
Age-related macular degeneration (AMD) is the leading 
cause of vision loss in the aging population in the Western 
world [1]. The prevalence of the disease is expected to 
increase in the coming years as people live longer, and this 
calls for a better understanding of the mechanisms involved 
in AMD. The early clinical presentation of the disease is 
altered pigmentation and/or yellowish subretinal deposits 
known as drusen in the macula. Over time, drusen may 
become confluent and lead to degeneration of retinal pigment 
epithelium (RPE) cells and/or photoreceptors (dry form). In 
the wet form of AMD, growth of choroidal blood vessels into 
the retina occurs, which is referred to as choroidal neovascu-
larization (CNV). Both forms of AMD can have damaging 
effects on central visual function [2].

The pathogenesis of AMD is still unknown, but multiple 
studies have linked cigarette smoking to an increased risk 

of AMD development [3-5]. A twofold to fourfold increase 
risk of AMD has been found in smokers as compared with 
nonsmokers [4-6]. Cigarette smoking has been associated 
with the development of both the wet form of AMD as 
suggested in the macular photocoagulation study of 1986 [7] 
as well as the late, dry form or geographic atrophy [2,6,8].

Although cigarette smoke contains over 4,000 chemicals, 
polycyclic aromatic hydrocarbons (PAH) are the most toxic 
substances known to be present in cigarette smoke. Chrysene 
is one of the PAHs found in cigarette smoke. Each cigarette 
delivers approximately 60 ng of chrysene (Speclab) [9]. 
However, it is difficult to ascertain the quantitative level of 
chrysene because of variability in smoking devices, such as 
cigarettes (which come in various sizes), cigars, pipes stuffed 
with tobacco or hookas/beedies (raw tobacco) used in old 
world cultures, frequency of smoking, average inhalation, the 
concentration ultimately inhaled, amount of chrysene (from 
smoke) reaching systemic circulation, and the quantity cross 
through the blood–retinal barrier to reach into the retina. In 
addition, chrysene is a soil and water contaminant and also 
occurs as a ubiquitous environmental pollutant from smoked 
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Purpose: This study evaluates the toxic effects of chrysene (a component from cigarette smoke) on Müller cells (MIO-
M1) in vitro and investigates whether the inhibitor lipoic acid can reverse the chrysene-induced toxic effects.
Methods: MIO-M1 cells were exposed to varying concentrations of chrysene with or without lipoic acid. Cell viability 
was measured by a trypan blue dye exclusion assay. Caspase-3/7 activity was measured by a fluorochrome assay. Lactate 
dehydrogenase (LDH) release was quantified by an LDH assay. The production of reactive oxygen/nitrogen species 
(ROS/RNS) was measured with a 2’,7’-dichlorodihydrofluorescein diacetate dye assay. Mitochondrial membrane poten-
tial (ΔΨm) was measured using the JC-1 assay. Intracellular ATP content was determined by the ATPLite kit.
Results: MIO-M1 cells showed significantly decreased cell viability, increased caspase-3/7 activity, LDH release at 
the highest chrysene concentration, elevated ROS/RNS levels, decreased ΔΨm value, and decreased intracellular ATP 
content after exposure to 300, 500, and 1,000 µM chrysene compared with the control. Pretreatment with 80 µM lipoic 
acid reversed loss of cell viability in 500-µM-chrysene-treated cultures (24.7%, p<0.001). Similarly, pretreatment with 
80 µM lipoic acid before chrysene resulted in decreased caspase-3/7 activities (75.7%, p<0.001), decreased ROS/RNS 
levels (80.02%, p<0.001), increased ΔΨm values (86%, p<0.001), and increased ATP levels (40.5%, p<0.001) compared 
to 500-µM-chrysene-treated cultures.
Conclusions: Chrysene, a component of cigarette smoke, can diminish cell viability in MIO-M1 cells in vitro by 
apoptosis at the lower concentrations of Chrysene (300 and 500 µM) and necrosis at the highest concentration. More-
over, mitochondrial function was particularly altered. However, lipoic acid can partially reverse the cytotoxic effect of 
chrysene. Lipoic acid administration may reduce or prevent Müller cell degeneration in retinal degenerative disorders.
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foods, coal gasification, road and roof tarring, incinerators, 
and aluminum production (IARC) [10,11].

In vitro and in vivo studies have shown that PAH can 
have chemical effects via formation of DNA adducts, which 
lead to cellular proliferation [12-14]. Chrysene or its deriva-
tive have mutagenic, carcinogenic [15], and genotoxic [16,17] 
effects in animal and cell culture studies. Chrysene caused 
alteration in immune function and CYP450 activity in adult 
male deer mice (Peromyscus maniculatus) [18]. In addition, 
chrysene showed toxic effects in rat liver epithelial cells [19] 
and in marine organisms [20].

In smokers, retinal tissues that can be damaged secondary 
to degeneration of RPE cells and Bruch’s membrane are the 
neurosensory cells (photoreceptors) and supportive glial cells 
[21,22]. Postmortem eyes of patients with AMD have shown 
death of photoreceptors, inner nuclear layer, and RPE cells 
[23]. As of yet, there are few studies on the effects of chrysene 
in human retinal cells. Our overall goal is to investigate the 
pathophysiology of cigarette smoke in AMD. Investigators 
have examined other smoking toxicants, such as benzo-e-
pyrene (BeP) [24,25] and nicotine [26] with and without 
various inhibitors that can reverse their toxic effects. Nico-
tine treatment showed a differential response of cells ranging 
from not being affected at all (ARPE-19 cells) to loss of cell 
viability via necrosis (human microvascular endothelial 
cells [HMVEC]) or cell damage through an oxidant pathway 
(R28 cells) [26]. Jia et al. reported that acrolein, a toxicant in 
cigarette smoke, causes oxidative damage and mitochondrial 
dysfunction in RPE cells which was exposed to the protective 
agent alpha-lipoic acid (LA) [27]. These findings underscore 
the challenges in developing effective inhibitor therapies to 
reverse smoking-related cell damage. We are now expanding 
our studies to include human retinal glial cells and their 
response to smoking-related compounds.

Inhibitors studied in our laboratory are memantine, 
epicatechin, resveratrol, and genistein, all of which showed 
significant inhibitory effects against smoking constituents 
and other toxins, such as ketocholesterol [25,26,28]. Recently, 
LA has shown great promise in protecting cells against 
various toxicants, including those from smoke [29,30]]. LA 
is a sulfur-containing compound found naturally in plants 
and animals. Dihydrolipoic acid is the reduced form, which 
is the form that exists intracellularly. It is present in mito-
chondria as an essential cofactor for pyruvate dehydrogenase 
and α-ketoglutarate dehydrogenase [31]. LA can scavenge 
hydroxyl radicals, singlet oxygen, peroxynitrite, and nitric 
oxide [31,32]]. In addition it can chelate several transition 
metal ions [31,33]], has antioxidant properties, and is reported 
to provide protection against oxidative injury in various 

disease process, including neurodegenerative disorders and 
diabetic syndrome [34,35]]. This study investigates whether 
chrysene causes injury, especially mitochondrial dysfunc-
tion, to Müller cells and whether LA would protect it from 
chrysene-mediated injury and mitochondrial dysfunction.

METHODS

Cell culture and treatments: The human Müller cell line 
(MIO-M1) [36] was grown in Dulbecco’s modified Eagle 
medium (D-MEM; 1×) high glucose SKU#10569–044 
(GlutaMAX-1 medium substituted on a molar equivalent 
basis for L-glutamine, 4500 mg/l D-glucose, 110 mg/l sodium 
pyruvate, 1× penicillin/streptomycin, and 10% fetal bovine 
serum). MIO-M1 cells that were used for these series of 
experiments were of passage 26 to 30. Cells were plated in 6-, 
96-, or 24-well plates (Becton Dickinson Labware, Franklin 
Lakes, NJ) for cell viability (5×105 cells/well), caspase-3/7 
activity (1.2×105 cells/well), lactate dehydrogenase (LDH; 
1.2×105 cells/well), mitochondrial membrane potential 
(1.2×105 cells/well), reactive oxygen/nitrogen species (ROS/
RNS) detection (1.2×105 cells/well), and ATP measurement 
(1.0×105 cells/well) assays and were incubated at 37 °C in 
5% CO2 until monolayer confluence was achieved. Cells 
were incubated further in serum-free culture medium for 24 
h to make them relatively nonproliferating. This was done 
to simulate the condition of natural human retina in which 
Müller cells remain in a nonproliferating phase and are not 
exposed to the circulation because of the blood–retinal barrier 
[24].

Exposure to chrysene: Chrysene was procured from Sigma 
Aldrich Inc. (St Louis, MO), and the stock solution (100 mM 
chrysene) was prepared by solubilizing 0.0228 gm of chry-
sene in 1 ml of dimethyl sulfoxide (DMSO). Thereafter, 
different dilutions were prepared by adding to the culture 
media. Cells were treated with 1,000 µM, 500 µM, 300 µM, 
and 100 µM chrysene for 24 h. Some other concentrations of 
chrysene (5, 10, 20, 30, and 40 µM) were also used to treat 
cells for 24 h or 7 days. Cells with equivalent DMSO (without 
chrysene) served as control cultures.

Cell viability studies: MIO-M1 cells were treated with chry-
sene in three different ways: (a) acute exposure with 10, 20, 
30, and 40 µM chrysene for 24 h, (b) chronic exposure with 
5, 10, 20, and 30 µM chrysene for 7 days, and (c) treatment 
with 100, 300, 500, and 1,000 µM chrysene for 24 h. The cell 
viability (CV) assay was performed as described by Naray-
anan et al. [37]. Cells were harvested from the six-well plates 
by treatment with 0.2% trypsin–EDTA and then incubated at 
37 °C for 5 min. The cells were centrifuged at 3920 × g for 
5 min and resuspended in 1 ml of culture medium. CV was 
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analyzed by a Vi-cell series cell viability analyzer (Beckman 
Coulter Inc., Fullerton, CA). The analyzer performs an 
automated trypan blue dye-exclusion assay and gives the 
percentage of viable cells.

Inhibition studies with lipoic acid: To examine inhibitory 
effects on loss of CV, cells were pretreated for 6 h with 
different concentrations of R-alpha-LA (Sigma Aldrich Inc.) 
and then replaced with chrysene+LA. LA was dissolved in 
distilled water and prepared as 10, 20, 40, 80, or 100 µM in 
culture media. Chrysene was added to the pretreated cells, 
which were then cultured overnight and analyzed for CV. The 
higher percentage of viable cells in the pretreated cultures 
indicated a greater inhibitory effect. Therefore, the optimum 
inhibitory effect of LA at a particular concentration was 
determined on the basis of percentage viable cells.

Caspase-3/7 assays: To verify apoptosis as a cell death mech-
anism, caspase-3/7 activity was detected using fluorescent-
labeled inhibitor of caspases apoptosis (FLICA) detection 
kits (Immunochemistry Technologies LLC, Bloomington, 
MN). The FLICA reagent has an optimal excitation range 
from 488 to 492 nm and an emission range from 515 to 535 
nm. Caspase-3/7 activities were measured using a fluores-
cence image scanning unit instrument (FMBIO III; Hitachi, 
Yokohama, Japan), which quantified apoptosis as the amount 
of green fluorescence emitted from FLICA probes bound to 
caspase-3/7.

At the designated time period, the wells were rinsed 
briefly with fresh culture media, replaced with 300 µl/well 
of 1× FLICA solution in culture media, and incubated at 37 °C 
for 1 h under 5% CO2. Cells were washed with PBS (8g NaCl, 
0.2g KCl, 1.15 g Na2HPO4, 0.2g KH2PO4 dissolved in one 
liter dionized water). Non-apoptotic cells appeared unstained, 
while cells undergoing apoptosis fluoresced brightly. The 
following controls were included: untreated MIO-M1 cells 
without FLICA to exclude auto fluorescence from MIO-M1 
cells; untreated MIO-M1 cells with FLICA for comparison 
of caspase activity of treated cells; tissue culture plate wells 
without cells with buffer alone to represent the background 
level; tissue culture plate wells without cells with buffer and 
DMSO to exclude the cross-reaction of FLICA with DMSO 
and culture media; MIO-M1 cells with DMSO and FLICA to 
account for any cross-fluorescence between untreated cells 
and DMSO. Quantitative calculations of caspase activities 
were performed with an FMBIO III (Hitachi). The caspase 
activity was measured as the average signal intensity of the 
fluorescence of the pixels in a designated spot (mean signal 
intensity [msi]).

DNA fragmentation assay: MIO-M1 cells (5×105) were 
plated overnight in six-well plates and then incubated for 

another 24 h with different concentrations of chrysene. DNA 
was extracted (QIAamp DNA Micro kit; Qiagen, Hilden, 
Germany) according to the manufacturer’s instructions. 
Briefly, the cells in the experiment were first lysed. The 
lysate was then transferred onto the kit columns. As the 
columns were centrifuged, the DNA present in the lysate was 
adsorbed onto-the silica gel membrane. While DNA remained 
bound to this silica membrane, the columns were made to get 
rid of contaminants by washing away with buffers AW1 and 
AW2. DNA was then eluted from the columns using distilled 
water. Samples were separated by electrophoresis on 3% 
agarose gels and were stained with 5% ethidium bromide. 
100 bp DNA step ladder marker from Promega was used, and 
images were captured with an FMBIO III (Hitachi).

Lactate dehydrogenase cytotoxicity assay: LDH is a cyto-
solic enzyme present in all mammalian cells and is released 
following damage of the plasma membrane. Therefore, LDH 
is the marker of cell death, and this assay is a test for cytotox-
icity in vitro. The activity of released LDH in culture super-
natant was measured with a commercial LDH-Cytotoxicity 
Assay Kit II (BioVision Research Products, Mountain View, 
CA). The basis of this kit is a coupled enzymatic reaction in 
which LDH present within the sample catalyzes the conver-
sion of lactate into pyruvate with the concomitant formation 
of nicotinamide adenine dinucleotide (NADH) from NAD+. 
The NADH is then used as a cofactor in the conversion of the 
tetrazolium salt, 2-p-iodophenyl-3-p-nitrophenyl tetrazolium 
chloride, into a red formazan product; this second reaction is 
catalyzed by the enzyme diaphorase, which is present within 
the assay substrate mixture. The absorbance of the formazan 
product is measured at 490 nm. Formazan concentrations 
are directly proportional to the concentration of LDH in the 
sample.

The LDH cytotoxicity assay was performed following 
the supplier’s protocol. Briefly, MIO-M1 cells were plated 
with 100 µl culture medium in each well in 96-well plates 
(in triplicate).There were untreated controls and background 
controls having the same volume of culture medium per 
well with and without cells, respectively. After chrysene 
treatment, the 96-well plate was shaken gently for even 
distribution of LDH in the culture medium. The cells were 
centrifuged at 58,800 × g for 10 min to precipitate the cells. 
Then 50 µl of supernatant was transferred into a new 96-well 
plate, which was treated with 100 µl/well of LDH reaction 
mixture (LDH reaction mixture was prepared by mixing the 
water-soluble terazolium (WST) substrate mix with LDH 
assay buffer). After 30-min incubation at room temperature, 
the LDH activity was quantified as absorbance values (optical 
density [OD]) at 490 nm by a multiwell spectrophotometer 
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(Victor 2 microplate reader; Perkin Elmer, Wellesley, MA). 
The plate was read at multiple time points until consistent 
readings were obtained. LDH activity in each cell lysate was 
expressed as percent increase in LDH activity with respect to 
equivalent DMSO control.

Detection of reactive oxygen/nitrogen species production: 
ROS/RNS production was measured with the fluorescent 
dye 2’-,7’-dichlorodihydrof luorescein diacetate assay 
(H2DCFDA; Invitrogen, Molecular Probes, CA) [38], which 
detects hydrogen peroxide, peroxyl radicals, and peroxyni-
trite anions. The cells were washed with sterile PBS and 
incubated with 500 µl of 10 µM H2DCFDA for 30 min at 
37 °C and again washed with PBS. The H2DCFDA (10 µM) 
was prepared by adding 2 µl of 5 mM (H2DCFDA) stock/
ml in serum-free culture media. The 5 mM H2DCFDA stock 
solution was prepared fresh by mixing 0.005 g of H2DCFDA 
in 2.05 ml of DMSO. ROS/RNS production was measured 
with the scanning unit (excitation 488 nm, emission 520 nm; 
FMBIO III; Hitachi).

Mitochondrial membrane potential assay: Loss of the ΔΨm 
is a hallmark for cellular apoptosis and was measured using 
the JC-1 mitochondrial membrane potential detection kit 
(Biotium, Hayward, CA). JC-1 contains a cationic dye 
(5,5′,6,6’-tetrachloro-1,1’,3,3′-tetraethyl-benzimidazolyl-
carbocyanine-iodide) that fluoresces red in the mitochondria 
of live cells. In dead cells the mitochondrial membrane poten-
tial collapses and the cationic dye remains in the cytoplasm 
and fluoresces green. Typically, the ratio of red to green fluo-
rescence is higher in healthy cells and comparatively lower 
in apoptotic cells.

The JC-1 assay was conducted as per the supplier’s 
instructions. Briefly, at the end of the 24 h of chrysene with 
or without lipoic acid exposure, the cells were rinsed with 
fresh media and incubated for 15 min with 500 µl/well of 
JC-1 reagent in culture media. Images were captured using 
an FMBIO III instrument (Hitachi) and the red/green fluo-
rescence ratios were calculated.

Measurement of intracellular ATP: Intracellular ATP 
level was measured using the luminescence ATP detection 
assay (ATPlite PerkinElmer Inc., Waltham, MA) as per the 
supplier’s instruction. ATPlite assay is based on production 
of light caused by the reaction of ATP with added luciferase 
and D-luciferin (just like the firefly luciferase). The emitted 
light is proportional to the ATP concentration. Cells were 
first plated in the 96-well culture plate. Cell lysis solution 
was added to the wells to lyse the cells and release the ATP. 
Exposure time was 5 min Luciferase and D-luciferin is then 
added to it. Exposure time was 5 min. Then the plate was 

dark adapted for 10 min. The luminescence is then measured 
with the reader.

ATP is a marker for cell viability. Its concentration in the 
cell declines rapidly when the cell dies either due to necrosis 
or apotosis. This assay is based on light production caused 
by the reaction of ATP with added luciferase and D-luciferin. 
The emitted light is proportional to the ATP concentration 
within certain limits.

Brief ly, MIO-M1 cells were first plated on 96-well 
plates (100,000 cells per 100 µl culture media/well) and were 
incubated overnight. They were pretreated with different 
concentrations of chrysene. To each well, 50 µl of mamma-
lian cell lysis solution was added, which opens up the cells 
allowing the intracellular ATP to be released. To each well, 
50 µl of ATPlite buffer (HEPES (4-(2-hydroxyethyl)-1-piper-
azineethanesulfonic acid) is a zwiterronic organic chemical 
buffering agent) was added, which contained luciferase 
and D-lucifern. The microplate was then shaken for 5 min 
at 6860 × g. The plate was covered with an adhesive seal, 
dark-adapted for 10 min, and luminescence was measurement 
using a luminescence microplate reader (BioTek Instrument, 
Inc., Winooski, VT). The ATP standard curve was made by 
plotting signal verses ATP concentrations. The signal for the 
unknown sample was obtained by using a linear regression 
equation.

Statistical analysis: Data were subjected to statistical analysis 
by ANOVA (Prism, version 3.0; GraphPad Software Inc., San 
Diego, CA). Newman–Keuls multiple-comparison test was 
done to compare the data within each experiment. A value 
of p<0.05 was considered statistically significant. Error bars 
in the graphs represent the standard error of the mean with 
experiments performed in triplicate.

RESULTS

Cell viability studies: MIO-M1 cells exposed to chrysene 20, 
30, 40, and 80 µM for 24 h did not show toxic effects on cells 
(Figure 1A). However, cells treated with 30 µM chrysene 
for 7 days (chronic exposure) showed significantly reduced 
cell viability (91.85±0.6%, p<0.05) as compared to controls 
(95.45±0.55%); treatment with 5, 10, and 20 µM chrysene 
for 1 week did not affect cell viability on MIO-M1 cells 
(Figure 1B). MIO-M1 cells showed loss of CV after expo-
sure to higher concentrations of chrysene for 24 h (Figure 
1C). The mean percentage of viable cells was 53.1±2.1 
(p<0.001), 66.1±1.9 (p<0.001), and 90.65±0.55 (p<0.05) at 
1,000, 500, and 300 µM chrysene, respectively, compared 
to DMSO-treated controls. At 100 µM chrysene, CV was 
96.3±0.5 (p>0.05). The mean percentages of cell viability 
of DMSO-treated equivalent cultures of 1,000 (95.56±0.5), 
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500 (96.15±0.65), 300 (96.45±0.6), and 100 (96.75±0.8) µM 
were similar to those of the untreated MIO-M1 cultures 
(98.5±1). Cell death induced by 1,000 µM chrysene was not 
protected by pretreatment with LA (40, 80, and 100 µM) at 
any of the studied concentrations (Figure 1D). The optimum 
increase in mean percentage of CV due to pretreatment with 
LA 80 µM was 4.85% (55.75±1.25, p>0.05) as compared 
to 1,000 µM chrysene alone (50.9±0.89). However, in the 
MIO-M1 cells exposed to 500 µM chrysene, pretreatment 
with 80 µM LA significantly increased the mean percentage 
of CV. The increase in mean percentage of CV was 24.7 
(88.2±1.5, p<0.001) as compared to 500-µM-chrysene-treated 
cultures (63.5±2). Therefore, in further experiments cells 
were pretreated with 80 µM LA to examine the pathways for 
protective effects.

Caspase-3/7 activity: Caspase-3/7 activity in MIO-M1 cells 
increased significantly after treatment with chrysene for 24 
h (Figure 2A). Cells treated with 1,000, 500, and 300 µM 
chrysene showed increase in mean fluorescence of 87% 
(28,066.70±698.4 msi, p<0.001), 83.7% (21,200±472.5 

msi, p<0.001), and 52.5% (7666.67±296.27 msi, p<0.01), 
respectively. Cells treated with 100 µM chrysene did 
not show a significant increase in caspase-3/7 activity 
(4666.667±120.7 msi, p>0.05) as compared to DMSO-
treated cultures (3500.0±173.2 msi). Values for untreated and 
DMSO-equivalent cultures of 1,000, 500, and 300 µM were 
3416.667±187.8 msi, 3663.33±144.9 msi, 3630.33±124.9 msi, 
and 3639±123.2 msi, respectively. Caspase-3/7 is the hall-
mark of apoptosis because it is the final common pathway of 
apoptosis. To verify apoptotic activity, DNA fragmentation 
analysis was performed showing DNA bands that laddered 
in approximately 200-bp increments, consistent with apop-
tosis (Figure 2B). Pretreatment with 80 µM LA resulted in 
75.7% (5466.6±578.3 msi, p<0.001) reduction in caspase-3/7 
activity as compared to the 500-µM-chrysene-treated culture 
(22,566.67±1476.8 msi; Figure 2C).

Lactate dehydrogenase cytotoxicity assay: Treatment of 
MIO-M1 cells with 1,000 µM chrysene for 24 h resulted in 
a 67% OD (1.95±0.04, p<0.001) increase in LDH activity as 
compared to the DMSO-equivalent culture (OD 0.64±0.045; 

Figure 1. The effects of chrysene 
on MIO-M1 cell viability. A: There 
were no changes of MIO-M1 cell 
viability after 24 h exposure to 
20, 30, 40, and 80 μM chrysene 
(Chry) compared to the dimethyl 
sulfoxide (DMSO)-equivalent 
controls. B: After exposure to 
30 μM chrysene for 7 days, the 
MIO-M1 cells showed a decrease 
of cell viability compared to 
DMSO-equivalent cells (*p<0.05). 
The cell viabilities in MIO-M1 
cells exposed to 5, 10, and 20 μM 
chrysene for 7 days were similar 
to DMSO-equivalent controls and 
untreated controls. C: There were 
significant decreases of MIO-M1 
cell viabilities after 24 h treatment 
with 1,000 μM (***p<0.001), 500 
μM (***p<0.001), and 300 μM 
(*p<0.05) chrysene compared 
to DMSO-equivalent controls. 
Cultures treated with 100 μM 

chrysene showed a similar level of cell viability to DMSO-equivalent controls. D: Some cells were pretreatment 6 h with varying concentra-
tions of lipoic acid (LA) and then exposed to 500 μM or 1,000 μM chrysene (Chry +LA) for an additional 24 h. Cell viability levels were 
not reversed by LA pretreatment in any of the MIO-M1 cells exposed to 1,000 μM chrysene. The loss of cell viability was reversed by 
pretreatment with 80 μM LA (p<0.001) and 100 μM LA (p<0.001) in the MIO-M1 cells exposed to 500 μM chrysene. Cell viability levels 
were not decreased in MIO-M1 cultures treated with 1,000 μM DMSO-equivalent, 500 μM DMSO-equivalent, or by exposure to 100 μM 
LA alone. Assays were performed in triplicate and the experiments repeated three times. Values are mean ± standard error mean (SEM).
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Figure 3). Chrysene at 500-µM (OD 0.76±0.04), 300-µM (OD 
0.75±0.05), and 100-µM (OD 0.64±0.03)-treated MIO-M1 
cells did not significantly increase LDH levels (p>0.05) 
compared to their equivalent DMSO controls (ODs 0.63±0.04, 

0.61±0.05, and 0.054±0.01, respectively). The OD value for 
untreated MIO-M1 cells was 0.5±0.02.

Reactive oxygen/nitrogen species measurement: MIO-M1 
cells treated for 24 h with 1,000, 500, and 300 µM chry-
sene showed significantly increased ROS/RNS levels as 

Figure 2. The effects of chrysene 
(Chry) treatment on caspase-3/7 
activity in MIO-M1 cells. A: 
The MIO-M1 cells treated 24 
h with 1,000 μM (***p<0.001), 
500 μM (***p<0.001), and 300 
μM (**p<0.01) chrysene showed 
significantly increased caspase-3/7 
activities compared to dimethyl 
sulfoxide (DMSO)-equivalent-
treated cells. The untreated cells, 
100-μM-chrysene-treated cells, 
and equivalent-DMSO-treated cells 
showed similar levels of caspase-
3/7 activity. B: Analyses of DNA 
fragmentation patterns for chry-
sene-treated MIO-M1 cells. After 
treatment with 100 μM chrysene 
(lane 2), the MIO-M1 cells showed 
DNA fragmentation at 200-base 
pair (bp) intervals compared to the 
untreated control cultures (lane 1) 
which is consistent with apoptosis. 
C: The protective effects of lipoic 
acid (LA) against chrysene induced 

caspase-3/7 activity in MIO-M1 cells. The MIO-M1 cells pretreated 6 h with 80 μM LA followed by the addition of 500 μM chrysene (500 
μM +LA 80 μM) for 24 h showed lower caspase-3/7 activity levels compared to the cells treated with 500 μM chrysene alone (***p<0.001). 
The untreated cells, DMSO-equivalent-treated cells (DMSO 500 μM), and cells treated with 80 μM LA alone (LA 80 μM) showed low levels 
of caspase-3/7 activity. Assays were performed in triplicate and the experiments repeated three times. The DNA fragmentation analyses 
were repeated twice. Values are mean±standard error mean (SEM). M, marker; bp, base pair.

Figure 3. The effects of chrysene (Chry) on lactate dehydrogenase 
(LDH) levels in MIO-M1 cells. The MIO-M1 cells treated 24 h 
with 1,000 μM chrysene showed increased LDH levels activity 
(***p<0.001) compared to cells treated with the dimethyl sulfoxide 
(DMSO)-equivalent. The untreated cells, 500 μM-chrysene-treated 
cells, 300-μM-chrysene-treated cells, 100-μM-chrysene-treated 
cells, and their DMSO- equivalent-treated cells showed low levels of 
LDH. Assays were performed in triplicate and repeated three times. 
Assays were performed in triplicate and the experiments repeated 
three times. Values are mean ± standard error mean (SEM).
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compared to the equivalent DMSO-treated cultures as 
shown in Figure 4A. The mean fluorescence values were 
15,766.67±721.88 msi (p<0.001), 13,566.67±578.31 msi 
(p<0.001), and 8166.66±176.38 msi (p<0.01) for 1,000, 500, 
and 300 µM chrysene, respectively, as compared to the 
respective DMSO-treated cultures. Cells treated with 100 µM 
chrysene did not show a significant increase in ROS/RNS 
level (3666.667±202.7 msi, p>0.05) as compared to DMSO-
treated cultures (2066.667±120.18 msi). Values for untreated 
cells and DMSO-equivalent cultures of 1,000, 500, and 
300 µM were 1860±124.9, 2366.67±233.3, 2166.667±176.4, 
and 2086.67+135.44, respectively. Pretreatment with 
80 µM LA resulted in an 80.02% (14,466.67±785.99msi, 
p<0.001) decrease in ROS/RNS levels as compared to the 
500-µM-chrysene-treated culture (2893.333±157.19 msi; 
Figure 4B).

Mitochondrial membrane potential assay: MIO-M1 cells 
treated for 24 h with 1,000, 500, and 300 µM chrysene showed 

significantly decreased ΔΨm as compared to their respective 
DMSO-treated cultures as shown in Figure 5A. The mean 
ΔΨm values were 1.27±0.15 (p<0.001), 2.2±0.23 (p<0.001), 
and 4.23±0.20 (p<0.05) for 1,000, 500, and 300 µM chrysene, 
respectively. Cells treated with 100 µM chrysene did not show 
a significant decrease in ΔΨm values (4.76±0.176, p>0.05) 
as compared to DMSO-treated cultures (5.33±0.145 msi). 
Values for untreated cells and DMSO-equivalent cultures of 
1,000, 500, and 300 µM were 5.5±0.12, 5.23±0.2, 5.30±0.17, 
and 5.31±0.19, respectively. Pretreatment with 80 µM LA 
resulted in an 86% (3.84±0.05, p<0.001) increase in the ΔΨm 
value as compared to the 500-µM-chrysene-treated cultures 
(2.06±0.17; Figure 5B).

Intracellular ATP levels: Intracellular ATP levels in MIO-M1 
cells decreased significantly after treatment for 24 h with 
1,000, 500, and 300 µM chrysene as compared to their 

Figure 4. The effects of chrysene (Chry) on production of reactive 
oxygen/nitrogen species (ROS/RNS) in MIO-M1 cells. A: The 
MIO-M1 cells exposed to 1,000 μM chrysene, 500 μM chrysene, 
and 300 μM chrysene had significantly higher ROS/RNS compared 
to MIO-M1 cells treated with the dimethyl sulfoxide (DMSO)-
equivalent (***p<0.001, ***p<0.001, **p<0.01, respectively). The 
untreated MIO-M1 cells, 100-μM-chrysene-treated cells, and 
DMSO-equivalent-treated cells showed low levels of ROS/RNS 
production. B: Cells that were pretreated 24 h with 80 μM lipoic 
acid (LA) and had 500 μM chrysene added to the cultures for 24 
h (Chyr 500 μM +LA 80 μM) showed ROS/RNS levels similar to 
the DMSO- equivalent-treated cultures showing a protective effect 
of the LA against chrysene induced ROS/RNS production. Assays 
were performed in triplicate and the experiments repeated three 
times. Values are mean±standard error mean (SEM).

Figure 5. The effects of chrysene (Chry) on mitochondrial 
membrane potential (ΔΨm) in MIO-M1 cells. A: The MIO-M1 cells 
treated 24 h with 1,000 μM (***p<0.001), 500 μM (***p<0.001), 
and 300 μM (*p<0.05) chrysene showed lower ΔΨm compared to 
the cells treated with the dimethyl sulfoxide (DMSO)-equivalent. 
The 100-μM-chrysene-treated cells and DMSO-equivalent-treated 
cells showed similar levels of ΔΨm as the untreated cells. B: When 
the MIO-M1 cells were pretreated for 6 h with 80 μM lipoic acid 
(LA) and then 500 μM chrysene was added to the cultures for 24 
h (Chyr 500 μM +LA 80 μM), the ΔΨm was restored partially 
compared to the 500-μM-chrysene-treated cells (**p<0.01). The 80 
μM LA did not have any affect on the ΔΨm compared to untreated 
or DMSO-equivalent-treated cells. The assays for each concentra-
tion were run in triplicate repeats and the experiments repeated 
three times. Values are mean±standard error mean (SEM).
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respective DMSO-treated cultures (Figure 6A). The mean 
percentage ATP levels were 41.0±2.08 (p<0.001), 55.3±1.2 
(p<0.001), and 83.77±2.05 (p<0.01) for 1,000, 500, and 
300 µM chrysene, respectively, as compared to the DMSO-
treated cultures. Cells treated with 100 µM chrysene did not 
show a significant increase in ATP levels (94.66±0.88%, 
p>0.05) as compared to DMSO-treated cultures (98.33±0.6%). 
Values for untreated cells and DMSO-equivalent cultures of 
1,000, 500, and 300 µM were 100±0, 97±1.15, 97.83±0.73, 
and 98.26±0.65, respectively. Pretreatment with 80 µM LA 
resulted in a 40.05% (91.5±1.15, p<0.001) increase in the ATP 
level as compared to the 500-µM-chrysene-treated cultures 
(51.0±1.73; Figure 6B).

DISCUSSION

In AMD, multiple cell types within the macula can be 
damaged. While the primary pathology involves the RPE 
cells, Bruch’s membrane, and the choriocapillaries [39], other 
cell types of the overlying neuroretina are also affected. In 
this study we wanted to focus on the retinal glial cells since 
they have an important supportive role for the health of RPE 
cells and the neuroretina. We used the human Müller cells as 
representative of the human retinal glial cells.

Human retina has three basic types of glial cells: 
Müller cells, astroglia, and microglia. Müller cells provide 
a supportive function to the neurons of the retina, including 
the photoreceptors, bipolar cells, and ganglion cells [40]. 
They also preserve the homeostasis of the retina by secreting 
growth factors and cytokines that maintain the outer blood–
retinal barrier [41]. In AMD, these dysfunctional Müller 
cells are seen as accumulated lipid-bloated microglial cells 
in the subretinal spaces [42] and appear on fundoscopy to 
be similar to the drusen. With loss of the RPE cell barrier, 
choroidal neovascularization can occur. The Müller cells may 
be involved indirectly in the pathology of AMD since they 
are supportive of the outer blood–retinal barrier, which is 
damaged both in the early and late stages of AMD.

Recent studies have reported the progenitor properties of 
Müller cells. Müller cells in isolation display features similar 
to retinal progenitor cells as they can renew themselves and 
generate all of the neuronal cell types characteristic of retina 
[43,44]. Following retinal degeneration, progenitor cells 
derived from Müller cells differentiate into several different 
retinal cell lineages, which can support retinal regeneration in 
vivo [45,46]. However, because they are limited in numbers, 
these new retinal cells cannot completely replace damaged 
tissues [45]. From the above discussion, it becomes obvious 
that damage to the Müller cells can have a dramatic impact, 

both quantitative and qualitative, on the overall functioning 
of the macula.

Müller cells have additional functions after retinal 
degeneration [47,48], including re-entering the cell cycle and 
producing neuroprotective growth factors. Once these cells 
are activated, they become involved in the formation of glial 
scars, which occurs in late phases of retinal degeneration [47]. 
The proliferation of Müller cells depends on the activation 
of the Wnt/β-catenin (Wnt) pathway and the sonic hedgehog 
(Shh) pathway [49]. The scar tissues seen clinically in some of 
the end stages of wet AMD are a direct result of this Müller 
cell activity.

We first investigated the effect of low concentrations of 
chrysene (20, 30, 40, and 80 µM) on the CV of MIO-M1 cells 

Figure 6. The effects of chrysene (Chry) on ATP production in 
MIO-M1 cells. A: The MIO-M1 cells exposed for 24 h to 1,000 
μM, 500 μM, and 300 μM chrysene showed significantly lower 
ATP levels compared to dimethyl sulfoxide (DMSO)-equivalent-
treated cells (***p<0.001, ***p<0.001, **p<0.01, respectively). 
The 100-μM-chrysene-treated cells had similar ATP levels to the 
DMSO-equivalent-treated and untreated cells. B: Pretreatment for 
6 h with 80 μM lipoic acid (LA) significantly reversed the decline 
in ATP production caused by treatment with 500 μM chrysene 
(***p<0.001). The untreated cells, DMSO-equivalent-treated cells, 
and 80-μM-LA-treated cells had similar ATP production levels. 
The assays for each concentration were run in triplicate and the 
experiments repeated three times. Values are mean ± standard error 
mean (SEM).
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after 24 h of exposure. Chrysene had no apparent effect on 
CV at these concentrations. However, there was a significant 
loss of CV after 7 days (chronic) treatment with 30 µM chry-
sene. This damaging effect on cells demonstrates that chry-
sene is toxic to MIO-M1 cells and could be a contributing 
factor to MIO-M1 cell degeneration due to cigarette smoking. 
MIO-M1 cells after 24 h of treatment with 1,000, 500, and 
300 µM chrysene showed a significant concentration-
dependent loss of CV as compared to their respective control. 
This kind of toxicity has also been shown in other cell types 
treated with other components found in cigarette smoke. Patil 
et al. have shown a significant decrease in CV in HMVEC 
and rat neurosensory retinal (R28) cells treated with 10−2 M 
nicotine [26]. The HMVEC cultures underwent nonapoptotic 
loss of cell viability and the R28 cells had decreased viability 
through an oxidative, noncaspase-dependent, apoptotic 
pathway [26]. In another study, the RPE cells were damaged 
through oxidative and mitochondrial dysfunction pathways 
after exposure to acrolein [27]. Another toxin, B(e)P, caused 
a dose-dependent decrease in the CV of ARPE-19 cells [24]. 
Both chrysene and B(e)P are PAHs, but B(e)P has five fused 
benzene rings, while chrysene has four fused benzene rings. 
Therefore, it is not surprising that both compounds would 
have damaging effects on cultured cells.

In the present work we elaborated on the mechanism of 
toxicity on MIO-M1 cells after treatment with 1,000, 500, and 
300 µM chrysene. MIO-M1 cells treated with these concen-
trations of chrysene for 24 h had significantly increased 
caspase-3/7 activity. DNA fragmentation analysis with 
500 µM chrysene also showed DNA banding that laddered in 
approximately 200-bp increments. Both assays are consistent 
with apoptosis as the mechanism of cell death. Necrosis also 
played a role in cell death but only at the highest concentra-
tion of chrysene (1,000 µM). Therefore, in this system both 
apoptosis and necrosis might be the major mechanisms of 
cell death. In other assays, MIO-M1 cells treated for 24 h 
with 1,000, 500, and 300 µM chrysene showed significantly 
increased ROS/RNS and decreased ΔΨm and ATP levels, 
suggesting involvement of oxidative stress and mitochondrial 
dysfunction in chrysene-induced toxicity. Mitochondria are 
the main generation site of oxidants and are also a target 
of oxidants [50]. The constant generation of superoxide 
and hydroxyl radicals by mitochondria causes continuous 
oxidative stress. Free radicals produced during oxidative 
metabolism [51] can damage mitochondrial DNA (mtDNA) 
[52] and may increase exponentially with age. As mtDNA 
damage accumulates, the electron transport chain is less 
efficient, leading to greater free radical (superoxide) produc-
tion [53]. The vicious cycle of oxidation, depletion of cellular 
antioxidants, such as glutathione [54], and exacerbation 

of mitochondrial damage may be responsible, in part, for 
cellular decay. With our data we speculate that damage to 
the mitochondria could be the initiating event in the cascade 
leading to eventual apoptotic or necrotic death.

Several studies have reported on caspase activation, 
necrosis, oxidative stress, and mitochondrial dysfunction as a 
cell-death mechanism. Human RPE cells after treatment with 
B(e)P underwent apoptosis as shown by elevated activities of 
caspase-3/7, caspase-8, caspase-9, and caspase-12 [24]. Müller 
cells following treatment with indocyanine green dye showed 
that cell death and morphological changes were concentration 
and time dependent [55]. Human monocytic leukemia U937 
cells after treatment with 2-tert-butyl-4-hydroquinone (a 
phenolic antioxidant used as a food additive) and 2-tert-butyl-
1,4-benzoquinone (its metabolite) showed apoptotic and 
necrotic effects as demonstrated by elevated caspase activi-
ties, DNA fragmentation, decreased ATP, and elevated LDH 
levels [56]. Renal epithelial cells after exposure to iodoacet-
amide (a prototypical alkyating agent) showed apoptosis 
and necrosis [57]. Human endothelial cells and monocytes 
exposed to tobacco smoke and benzo[a]pyrene smoke rapidly 
induced complex oxidant-mediated stress responses, loss of 
mitochondrial membrane potential, and apoptosis or necrosis 
at higher concentrations that caused cell death [58]. In another 
report, Müller cells treated with methanol showed toxicity by 
ATP depletion [59]. These studies indicate that the mode of 
cell death differs depending on the toxin used.

Besides exploring the toxic effects of chrysene on 
MIO-M1 cells, we have also studied the reversal of chrysene-
induced toxicity using LA. In some published reports from our 
laboratory, pretreatment of retinal cells with different inhibi-
tors before exposure to toxins have shown protective effect 
on cells. For example, pretreatment of ARPE-19 cells with 
memantine, resveratrol, and genistein significantly inhibited 
loss of CV after exposure to B(e)P. However, ARPE-19 cells 
pretreated with epicatechin did not significantly reverse 
CV [25]. In other studies using R28 cell cultures, increased 
caspase-3 activity caused by 7-ketocholesterol (toxic element 
from oxidized low-density lipoproteins) was significantly 
reduced after pretreatment with epicatechin [28]. The diver-
sity and disparity in the protection of retinal cells may be due 
to the nature of the toxin and type of cell lines.

MIO-M1 cultures pretreated with 80 µM LA showed 
reversal of caspase-3/7, ROS/RNS, ΔΨm, and ATP effects 
induced by chrysene. This finding strongly suggests that LA 
offers protection to cells against caspase-dependent oxida-
tive stress and mitochondrial dysfunction. LA is a natural 
metabolic antioxidant [60] that is easily absorbed, crosses the 
blood–brain barrier, and reaches peak levels in the central 
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nervous system, retina, and peripheral nerves within 0.5 h 
of oral administration [61]. Inside the mitochondria of the 
cells, mitochondrial α-keto acid dehydrogenase complexes 
[61] reduce LA into another more potent antioxidant—dihy-
drolipoate. Both LA and especially dihydrolipoate regenerate 
other antioxidants, such as vitamin C and vitamin E, through 
redox cycling and raise intracellular glutathione levels [61]. 
LA administration increases intracellular glutathione levels 
by 30–70% in cell culture and in vivo studies [62,63]. LA 
targets mitochondria, protects mitochondria from oxidative 
damage, and improves mitochondrial function. The mecha-
nism of protection includes preventing the generation of 
oxidants, scavenging free radicals and iron chelating [64], 
inhibiting oxidant reactivity, elevating cofactors of defective 
mitochondria to enhance antioxidant defense system [65], 
and protecting enzymes from further oxidation. LA repairs 
oxidative damage to lipids and proteins/enzymes through 
activation of the phase 2 enzyme system and increases mito-
chondrial biogenesis and improves its function [51].

LA is available as a food supplement in grocery stores 
in Europe and the USA. LA is clinically safe and is consid-
ered to have a beneficial effect in several disorders, such as 
cerebral ischemia–reperfusion, excitotoxic amino acid brain 
injury, mitochondrial dysfunction, diabetes and diabetic 
neuropathy, inborn errors of metabolism, and other causes of 
acute or chronic damage to brain or neural tissue [61]. Several 
studies using cell culture and disease models in animals 
have shown favorable effects of LA. LA added to cultural 
rat hippocampal neurons reversed cell damage induced by 
glutamate [66]. Pretreatment of human fetal retinal pigment 
epithelial cells with LA blocked the ROS production and 
apoptosis and increased the mitochondrial membrane poten-
tial due to a chemical oxidant, tert-butylhydroperoxide [67]. 
Treatment with LA, creatine, nicotinamide, and epigallocat-
echin gallate protected ganglion cell death due to apoptosis, 
oxidative stress, and mitochondrial dysfunction in rats [68]. 
Treatment with thioctic acid and dihydrolipoic acid demon-
strated neuroprotection against N-Methyl-D-aspartic acid 
(NMDA) and malonic acid lesions of striatum in rats [69]. 
LA showed caspase-dependent and -independent inhibition 
of cell death against pilocarpine-induced seizures in rats [70]. 
LA demonstrated anti-apoptotic and neuroprotective effects 
on spinal cord ischemia–reperfusion in rabbits [71]. LA 
showed protective effects in D-galactose-induced memory 
loss, neurodegeneration, and oxidative damage in mice [72].

Administration of LA with other agents has shown 
synergistic effects in animals as well as in patients with 
Alzheimer disease (AD). Co-administration of LA and 
vitamin C inhibited oxidative stress in rats exposed to chronic 

arsenic toxicity [73]. LA given with vitamin E has shown 
additive effects against lipid peroxidation in several patho-
logical models for neurologic functions, glial reactivity, and 
neuronal remodeling in rats [74]. Administration of LA and 
N-acetyl cysteine has shown decreased mitochondrial-related 
oxidative stress in fibroblasts from AD patients [75]. It has 
been suggested that combined therapy of LA with antioxi-
dants could greatly diminish the progression of AD disease 
[76,77]. Reports from 43 patients that were observed for 48 
months provided supportive findings that LA treatment could 
provide neuroprotection for AD patients [78].

LA has been shown to be beneficial in some eye disor-
ders and diabetes models. Long-term administration of LA 
inhibited diabetic retinopathy by reversing mitochondrial 
dysfunction and retinal capillary cell death in rat [79,80]. The 
combination of LA with lutein, zeaxanthin, and l-glutathione 
protected photoreceptor degeneration in animal models 
for retinitis pigmentosa [81]. LA, acetyl-L-carnitine, nico-
tinamide, and biotin have been found to improve immune 
dysfunction in type 2 diabetic rats [82]. The numerous reports 
detailed above are consistent with our findings that LA can 
be protective against chrysene-induced toxicity in MIO-M1 
cells.

In summary, based upon our data we suggest that the 
mechanism of cell death of MIO-M1 cells after chrysene 
treatment involves both apoptosis and necrosis. Lipoic 
acid, a natural antioxidant, could reverse chrysene-induced 
apoptosis, oxidative damage, and improve mitochondrial 
function in Müller cells. Therefore, administrating LA and 
its derivatives to aged people may be an effective strategy 
for improving or delaying neurodegenerative disorders, such 
as AMD.
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