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Abstract

Owing to the limitations of cross-sectional studies, it is unclear whether social media

induce brain changes, or if individuals with certain biological traits are more likely to

use social media. Functional connectivity (FC) can reflect cerebral functional plastic-

ity, and if social media can influence cerebral FC, then the FC of light social media

users should be more similar to that of heavy users after they “heavily” used social

media for a long period. We combined longitudinal study design and intersubject cor-

relation (ISC) analysis to investigate this similarity. Thirty-five heavy and 21 light

social media users underwent cognitive tests and functional MRIs. The 21 light social

media users underwent another functional MRI scan after completing an additional

four-week social media task. We conducted the ISC at the group, individual, and

brain-region levels to investigate the similarity of FC and locate the brain regions

most affected by social media. The FC of light social media users was more similar to

that of heavy social media users after they completed the four-week social media

task. Then, social media had an impact on half of the brain, involving almost all brain

networks. Finally, cerebral FC that mostly affected by social media was associated

with selective attention. We concluded that the impact of social media use on cere-

bral functional connectivity changes is revealed by ISC method and longitudinal

design, which may provide guidance for clinical practice. The methods used in the

current research could also be applied to similar domains.
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1 | INTRODUCTION

Daily life is increasingly saturated with social media information,

and there is growing interest in the effect of social media use on

our brains and minds. Studies have associated social media with

decreased attention, memory, and learning abilities (Crone &

Konijn, 2018; Firth et al., 2019; Ophir, Nass, & Wagner, 2009) as

well as structural (Hutton, Dudley, Horowitz-Kraus, DeWitt, &

Holland, 2020) and functional (Moisala et al., 2016) brain changes.

Almost all researchers declared that their work was limited in the

investigation of causality because of its cross-sectional design

(Choi et al., 2021; Firth et al., 2019; Lamblin, Murawski, Whittle, &

Fornito, 2017; Loh & Kanai, 2016; Moisala et al., 2016; Uncapher

et al., 2017; Uncapher & Wagner, 2018). Hence, it is still unclear

whether social media induce changes in the brain, or if individuals

with certain biological traits are more likely to use social media

(Firth et al., 2019; Madore et al., 2020). Understanding this causal-

ity will provide guidance on whether interventions are appropriate,

which are helpful, and how to conduct them. Recommendations

and guidelines cannot be made without relevant evidence, and lon-

gitudinal research can fill this void.

Functional MRI (fMRI)-based functional connectivity (FC) repre-

sents important biological features of the brain and alters with the

changes in brain states. FC is an ideal noninvasive biomarker to

reflect cerebral functional plasticity (Beaty et al., 2018; Finn

et al., 2015; Rosenberg & Finn, 2016). For example, FC changes were

found to be responsible for short-term neurofeedback training with

motor imagery (Marins et al., 2019), and musical training could

induce functional auditory-motor network plasticity in young adults

(Li et al., 2018). Consequently, if social media can influence cerebral

FC, then the FC of light social media users (LSMs) should be more

similar to that of heavy users after they “heavily” used social media

for a long period.

Intersubject correlation (ISC) is an imaging analysis method that

allows us to measure similarity across experimental conditions

(Nastase, Gazzola, Hasson, & Keysers, 2019). By using ISC method,

Gao et al. (2020) reported a method to draw the reliability map of

individual differences in naturalistic imaging. Guo, Hyett, Nguyen, Par-

ker, and Breakspear (2016) found distinct FC in depression subtypes

during the viewing of emotionally salient films. Consequently, ISC

methods can be used to investigate the similarity of FC among heavy

social media users (HSMs), LSMs at baseline state and after they

“heavily” using social media for a long period.

Our hypothesis is that social media can lead to cerebral FC alter-

ations. We tested this using ISC methods at both the groups and indi-

vidual levels to investigate the similarity mentioned above. We then

used brain-region ISC to locate brain regions most affected by social

media and investigated the relationship between these FCs and cogni-

tive function. To improve the credibility of our research, we validated

all of our findings by conducting several sensitive analyses, including

head motion, brain atlas, data size, global signal regression (GSR), and

statistical methods.

2 | MATERIALS AND METHODS

2.1 | Subjects

Figure 1 shows the procedure of subject recruitment. First, 175 under-

graduate students aged 18 to 22 years old were recruited from Fourth

Military Medical University. All subjects completed a self-reported

questionnaire on demographic information (including age, sex, height,

weight, smoking habits, alcohol consumption, color blindness, handed-

ness, history of brain trauma, and family history of mental illness) and

smartphone habits (including time per day spent on social media,

games, chat, film and TV, and other activities) mainly based on their

smartphone time monitors. Social media refers to three of the most

F IGURE 1 Flowchart of subject recruitment. CPT, continuous
performance task; HSM, heavy social media user; LSM, light social
media user; SWCT, Stroop color word test
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common social media apps in China that based on user's relationship

and follow mechanism to share short real-time information, which

were Microblog, TikTok, and Kwai (https://marketingtochina.com/

top-10-social-media-in-china-for-marketing/). Participants with a

Body mass index (BMI) greater than 30 or less than 18.5, any use of

cigarettes or alcohol, color blindness, or left-handedness were

excluded. This study received approval from the institutional review

board of Tangdu Hospital, Fourth Military Medical University, and all

subjects provided written informed consent.

2.2 | Social media task and experimental design

We aimed to recruit two groups of subjects, which were subjects

with heavy social media use and subjects with light social media

use. Given that there is currently no definite standard to distinguish

between HSM and LSM, we ranked the existing cohort according

to the daily time spent on social media, and aimed to recruited simi-

lar numbers of subjects (40 subjects for each group) from both ends

(top as HSM and bottom as LSM). However, there is a break of the

daily time spent on social media between the top-36th subject (1 h)

and the top-35th subject (1.8 h), so we only recruited the top-35

subjects to improve the consistency. Besides, the daily time spent

on social media of the bottom-40th subject (0.7 h) was the same as

both the bottom-41st and bottom-42nd subjects; consequently, we

recruited the bottom-42 subjects to improve the consistency.

Finally, two groups of subjects were recruited: (1) top-35 subjects

with the heaviest daily social media use (HSM group); (2) half of the

bottom-42 subjects (21 subjects, randomly selected) (LSM group).

The data of the other bottom-21 subjects was not used, because

the task of them was reading a sci-fi novel, which is not the topic of

the current research. Microblog (weibo.com), whose function is

similar to those of Twitter and Facebook, is one of the most used

social media apps in China. To prevent biases caused by diverse

apps, browsing Microblog on a smartphone was defined as the

social media task.

The experiment was designed as follows (Figure 1): (1) all subjects

received multimodal MRI scans on the first visit, (2) a long-term social

media task was assigned to subjects in the LSM group (2 h/day for

four continuous weeks). The time of 2 h/day was based on the aver-

age daily time spent on social media by the HSM group, and

(3) another multimodal MRI scan was conducted the day after the

long-term task.

2.3 | Cognitive test

Previous studies have reported that social media are related to

impaired attention because they require users to frequently switch

between various information and apps (Ophir et al., 2009;

Uncapher & Wagner, 2018). Consequently, we used the continuous

performance task (CPT) (Corkum & Siegel, 1993) and Stroop color and

word test (SCWT) (Scarpina & Tagini, 2017) to evaluate sustained and

selective attention. Detailed information of CPT and SWCT are

described in Appendix S1.

2.4 | Neuroimaging data acquisition and
preprocessing

All MR images were acquired using a GE Discovery MR750 3.0-T

scanner with an eight-channel phased-array head coil. Foam pads

were used to limit head movement, and earplugs to silence scanner

noise. During the experiment, participants were told to close their

eyes but not to fall asleep. T1-wieghted imaging (T1WI) and blood

oxygen level-dependent (BOLD) imaging was acquired, and detailed

parameters of scanning is provided in Appendix S1. Imaging data

preprocessing was conducted on Statistical Parameter Mapping

(SPM12, Wellcome, Imaging Neurology Group, London, UK; http://

www.fil.ion.ucl.ac.uk/spm) and DPABI toolkit (Chao-Gan & Yu-

Feng, 2010; Yan, Wang, Zuo, & Zang, 2016) running on MATLAB

2018a. The preprocessing procedure was the same as that in our pre-

vious publications (Hu et al., 2019b; Hu et al., 2019a; Hu, Yu, Wang, &

Cui, 2021; Yu et al., 2019). Detailly speaking, the first 10 time points

were discarded to ensure magnetization stability and to allow partici-

pants to adapt to the scanning environment. Slice timing and head-

motion correction were performed, and framewise displacement

(FD) was controlled to prevent potential spurious connectivity (Yan

et al., 2013). In this procedure, scans with head motion of translation

greater than 2.0 mm or rotation greater than 2� were excluded. BOLD

images were normalized to the Montreal Neurological Institute (MNI)

space according to high-resolution T1-weighted imaging then res-

ampled to 3 � 3 � 3 mm3. After that, BOLD images were smoothed

with an 8-mm full-width at half maximum (FWHM) isotropic Gaussian

kernel. Nuisance signals, such as the 24-parameter head motion pro-

file, white matter, and cerebrospinal fluid signals, were regressed from

the time series of each voxel to exclude noise from non-neuronal

sources. Then, the linear trend was removed from the time series. The

Anatomical Automatic Labeling (AAL) atlas with 116 brain regions was

used to construct the whole-brain FC-matrix. All codes and FC-

matrices were uploaded (https://github.com/hubolll/Social_media_

ISRSA) so that researchers can validate our work and apply these

methods to their own data.

2.5 | Neuroimaging data augmentation

To overcome the effects of a small sample size, we augmented imag-

ing data two, three, and four times, and repeated all experiments with

these data. In brief, the BOLD signal was equally divided into two,

three, and four parts, and FC-matrices were calculated from the

derived signals. Zhu et al. (2021) used a randomized sliding-window

method to augment raw BOLD data dozens of times to improve the

efficacy of the FC-based machine learning model; however, we only

augmented the data several times to validate the stability of our

findings.
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2.6 | Theory and procedure of ISC

In theory, if social media lead to brain changes that can be represen-

ted by FC, the FC-matrices of the HSM group should be more similar

to those of the LSM group after the four-week social media task

(LSM-4wk) than the LSM group at the baseline state (LSM-baseline)

(Figure 2a). We designed a hierarchical protocol of ISC to comprehen-

sively explore this issue, including group (Figure 2b), individual

F IGURE 2 Flowcharts of data analysis. (a) General design of intersubject correlation (ISC) procedure. The similarities between HSM and LSM-
baseline groups and between HSM and LSM-4wk groups were investigated. (b) Procedure of ISC at group level. FC-matrices of all subjects were
correlated with each other to form an overall subject-by-subject correlation matrix. The correlation coefficient between LSM-baseline and HSM
groups was compared with that between LSM-4wk and HSM groups. (c) Procedure of ISC at the individual level. For each subject in the HSM
group, there were two sets of correlation coefficients: with all subjects in the LSM-baseline group, and with all subjects in the LSM-4wk group.

Mean values of these two sets of correlation coefficients were further compared. If the correlation coefficient of a subject in the HSM group was
more similar to that of the LSM-4wk group (r2 > r1), we regarded it as fitting the hypothesis. (d) Procedure of ISC at brain-region level. An FC-
vector represented the gross FC of each brain region (FCs between this region and all other regions), and FC-vectors of all subjects were
correlated with each other to form an overall, subject-by-subject correlation matrix. For all brain regions, a set of overall correlation matrices
(equal to the number of pre-defined brain regions) represented their inter-subject similarities. Similarly, for each brain region, if the correlation
coefficient of a subject in the HSM group was more similar to that of the LSM-4wk group (r2 > r1) than that of the LSM-baseline group, it was
regarded as fitting the hypothesis. HSM, heavy social media user; LSM, light social media user
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(Figure 2c), and brain-region levels (Figure 2d). In all procedures, we

avoided correlation between the LSM-baseline and LSM-4wk groups

to prevent the potential bias introduced by the intrasubject similarity.

2.6.1 | ISC at group level

The procedure closely followed methods in previous research (Finn

et al., 2015). FC-matrices of all subjects were correlated with each

other to form an overall subject-by-subject correlation matrix

(Figure 2b). To minimize the influence of nuisance signal, subjects with

outlier correlation coefficients with all the other subjects (the mean

correlation coefficient beyond (mean value ± 2.5 SDs) were excluded,

because the subject had conspicuous abnormal correlation with all the

others. Each subject had a mean correlation coefficient derived by

averaging all the correlation coefficients between this subject and all

the other subjects. Two classes of correlation coefficients were

selected, which were correlation coefficient between the HSM and

LSM-baseline groups as well as between the HSM and LSM-4wk

groups. We compared these two groups of correlation coefficients

through a 2-sample t-test, and in theory, the second class of correla-

tion coefficients (HSM vs. LSM-4wk) should have been larger than the

first (HSM vs. LSM-baseline) (Figure 2b).

2.6.2 | ISC at individual level

We used the overall subject-by-subject correlation matrix mentioned

above, but analyzed similarity at the individual level. We calculated

the mean correlation coefficients between one subject in the HSM

group and all subjects in the LSM-baseline group/LSM-4wk group. In

theory, the second correlation coefficient (HSM vs. LSM-4wk) should

always be larger than the first (HSM vs. LSM-baseline). We calculated

the ratio of subjects who fit the above hypothesis to all subjects in

the HSM group as illustrated by the following function:

Ratio¼

PN
i¼1

Xi ¼
1,

PM
k¼1

Corr Si,Mbkð Þ
M

<

PL
j¼1

Corr Si,M4wkj
� �

L

0,

PM
k¼1

Corr Si,Mbkð Þ
M

>

PL
j¼1

Corr Si,M4wkj
� �

L

8>>>>>>><
>>>>>>>:

N
,

where N is the number of subjects in the HSM group,M is the number

of subjects in the LSM-baseline group, L is the number of subjects in

the LSM-4wk group, Xi is each subject in the HSM group, Si is the FC-

matrix of each subject in the HSM group,Mbk is the FC-matrix of each

subject in the LSM-baseline group, M4wkj is the FC-matrix of each

subject in the LSM-4wk group, and Corr is the calculation of the Pear-

son correlation coefficient.

A permutation test (5000 times) was conducted for multiple com-

parison correction by randomly replacing the labels in the LSM-

baseline and LSM-4wk groups, and the statistical significance (p value)

was the order of initial ratio calculated before the calculation of all

ratios in the permutation test:

pvalue¼

PN
i¼1

Yi ¼
1, PRi > IR

0, PRi < IR

�

N
,

where PRi is the ratio calculated in each permutation, IR is the initial

ratio calculated before, N is the permutation time, and Yi is each

permutation.

2.6.3 | ISC at brain-region level

Similar to Section 2.5.2, where we investigated the similarity of

whole-brain FC-matrices, we investigate the similarity of FC-vectors

for each brain region. An FC-vector for each of the 116 brain regions

in this study represents the FCs between it and all the other regions,

which is expressed in the following equation:

FCV xð Þ¼ rjr¼Corr Bx,Byð Þ,0 < y ≤A, y≠ x, y�Nþf g

where FCV(x) is the FC-vector of the target brain region x, Bx is the

BOLD signal of the target brain region x, By is the BOLD signal of all

the other brain regions, and A is the number of brain regions.

The FC-vectors of all subjects were correlated with each other to

form 116 overall subject-by-subject correlation matrices to represent

the inter-subject similarity of all brain regions (Figure 2d). We calcu-

lated the number of subjects in the HSM group for each brain region

who fit the hypothesis that the similarity of subjects in the HSM

group to those in the LSM-4wk group should always be larger than

the similarity to the LSM-baseline group. A permutation test (5000

times) was conducted for multiple comparison correction at the brain-

region level, and the Benjamini and Hochberg (Benjamini &

Hochberg, 1995) false discovery rate (FDR) was used for multiple

comparison correction for all brain regions.

2.7 | Impact of 4-week social media on FC and its
relationship with cognitive performance

To further validate our findings, we used a conventional 2-sample t-test

to investigate the impact of the 4-week social media task on FC. First,

we compared the FC-matrices between the HSM and LSM-baseline

groups and selected the most affected FCs with a threshold of p < .001

(other thresholds were also tested). The selected FCs in the LSM-4wk

group were investigated to see whether these differences were attenu-

ated. Finally, FCs with significant differences were associated with

SCWT and CPT performances (both FC and cognitive performance were

those at baseline state) to investigate their relationship. It should be

noted that to investigate the impact of 4-week social media on FC

changes, we also directly compared the FC between the baseline and

4-week follow-up in the LSM group by using paired-t test.
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2.8 | Statistics

SPSS version 20.0 was used for statistical analysis. To validate the

significance of grouping based on social media use, a general linear

model was built to compare the intergroup differences of social

media use with age; BMI; daily time spent chatting, watching film

and TV, playing games, and other activities; and significant interac-

tions as covariates to control. A Kolmogorov–Smirnov analysis was

used to check whether the data conformed to a normal distribution.

A 2-sample t-test or one-way analysis of variance (ANOVA) was

used to compare the inter-group demographic information, cogni-

tive performance, and neuroimaging data that conform to the

Gaussian distribution, and a nonparametric test was used other-

wise. Cohen’s d was calculated to reflect the effect size of inter-

group difference (Nakagawa & Cuthill, 2007). A paired-t test was

used to compare the FC between the baseline and 4-week follow-

up in the LSM group.

3 | RESULTS

3.1 | Demographic information and cognitive
performance

The demographics and cognitive performances of the three groups of

subjects are listed in Table 1. A significant interaction was found

between group and daily watching of film and TV (Figure 3,

F = 5.784, p = .020). This was because, in the HSM group, the associ-

ation between daily social media use and watching film and TV

(r = .297, p = .088) was stronger than that in the LSM group

(r = �.489, p = .034). However, interactions between groups and

other variables (age, BMI, chatting, playing games, and other activities)

were not significant (Figure 3, F = .126, .133, .002, .254, and .002;

p = .724, .717, .962, .616, and .969, respectively).

Consequently, we built a general linear model, with daily social

media use as the dependent variable; group as an independent

TABLE 1 The demographics and behavioral performances

HSM (N = 30) LSM-baseline (N = 21) LSM-4wk (N = 19) p value

Age (years) 21.13 ± 0.73 20.90 ± 1.04 20.79 ± 1.03 .413

Hight (cm) 175.10 ± 4.32 174.19 ± 6.84 174.21 ± 6.55 .814

Weight (kg) 67.15 ± 6.47 67.12 ± 7.85 67.45 ± 7.63 .987

BMI (kg/m2) 21.89 ± 1.84 22.07 ± 1.67 22.18 ± 1.70 .841

Smartphone using habits

Chatting (h) 0.98 ± 0.92 0.91 ± 0.91 0.87 ± 0.95 .914

Game (h) 0.55 ± 0.59 0.60 ± 0.60 0.53 ± 0.59 .932

Film/TV series (h) 0.29 ± 0.53 0.19 ± 0.43 0.21 ± 0.45 .721

Social media (h) 2.05 ± 0.83 0.41 ± 0.35 0.41 ± 0.36 <.001

Other activities (h) 0.96 ± 1.14 0.44 ± 0.78 0.48 ± 0.42 .102

CPT performances

d’-context 3.59 ± 0.48 3.52 ± 0.52 3.47 ± 0.50 .694

Mean RT (ms) 391.98 ± 87.01 381.95 ± 81.92 369.19 ± 45.06 .673

Instability (ms) 121.81 ± 48.03 107.34 ± 44.90 136.44 ± 33.86 .196

Fatigability 0.35 ± 0.20 0.25 ± 0.26 0.42 ± 0.15 .075

SCWT performances

Correct number 86.29 ± 19.06 82.67 ± 17.80 — .512

False number 14.40 ± 8.43 16.11 ± 8.36 — .493

Omission number 19.77 ± 10.96 21.94 ± 10.30 — .609

Congruent correct 12.91 ± 4.03 12.83 ± 4.27 — .947

Incongruent correct 36.51 ± 9.95 35.06 ± 9.17 — .611

Pronunciation relevant correct 11.54 ± 3.24 10.17 ± 3.69 — .173

Irrelevant correct 25.54 ± 7.58 24.67 ± 6.02 — .675

Congruent correct RT (ms) 597.74 ± 193.46 567.94 ± 201.30 — .609

Incongruent correct RT (ms) 1651.52 ± 488.68 1577.00 ± 435.94 — .583

Pronunciation relevant RT (ms) 529.91 ± 161.39 466.39 ± 170.27 — .193

Irrelevant correct RT (ms) 1174.11 ± 354.28 1121.00 ± 273.18 — .583

Note: Data were reported as mean value ± SD.

Abbreviations: CPT, continuous performance task; HSM, heavy social media user; LSM, light social media user; SCWT, Stroop color and word test.
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variable; and age, BMI, daily chatting, watching film and TV, game

playing, other activities, and the interaction between group and daily

watching of film and TV as covariates to control. We found that dif-

ferent groups significantly predicted daily time spent on social media

(F = 24.914, p < .001), which validated the significance of grouping

subjects into HSM and LSM groups. In addition, although we did not

observe significant cognitive differences among these three groups,

the attentional fatigability of the HSM group tended to be more simi-

lar to that of the LSM-4wk group than to that of the LSM-baseline

group (HSM = 0.354 ± 0.197, LSM-4wk = 0.422 ± 0.154, LSM-

baseline = 0.250 ± 0.259; tested with ANOVA, p = .075, F = 2.714).

3.2 | Intersubject FC-matrix similarity at group
level revealed the effect of social media

One subject in the HSM group and one in the LSM-4wk group with

outlier overall correlation coefficients (r = .420 and .414, respectively,

Figure 4a) were excluded. Their mean correlation coefficient with all

the other subjects were less than 2.5 SDs (SD = .034) from the mean

value (mean = .529), which was .444 (.529–2.5 � .034). When we

used the BOLD data with GSR in preprocessing, the correlation coeffi-

cients between the HSM and LSM-4wk groups (r = .523 ± .053) was

higher than between the HSM and LSM-baseline groups (Figure 4b,

r = .508 ± .064), and the difference was significant (p = 8.42 � 10�4).

We also calculated the effect size (Cohen’s d) and found a small to

medium effect of inter-group difference (Cohen’s d = .243)

(Becker, 2000). When we used the BOLD data without GSR in

preprocessing, the effect size decreased to 0.182 (Figure S1), indicat-

ing that the controlling of global artifacts driven by motion and respi-

ration is critical for improving the sensitivity and effectiveness of

group-level ISC method.

We repeated this procedure using other brain atlases (Figure S2),

and all results were consistent. In addition, considering that ISC may

be susceptible to head motion, we investigated the influence of head

motion by directly comparing the inter-subject similarity of head

motion matrices (FC-matrices were replaced by head motion matri-

ces), but we found no difference (Cohen’s d = .050, p = .414;

Figure S3), indicating that the influence of head motion on the results

could be ignored. We validated our findings using the augmented

data, and we found all results consistent across different augmenta-

tions (Figure S4).

In short, after 4-week social media use, the FC characteristics of

the LSM group were more similar to those of the HSM group.

3.3 | Intersubject FC-matrix similarity at individual
level validated the effect of social media

The similarities between the HSM, LSM-baseline, and LSM-4wk

groups were investigated at the individual level. In 29 subjects in the

HSM group (excluding one with an outlier correlation coefficient),

25 (ratio = 0.862, chance ratio = 0.500) had higher correlation coeffi-

cients with the LSM-4wk group, which fit our prior hypothesis

(p < .001, Figure 4c and d). We repeated this procedure using other

brain atlases (Figure 4d; Figure S5a,b), and with GSR (Figure 4d;

F IGURE 3 Correlation between daily social media use and other variables in HSM and LSM groups. A significant interaction was found
between group and daily watching of film and TV due to that in the HSM group, and the association between daily social media use and watching
film and TV was stronger than that in the LSM group. HSM, heavy social media user; LSM, light social media user
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Figure S5c) in preprocessing, and all results were consistent. We

repeated this experiment using head motion matrices, but the ratio

was only 0.414 (p = .325, Figure 4d; Figure S5d), which suggests the

influence of head motion can be ignored. We validated our findings

using the augmented data, and found all results consistent across dif-

ferent augmentations (Figure S6).

This experiment further validated our hypothesis at the individual

level: after 4-week social media use, the FC features in the LSM group

were more similar to those of the HSM group.

3.4 | Intersubject FC-vector similarity located brain
regions mostly affected by social media

This procedure was similar to that in Section 3.3, using the FC-vector

to represent FCs between a predefined brain region and all the other

regions, and all brain regions were tested. In 65 brain regions (of 116

in the AAL atlas), the HSM group was more similar to the LSM-4wk

group (ratio = 0.655–1.000; p = .035–p < .001, Figure 5a), and

56 brain regions survived FDR correction (Table S1). However, in

15 brain regions, the HSM group was more similar to the LSM-

baseline group (ratio = 0.000–0.345; p < .001–p = .033, Figure 5a),

and 3 survived FDR correction (Table S1).

We repeated this procedure using BOLD images with GSR

(Figure 5b), and found the result consistent (Figure 5c). To better

explain the results, we classified those brain regions into nine net-

works, following Schaefer et al. (Schaefer et al., 2018) and AAL atlas,

and found that brain regions that fit the hypothesis involved almost all

brain networks, and all results were consistent across data augmenta-

tions (Figure 5d) and thresholds of significance (Figure S7). However,

for brain regions that contrary to the hypothesis, the results derived

from BOLD data with and without GSR were not consistent

(Figure 5e), which may have resulted from the threshold of signifi-

cance (Figure S8). That is, if there are very few positive results, the

F IGURE 4 Intersubject similarity results at group and individual levels. (a) Two subjects with outlier similarity with all other subjects were
excluded (red rectangle). (b) Comparison of intersubject similarity at group level by using BOLD data with global signal regressing (GSR) in
preprocessing. Similarity between HSM and LSM-4wk groups was significantly greater than between HSM and LSM-baseline group (Cohen’s
d = 0.243, p = 8.42 � 10�4). (c) Intersubject similarity at individual level. Of 29 subjects in the HSM group, 25 fit our hypothesis (ratio = 0.862,
p < .001). (d) Validation of intersubject similarity at the individual level. We used two other brain atlases and data with GSR in preprocessing, and
all results were consistent (p < .001). We repeated this procedure using only a head motion matrix, but only 15 subjects fit our hypothesis
(ratio = 0.517, p = .232). HSM, heavy social media user; LSM, light social media user
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final reported results may be greatly influenced by the threshold of

significance and multiple comparison correction methods. When the

threshold of significance was loose (p = .05, uncorrected), all results

were again consistent.

In short, the FC characteristics of over half the brain regions that

involve almost all brain networks could be shaped by four-week social

media use.

3.5 | Impact of social media on FCs and its
relationship to cognitive assessments

In addition to the intersubject similarity analysis, a traditional

2-sample t-test was used to investigate this issue. The FC between

the HSM and LSM-baseline groups was compared. No significant

results were found after FDR correction, indicating the difference

between these two groups may not be great enough to survive FDR

correction. Consequently, to detect the difference more sensitively,

we arbitrarily defined the threshold of significance as p = .001 (other

thresholds were also tested, and all results were consistent;

Figures S9 and S10), and 18 FCs were finally selected. As expected,

almost all these FCs of the LSM-4wk group were between the HSM

and LSM-baseline groups (Figure 6a), indicating that after the four-

week social media task, the difference of FC between LSM-baseline

and HSM was attenuated. These FCs connected the limbic system

(LS), somatomotor network (SMN), visual network (VN), cerebellum

(CERE), default mode network (DMN), and basal ganglia

(BG) (Figure 6b and c). This result was also consistent with the result

derived from BOLD data that with GSR (Figure S11). We additionally

compared the FC between the baseline and 4-week follow-up in the

LSM group by using paired-t test, however, there was no significant

result after FDR or network-based statistics (NBS) correction

(Figure S12).

We evaluated the selected relationship between FC characteris-

tics and cognitive assessments at the baseline state. According to

Figure 6c, the FC between VN and LS was positively correlated with

the pronunciation relevant correct number (r = 0.411, p = 0.004) and

reaction time (RT) of SWCT (r = .430, p = .003). The FC between

F IGURE 5 Intersubject similarity at brain-region levels. (a) Brain regions of HSM group that were more similar to LSM-4wk group (red yellow)
and LSM-baseline group (blue green). Color refers to the ratio of subjects in the HSM group who fit our hypothesis. (b) Validation of previous
results using BOLD data with global signal regression (GSR) in preprocessing. (c) Correlation between the results with and without GSR in
preprocessing. For all brain regions, there were 116 ratios that represented whether these brain regions were affected by social media, and ratios
derived from the BOLD data with and without GSR in preprocessing were highly correlated. (d) Distribution of brain regions that fit our
hypothesis among brain networks. These brain regions are mainly located in the VN, SMN, LS, FPN, DMN, and CERE. These results were
consistent when we used BOLD data with GSR, and when we augmented all data two, three, and four times. (e) Distribution of brain regions of
HSM group that contrary to our hypothesis. We found the results were not consistent between the results with and without GSR, and when we
augmented all data two, three, and four times. CERE, cerebellum; DMN, default mode network; FPN, frontoparietal network; HSM, heavy social
media user; LS, limbic system; LSM, light social media user; SMN, somatomotor network; VN, visual network
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F IGURE 6 Impact of long-term social media use on brain FCs and its relationship with cognitive assessments. (a) FCs were selected from the
comparison between HSM and LSM-baseline groups; we observed that the difference was attenuated after the LSM group conducted a 4-week
social media task. (b) Mean value of FC changes displayed in brain maps. (c) Mean value of FC changes displayed in network maps, mostly
involving the LS, DMN, and CERE. (d) Significant relationship between network-wise FCs and cognitive performances (SWCT scores) at baseline
state. CERE, cerebellum; DMN, default mode network; HSM, heavy social media user; LS, limbic system; LSM, light social media user; SCWT,
Stroop color and word test
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SMN and LS was negatively correlated with the congruent correct

number of SWCT (r = �.317, p = .030). FC between DMN and the

cerebellum was positively correlated with the false number of SWCT

(r = .297, p = .043), and negatively correlated with the irrelevant cor-

rect number of SWCT (r = �.304, p = .038).

In summary, we used a traditional 2-sample t-test to validate our

hypothesis again. In the following correlation analysis, we found cor-

relations between selective attention and FC that were most affected

by social media.

4 | DISCUSSION

We showed through a longitudinal study design with ISC methods

that cerebral FC can be affected by social media. First, we found

through ISC at group and individual levels that the FC-matrices of

HSMs were more similar to those of LSMs after a four-week social

media task than at the baseline state. Second, using ISC at the brain-

region level, we found the 56 brain regions most affected by long-

term social media, which involved almost all brain networks. Third, we

found that the difference of FC between HSM and LSM was attenu-

ated after LSMs conducted a four-week social media task. Finally, we

found correlations between selective attention and FC that were most

affected by social media. We validated all of our findings by con-

ducting several sensitive analyses, including head motion, brain atlas,

data size, global signal regression, and statistical methods.

To some extent, our research added in the illumination of the cau-

sality between social media and biological traits, which may have sig-

nificance in clinical practice. For example, multiple scans of social

media users at regular intervals can help to monitor the change of FC,

and thus screen for people who are susceptible to social media. Previ-

ous research has used similar methods to monitor the process of mild

cognitive impairment (Castelnovo et al., 2020) and progressive supra-

nuclear palsy (Brown et al., 2017). FC changes can also be monitored

to assess the effect of therapy on social media-related disorders, using

FC characteristics based on a huge social media-free cohort as the

standard reference. This method was recently combined with trans-

cranial magnetic stimulation to predict and monitor the therapeutic

effect of depressive (Chen et al., 2020; Corlier et al., 2019; Ge,

Downar, Blumberger, Daskalakis, & Vila-Rodriguez, 2020) and bipolar

disorders (Olejarczyk et al., 2020), which shows promise for people

with social media-related disorders.

The association between daily social media use and watching film

and TV was stronger in the HSM group than in the LSM group, indi-

cating that people use video social media platforms (such as TikTok)

to watch film and TV. Although the difference in CPT performance

among the three groups was not significant, the sustained attention,

attentional instability, and attentional fatigability of the HSM group

tended to be more similar to those of the LSM-4wk group than to

those of the LSM-baseline group. The lack of statistical significance

may be due to the difference in the daily time spent on social media

between the HSM and LSM-baseline groups in this research not being

large enough, or because the cognitive task was too simple

(considering that our subjects were young adults with normal intelli-

gence) to detect differences between the two groups. Ralph, Thom-

son, Seli, Carriere, and Smilek (2015) used a longer task (over

20 minutes) to estimate the sustained attention of social media users,

and they found subjects with heavier social media use had a decrease

in sustained attention. However, the correlation was also attenuated

to trend level when controlling for age.

The ISC method has been used in several domains (Finn

et al., 2020; Nastase et al., 2019). Connolly et al. 2012 found similar

activation patterns in visual cortex during the viewing of animals

belonging to the same biological classes. ISC was found to be sensitive

in finding shared neural processing by directly correlating raw BOLD

signals between subjects (also called functional hyperconnectivity)

(Nummenmaa et al., 2014; Schmälzle, Häcker, Honey, & Hasson,

2015). Our research investigated the effect of social media on cere-

bral FC by combining a series of ISC methods on FC features (from

group-, to individual-, to brain region-level ISC), which may provide

methodological guidance to other researchers. However, it should be

noted that ISC is not a specific concept, but rather a reference to the

correlation analysis of imaging or behavioral representations, or both

(Finn et al., 2020).

We found that the FC characteristics of over half the brain

regions could be shaped by four-week social media use. These brain

regions involve almost all brain networks, which may be due to the

diversity of stimuli in social media, such as visual, acoustic, and emo-

tional stimulus, as well as semantic comprehension and social interac-

tion. Previous studies found that looking at photos with lots of likes

showed increased activity in brain regions associated with reward

processing, social cognition, imitation, and attention (Sherman, Pay-

ton, Hernandez, Greenfield, & Dapretto, 2016). In addition, daily

media multitasking was associated with increased recruitment of brain

areas involved in attentional and inhibitory control (Moisala

et al., 2016). When viewing personalized videos, there was higher

brain activations in DMN, ventral tegmental area, and discrete regions

including lateral prefrontal, anterior thalamus, and cerebellum (Su

et al., 2021). These findings are consistent with our findings, which

indicates that the impact of social media on brain is extensive due to

the diverse stimuli. However, the FC of 15 brain regions (mainly

included somatosensory, somatomotor, and motor regulation systems)

of the HSM group were more similar to the LSM group at baseline

state than after the four-week social media task. This may be due to

the fact that the data of these two groups at baseline status were col-

lected over the same time period. Considering the subjects are all stu-

dents at the same grade, the similar states of their sensory and motor

systems may be due to the similar temperature, weather, academic

courses, or physical training plan during the period of experiment.

The current research has limitations. The sample was relatively

small; we will recruit more subjects in future studies. We only con-

ducted SCWT at the baseline for all subjects and found several corre-

lations between it and FC characteristics, however, the correlation

between SCWT changes and FC changes before and after the long-

term task may provide more direct evidence of training-induced plas-

ticity. As a result, future research should conduct all cognitive tests at
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baseline state and after the longitudinal task. Besides, a four-week

task may not be sufficient to fully understand the impact of social

media on human brain, and this may also be why the behavior perfor-

mance and paired t-test results of FC (intragroup comparison before

and after the task) were not significant. Even this difference could be

detected by our ISC methods, the effect size of group-level result was

small to medium. Consequently, a longer study period should be used

in future research. We showed that social media can cause cognitive

brain and FC changes, but this does not preclude the possibility that

individuals with certain biological traits are more likely to use social

media. Consequently, future neuroimaging research may combine

with genomic research may have to comprehensively illuminate this

issue. Because of the heavily imbalanced sex ratio in neuroimaging

cohort (only eight females in all 175 subjects), and only 3 of them

were willing to take part in the longitudinal research, only male sub-

jects were included to prevent the bias. It’s a tough decision, given

that females usually use social media more frequently than males

(Spiller, Ackerman, Spiller, & Casavant, 2019); therefore, it would be

our research target to include female subjects in the future.

5 | CONCLUSION

The impact of social media use on cerebral functional connectivity

changes is revealed by ISC method and longitudinal design, which pro-

vides guidance for clinical practice. ISC methods can be used in similar

domains.
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