons in AIDS
therapy neuropathy. How such changes might contribute
to symptoms associated with ddC peripheral neuropathy
requires further studies.

Response to mechanical stimulation

Threshold stimulus intensity

Alterations in primary afferent nociceptor function associ-
ated with enhanced pain are thought to be due to a
decrease in threshold for nociceptor activation and an
increase in number of action potentials fired. Therefore,
the mechanical threshold and response at threshold of C-
fiber nociceptors was determined in control as well as in
alcohol-consuming and ddC-treated rats. In contrast to
conduction velocity, changes in most of the other electro-
physiological parameters occurred only in the rat model
of alcohol-induced painful peripheral neuropathy. Thus,
chronic ethanol ingestion but not ddC administration
produces a decrease in average C-fiber mechanical thresh-
old (43.5%; p < 0.05); in ddC-treated rats there was actu-
ally a small, not statistically significant, increase in
mechanical threshold (Figure 2).

Response to sustained threshold and suprathreshold stimulus
Similar to their effects on C-fiber mechanical threshold,
ethanol consumption but not ddC administration signifi-
cantly enhanced the number of action potentials fired in
response to sustained threshold and fixed suprathreshold
(10 g) intensity mechanical stimulation (Figure 3). These
results provide further support for the suggestion that
enhanced C-fiber response contributes to the symptoms
of alcohol-induced peripheral neuropathy and raises the
question of how the enhanced nociception in AIDS ther-
apy painful peripheral neuropathy is encoded. Thus,
while our data support a role for enhanced C-fiber
response contributing to pain associated with alcohol
neuropathy, it does not appear to contribute in AIDS ther-
apy neuropathy.

Activity pattern

ISI

In spite of the ability of activity pattern to signal, inde-
pendent of average firing frequency [20,22], changes in
activity pattern produced by various forms of painful
peripheral neuropathy has not been studied systemati-
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Mean conduction velocities (0.86 + 0.03, 0.76 + 0.04, 0.72 + 0.03 m/sec) of C-fibers from the three groups of rats (i.e., naive,
ethanol (EtOH) and ddC, respectively) were significantly different (one way ANOVA, p < 0.05). The conduction velocity of C-
fibers from the ddC group (n = 18) was significantly lower than that of control rats (n = 38, p < 0.05) while the conduction
velocity was similar between EtOH (n = |5) and control groups (p > 0.05).

cally. To analyze the changes in activity pattern generated
in response to stimulation of C-fiber nociceptors in the
mechanical receptive field, we first analyzed the ISI histo-
grams for the response of C-fibers to sustained (60 sec)
threshold and suprathreshold (10 g) mechanical stimula-
tion, in ethanol-consuming, ddC-treated and control rats.
In alcohol consuming rats, the proportion of short ISIs
was significantly increased (p < 0.05, Figure 4B; p < 0.01,
Figure 4E). A small, albeit statistically significant, increase
in intermediate ISI was observed with threshold stimulus,
in ddC-treated rats (Figure 4C). That there is an increase
in the number of short ISIs in rats with alcohol neuropa-
thy, suggests that temporal summation may play a role in
the neuropathic symptoms associated with alcohol con-
sumption but not ddC treatment.

Co-efficient of variability (Cv2)

Finally, changes in activity pattern, generated in response
to mechanical stimuli, was analyzed by determining the
coefficient of variability (Cv2) distribution for the
response to sustained threshold and suprathreshold

mechanical stimulation in C-fibers from ethanol fed, ddC
treated or control rats. The plots of Cv2 versus number of
spikes, in response to mechanical stimulation, for high-
firing fibers in alcohol fed rats were different from that of
low-firing and control fibers (Figure 5). In these high-fir-
ing fibers, the maximum Cv2 values were less, such that
there were almost no occurrences of Cv2 values greater
than 1.1, unlike the distribution of Cv2 values in low-fir-
ing and control C-fibers. The variability of Cv2 values was
also smaller. These changes contrast with those observed
in vincristine and diabetic neuropathy [16,20], where
high and variable Cv2 values were observed in high-firing
fibers. In ddC-treated rats there were no hi-firing C-fibers;
the Cv2 distribution for C-fibers in ddC-treated rats was
similar to that for C-fibers from controls rats (Figure
5A&D).

Discussion

While it is generally accepted that enhanced activity in pri-
mary afferent nociceptors plays an important role in the
pain experienced by patients with peripheral neuropathy
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The mechanical threshold of C-fibers in the EtOH group (n = 15) was significantly lower that of control C-fibers (n = 38, p <
0.05, Mann Whitney test) while the mechanical thresholds between ddC (n = 18) and control groups were similar (p > 0.05,

Mann Whitney test).

[6-10], changes in activity in primary afferent nociceptors
have received little attention, including direct compari-
sons between changes in primary afferent nociceptor
function in different forms of painful peripheral neuropa-
thy. In this study, we have compared mechanically evoked
C-fiber activity in rat models of alcohol and AIDS therapy-
induced peripheral neuropathy, for which enhanced noci-
ception has been shown to be dependent on different sec-
ond messenger signaling pathways.

While the mechanical hyperalgesia observed in these two
models of painful peripheral neuropathy are of similar
magnitude [2,3], the changes in C-fiber function differ
markedly, being fairly well restricted to a decrease in con-
duction velocity for AIDS therapy, while many aspects of
mechanically-evoked activity were effected by alcohol.
Although clinical studies show slowed conduction veloc-
ity in many types of peripheral neuropathy [21,23-25],
the mechanism underlying slowing of conduction veloc-
ity remains to be established. Available data suggest that

changes in ionic currents, most especially for voltage-
gated ion channels, contribute to conduction velocity
abnormalities [21,26,27]. The most well studied model
with respect to mechanisms involved in changes in con-
duction velocity is diabetic neuropathy [21], in which
Inasr Ik, and I have been shown to decrease [26,27] and
Iy, to increase [28-30]. However, depending on the
composition of other ion channels in the membrane of
the sensory neuron, one may observe either enhanced or
attenuated sensation [21]. Since slowing of nerve conduc-
tion velocity is the major change in C-fiber function in the
rat model of ddC-induced painful peripheral neuropathy,
direct analysis of ionic currents in dorsal root ganglion
neurons treated with AIDS therapy could provide impor-
tant insights into the mechanisms involved in the pain
associated with this class of neuropathies.

While the relatively small change in single fiber electro-
physiological properties of primary afferent nociceptors
observed in rats with ddC neuropathy might suggest that
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Figure 3

The mean responses to both sustained (60 sec) threshold and 10 g stimuli of ddC, EtOH and control C-fibers were significantly
different (one way ANOVA, p < 0.01). The responses of EtOH group (n = 15) were significantly higher than those of control
rats (n = 38, p < 0.01, Tukey's multiple comparison test) while the responses of C-fibers in the ddC group (n = 18) were similar
to those of controls (p > 0.05, Tukey's multiple comparison test).
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Figure 4

The ISl distributions of both EtOH (n = 15) group of C-fibers in responses to sustained (60 sec) threshold and 10 g stimuli
were significantly changed. A&D, the S| distributions of control C-fibers (n = 38) in responses to sustained thresholdand 10 g
stimuli, respectively. B&C, ISl 0.1-0.2 s of responses in EtOH group was significantly higher than that of controls (p < 0.05, t-
test) and ISl 0.3—-0.4 s of responses in ddC group (n = 18) was significantly higher than that of controls (p < 0.05, t-test). E&F,
the ISI distributions of EtOH group in responses to |10 g stimulation were significantly changed while the ISI distributions of
ddC group were similar to those of controls. IS| 0-0.2 s of responses in EtOH group was significantly higher than those of con-
trol animals (p < 0.01, t-test)
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The Cv2 distribution of high firing fibers (B, n = 7) for EtOH group is markedly different from low firing fibers (C, n = 8) for
EtOH group and control animals (A, n = 38) while they were similar between low firing fibers for EtOH group and controls.
The Cv2 distributions were similar between ddC (D, n = 18) and controls.

changes in the peripheral terminal of sensory neurons
make a minor contribution to AIDS therapy-induced
pain, we have previously shown that peripheral adminis-
tration, at the site of nociceptive testing, of antagonists of
intracellular calcium [3], caspase signaling [4] and the
mitochondrial electron transport chain [5], which in con-
trol animals have no effect on mechanical nociceptive
threshold, reverses ddC-induced mechanical hyperalgesia.
Taken together these findings provide support for the sug-
gestion that changes in primary afferent nociceptor func-

tion, not tested for in the present study, may play a role in
the decreased behavioral mechanical nociceptive thresh-
old in the ddC-induced painful peripheral neuropathy.
Alternatively, since the mechanism of action of nucleoside
reverse transcriptase inhibitor-induced neurotoxicity is via
their effects on mitochondrial function [31,32], it may be
that a fraction of mitochondria are affected in most neu-
rons, leading to a smaller change in function in a larger
percentage of sensory neurons. In contrast, in alcohol,
diabetic [16,17] and vincristine [20] peripheral neuropa-

Page 7 of 11

(page number not for citation purposes)



Molecular Pain 2007, 3:5

thy, the toxic insult appears to produce an all-or-none
change in activity, in a subset of neurons (i.e., the high-fir-
ing fibers) not observed in AIDS therapy neuropathy.

Decrease in mechanical threshold and increase in number
of action potentials elicited by the same intensity stimulus
contribute to inflammatory pain [33,34], which is charac-
terized by mechanical hyperalgesia. In the present study
we found a decrease in mechanical threshold and increase
in number of action potentials produced by threshold and
suprathreshold stimulation in rats consuming alcohol,
but not in ddC-treated rats. The increase in number of
short ISIs, in response to both threshold and suprathresh-
old mechanical stimulation, in alcohol fed rats, will
increase temporal summation in postsynaptic spinal dor-
sal horn neurons; increasing the range of ISIs, near 100
ms, as observed in rats consuming alcohol, causes greater
temporal summation of C-fiber-evoked excitatory postsy-
naptic currents in dorsal horn neurons [35], and in the
same range of ISIs, temporal summation of afferent activ-
ity appears to be an important factor in human pain per-
ception [36-41].

While pattern of activity in a presynaptic neuron can dra-
matically affect activity in its postsynaptic neurons [42-
46], much less attention has been given to the importance
of the pattern of activity elicited by mechanical stimula-
tion of primary afferents in the pain associated with
peripheral neuropathy. In previous studies of painful
peripheral neuropathy we have observed that changes in
primary afferent nociceptor function occur in an all-or-
nothing fashion. Thus, in models of diabetic [16,17] and
vincristine [20] neuropathy, we found enhanced activity
restricted to a subpopulation of C-fibers (i.e., high-firing
fibers), the function of the remaining C-fibers being simi-
lar to those in control rats. In alcohol-induced neuropathy
this dichotomy was also present. Therefore, in our analy-
sis of variability in action potential timing we also sepa-
rately evaluated the change in activity pattern in high- and
low-firing C-fibers. Marked alteration in the distribution
of Cv2 values was observed in high-firing C-fibers in alco-
hol-induced painful peripheral neuropathy; however, this
change was different from that in high-firing C-fibers in
diabetic and vincristine-treated rats, in that there was a
marked decrease in maximum Cv2 in rats with alcohol-
induced neuropathy. While the mechanism underlying
these changes is unknown, the lower Cv2 value can be
generated by a repetitively bursting pattern of activity
[42]. The functional significance of variability in neuronal
discharge patterns has been the focus of study in somato-
sensory cortex and other sensory areas [42-44,46]. It has
been suggested that such "variability may not be so much
a flaw as a feature that the brain puts to good use" to "pro-
vide the dynamic range for rapid modulation of synaptic
efficacy” [45]. This may be relevant to the function of
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nociceptors as afferent activity-dependent plasticity in spi-
nal nociceptive pathways is thought to be a crucial feature
of pain signaling [47], and may contribute to the progres-
sive increase in pain during a prolonged stimulus, even
while adaptation decreases the mean firing frequency of
nociceptive nerve fibers [48].

In summary, in two models of painful peripheral neu-
ropathies that differ markedly based on the involvement
of second messenger signaling mechanisms in primary
afferents, we have found marked differences in C-fiber
activity. Our findings raise the question; does activity in
sensory neurons from different forms of peripheral neu-
ropathy have unique signatures? Since alcohol consump-
tion and AIDS are common co-morbid conditions [49-
51], the possibility that they produce painful peripheral
neuropathy by different mechanisms raises the question
are symptoms more severe in AIDS patients who chroni-
cally consume alcohol? One step in developing an under-
standing of the importance of these mechanisms would
be to directly activate individual second messengers in pri-
mary afferent nociceptors, to determine their effect on
mechanically-evoked nociceptor activity, and then to
study specific ion channels in dorsal root ganglion neu-
rons, in vitro, to determine the ionic basis of these differ-
ences. In vitro studies of the effect of ddC on specific ionic
conductance may be especially important in furthering
our understanding of the functional alterations in AIDS
therapy neuropathy, which does not appear to markedly
alter function of individual primary nociceptors.

Conclusion

Our results demonstrated that only ddC decreased con-
duction velocity of C-fiber afferents. In contrast, alcohol
but not ddC caused enhanced response to mechanical
stimulation and changes in pattern of evoked activity. Our
data also support the suggestion that different therapies
are likely to be needed to effectively manage symptoms in
different forms of peripheral neuropathy.

Methods

Animal model

Male Sprague-Dawley Rats (280-420 g) from Bantin and
Kingman (Fremont, CA, USA) were used in these experi-
ments. Animal care and use conformed to National Insti-
tutes of Health (NIH) guidelines and was approved by the
University of California at San Francisco Committee on
Animal Research.

Alcohol-induced painful neuropathy

The rats used in these experiments housed one per cage
were fed Lieber-DeCarli liquid diet (Dyets Inc., Bethlem,
PA) containing ethanol (6.5% ethanol) [2,52-54] for 12
weeks. In this protocol, alcohol-induced hyperalgesia is
well established by the end of the seventh week and max-
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imal between 8-12 weeks [2]. All rats demonstrated
mechanical hyperalgesia prior to electrophysiology study.

2',3'-dideoxycytidine-induced neuropathy

The nucleoside reverse transcriptase inhibitor for AIDS
therapies induces a painful peripheral neuropathy in the
rat [3]. A single dose of the AIDS therapy drug, 2',3'-dide-
oxycytidine (ddC, 50 mg/kg i.v.), produces a significant
reduction in nociceptive threshold from day 1 after its
administration, which persisted for more than 20 days
[3]- Since the model produced mechanical hyperalgesia in
100% of animals [3], we did not perform behavioral stud-
ies for each of the animals used in the electrophysiology
experiments. Of note, this would only have the potential
to underestimate the effect of neuropathy on sensory neu-
ron function.

Electrophysiology

In vivo single-fiber electrophysiology was performed, as
previously described [16,18,20]. Briefly, rats were anes-
thetized with sodium pentobarbital (initially 50 mg/kg,
i.p., with additional doses given throughout the experi-
ment to maintain areflexia). At the end of the experiment
the rat was euthanized by pentobarbital overdose fol-
lowed by bilateral thoracotomy. Recordings were made
from the saphenous nerve, which innervates the dorsal
surface of the hind paw. Bipolar stimulating electrodes
were placed under the nerve at a site distal to the recording
site. The nerve was crushed proximal to the recording site
to prevent flexor reflexes during electrical stimulation of
the nerve. Fine fascicles of axons were dissected from the
nerve and placed on a silver-wire recording electrode. Sin-
gle units were first detected by electrical stimulation of the
nerve. Receptive fields of identified C-fibers were located
using a mechanical search stimulus, either a blunt probe
with smooth tip or a 60 g von Frey hair (VFH). Each fiber's
conduction velocity was calculated by dividing the dis-
tance between the stimulating and recording electrodes by
the latency of the electrically-evoked action potential. Fib-
ers that conducted slower than 2 m/s were classified as C-
fibers [55,56]. The fiber was determined to be cutaneous
if it was activated by lifting and stimulating the skin and/
or by moving skin with respect to its subcutaneous tissue.
All C-fibers employed in the present experiment had cuta-
neous receptive fields. The electrically evoked action
potential corresponding to the C-fiber whose receptive
field had been identified was verified by the latency delay
technique, in which electrically evoked spikes resulted in
longer latency when the receptive field of the same fiber
was stimulated mechanically [57]. Mechanical threshold
was determined with calibrated VFH and defined as the
lowest force that elicited =2 spikes within 1 s, in at least
50% of trials.

http://www.molecularpain.com/content/3/1/5

Sustained threshold mechanical stimulation was per-
formed using a calibrated VFH that was manually placed
on the receptive field for 60 s. Sustained (60 s) suprath-
reshold (10 g) mechanical stimulation was accomplished
by use of a mechanical stimulator consisting of a force-
measuring transducer (Entran, Fairfield, NJ, USA)
mounted in series with interchangeable VFH filaments.
Neural activity was stored using an IBM compatible com-
puter with micro 1401 interface (CED, Cambridge, UK)
and further analyzed off-line with Spike2 software (CED).

ISI analysis

IST analysis was used to evaluate the temporal characteris-
tics of the response of C-fiber nociceptors to sustained
mechanical stimulation, which was adopted from our
study of nociceptor activity in the rat model of vincristine-
induced painful neuropathy [20]. The ISIs for each C-
fiber's response was grouped into 100 ms bins between 0
and 499 ms; ISIs greater than or equal to 500 ms were not
analyzed [20]. This bin width also allows our data to be
compared with that in other studies [35,58,59]. The
number of intervals occurring in each bin was expressed as
the percentage of the total number of ISIs in the trial. This
trial-by-trial normalization procedure allowed the distri-
bution of ISIs from several fibers to be averaged together.

Action potential firing variability (Cv2)

The coefficient of variability (Cv2) was calculated to com-
pare the relative difference between adjacent ISIs [42].
Cv2 is defined as the square root of 2 multiplied by the
standard deviation of two ISIs divided by their mean [42].
Thus, it is a dimensionless value that is independent of
absolute firing rate. Based on our previous studies in rat
models of vincristine- and diabetes-induced peripheral
neuropathy [16,20], the response of each C-fiber during
the 1 min duration of the stimulus was divided into six
consecutive 10 s periods, and the average Cv2 for all fibers
in each corresponding 10 s period was calculated. Based
on our similar finding in rat models of vincristine and dia-
betes-induced painful peripheral neuropathy [16,20], fib-
ers were divided into two groups, "low-firing" fibers
which fired <100 spikes and "high-firing" fibers which
fired >100 spikes, so that the firing pattern of C-fiber activ-
ity from the peripheral neuropathy models can be com-
pared. The high-firing C-fibers had approximately 2.5-
fold higher responses to sustained threshold and suprath-
reshold mechanical stimulation compared with control
fibers during the 60 s stimulus while the low-firing fre-
quency C-fibers had responses similar to those of con-
trols.

Statistics

Group data are expressed as mean + S.E.M. Statistical anal-
yses were done using analysis of variance (ANOVA) fol-
lowed by Tukey's multiple comparison post hoc test or
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unpaired t-test and Mann Whitney U test, as appropriate.
Differences were considered significant at P < 0.05.
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