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The recovery of exfoliated cells from biological fluids is a noninvasive technology which is in high demand in the field of
translational research. Exfoliated epithelial cells can be isolated from several body fluids (i.e., breast milk, urines, and digestives
fluids) as a cellular mixture (senescent, apoptotic, proliferative, or quiescent cells). The most intriguing are quiescent cells which
can be used to derive primary cultures indicating that some phenotypes retain clonogenic potentials. Such exfoliated cells are
believed to enter rapidly in anoikis after exfoliation. Anoikis can be considered as an autophagic state promoting epithelial cell
survival after a timely loss of contact with extracellular matrix and cell neighbors. This paper presents current understanding of
exfoliation along with the influence of methodology on the type of gastrointestinal epithelial cells isolated and, finally, speculates
on the balance between anoikis and apoptosis to explain the survival of gastrointestinal epithelial cells in the environment.

1. Introduction

The recovery of exfoliated cells from biological fluids is a
non-invasive technology which is in high demand in the
field of translational research as well as during long-term
experiments designed to minimize the sacrifice of long-lived
or precious animals. Exfoliated epithelial cells can be used
as surrogate for tissue biopsies in predicting changes in gene
expression, DNA methylation, DNA damage, protein expres-
sion, and accumulation of dietary components [1, 2]. Exfoli-
ation has also been described as an active biochemical proc-
ess linked to the homeostasis of gut epithelium [3–6]. It is
believed that epithelial cells, loosing contact with companion
cells (like fibroblasts) as well as extracellular matrix, enter
anoikis [7]. Recent in vitro models are opening new avenues
to conceptualize the exfoliation of gut epithelia in order to
explain this highly context-dependent phenomenon. Loss of
extracellular matrix contact induces autophagy in normal
epithelial cells, and autophagy promotes the survival of de-
tached cells during both anoikis and lumen formation in
3D epithelial cell culture [8, 9]. Under these assumptions,
exfoliation may be understood as a natural process to remove
external cells from the luminal surface of an epithelium.
Consequently, exfoliation may have a physiological role by

allowing the formation of a lumen, preserving the epithe-
lium’s architecture, and, we can surmise, by providing suffi-
cient flexibility to preserve the physical integrity of epithelia
and allow its growth. In three-dimensional epithelial cell cul-
tures, both autophagy and apoptosis are observed during
lumen formation [8, 9]. By loosing contact with the original
mucosa, exfoliated epithelial cells have to activate autophagy
as a survival mechanism to endure starvation. Starving cells
are degrading cytoplasmic material to generate both nutri-
ents and energy [10]. Indeed, quiescent exfoliated epithelial
cells without signs of apoptosis can be recovered under
specific clinical conditions in gastric fluid aspirates [4] or by
suction from breast glands [11, 12] or extensive rinsing at the
end of routine colonoscopy [13]. Many exfoliated quiescent
epithelial cells can be cultured suggesting that detachment-
induced autophagy contributes to the viability of these cells.
However, the survival of quiescent epithelial cells outside
the tissue structure is highly variable. Human mammary ep-
ithelial cells die after 24–48 hours of detachment; certain
epithelial cells, notably rat intestinal epithelial cells, perish
within a few hours following substratum detachment [9, 14].

This paper presents current understanding of exfolia-
tion along with the influence of methodology on the isola-
tion of exfoliated gut epithelial cell phenotypes and, finally,
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Figure 1: The concept of epithelial functional unit. The flow chart summarizes the cellular status of epithelial cells recovered by dietary
palmitate on intestinal renewal (left panel) or by cycles of fasting/refeeding on gastric exfoliation (right panel). As shown in central panel,
epithelial cell functional units are organized in four compartments (stem cells, proliferative, terminally differentiated, senescent). The
isolation of exfoliated cells is dependent on the techniques (manual or induced by some stress), the epithelium itself, the health status
and the species. A major difference in the autophagy/phagocytosis process of senescent cells has been found between rat or mouse-exfoliated
colonocytes which are lost in the lumen and human colonocytes which are rarely lost in the lumen but actively recycled by neighboring cells
[15]. Quiescent epithelial cells can be isolated from different body fluids (breast milk, urines, and digestives fluids). They are believed to
enter rapidly in anoikis after exfoliation. Anoikis is considered as an autophagic state promoting epithelial cell survival after a timely loss of
contact with extracellular matrix and cell neighbors [16]. Primary cultures can be derived from breast milk indicating that some phenotypes
retain clonogenic potentials. Molecular components of circadian clocks are detected in these cells like in any other somatic cells and could
provide molecular data on the expression ratios between these proteins provided sampling procedures are standardized. Further work is
needed to check for any different rates of exfoliation according to the time of day, seasons, and to differences in phenotypes.

speculates on the balance between anoikis and apoptosis to
explain the survival of epithelial gut cells in the environment.

2. Exfoliation of Epithelial Cells:
A Source of Reliable Biological Information
on the Mucosa Physiology?

Exfoliation can be understood as a natural process to pre-
serve tissue architecture. Following that first point of view,
exfoliation is a loss of cellular material retaining the basic
cytological features of typical cells (plasma membrane, cy-
toplasm, and nucleus). Exfoliated epithelial cells can be ob-
tained from a wide range of mucosae whose line body pas-
sages and cavities communicating directly or indirectly with
the exterior like mammary glands, oral, bronchial, urothelial,
or gastrointestinal epithelia. Epithelia can be classified as
simple cylindrical cell monolayers like colon or pseudostrat-
ified like urothelium [17]. According to histology, epithelia
are organized in functional units containing different cellular
compartments (stem, proliferative, mature, or functional
and senescent) as shown in Figure 1. These functional units
are always at the interface with the environment. At a given

time point, a mucosal epithelium is supposed to loose differ-
ent categories of cells by different mechanisms of exfoliation.
However, the cell turnover of these epithelial cells is driven
by a delicate balance between cellular loss and proliferation.
Proliferation is running on two cellular compartments, the
proliferative cells capable of rapid mitosis to amplify tissue
regeneration and the stem cells which are giving rise to all
phenotypes by asymmetric mitosis. The speed of mitosis in
proliferative compartment is dependent on cellular loss at the
top of the structure and on tightly regulated cell migration
along the functional units [18]. Cell migration in the small
and large bowels of mice shows a strong circadian rhythm,
with cell velocity maximal at 9 a.m. and minimal at 5 p.m
[19]. Other rhythms which could be controlled by circadian
clocks have been observed in the intestine like cellular pro-
liferation [20, 21] or apoptosis [22]. Cell proliferation is also
believed to be under the control of clockwork not only in
hepatocytes [23] but also along the rat’s gut [24]. Seasonal
rhythms of proliferation have been described in adult rats
[25, 26]. Circadian as well as seasonal rhythms in cell pro-
liferation seem clearly relevant to the recovery of exfoliated
quiescent cells retaining specific and functional biomarkers.
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However, there is a second point of view where exfoli-
ation is a loss of cells in the environment due to external
mechanical forces like brushing or friction. Such forces are
deeply altering the epithelium architecture but allow to yield
rapidly high amounts of epithelial cells retaining phenotypes
and physiological status as close as possible to the mucosal
cells remaining in the epithelium. Manual exfoliation has
been reported with brushing or scraping technique on oral
epithelium of cheek or tongue [27], cervical [28], or rectal
swabbings [29], airway epithelial cells in sputum and buccal
mucosal cells obtained by rinsing the mouth or chewing-
gum (betel chewers—[30]), esophageal cells [31], mammary
by nipple aspirate, ductal lavage Klein et al., [12], breast
milk [11], or bladder urothelial cells present in urine samples
[32, 33]. Manual exfoliation has also been proposed as a way
to recover intact, normal epithelial cells on tissue biopsies
made on colon resection [34, 35]. Some device has also been
designed to recover surface exfoliated cells of human rectal
mucosa by a minimal invasive scraping [36]. The technique
partially purifies the cell preparation by taking advantage of
the cell’s inherent biology. Epithelial cells remained in small
groups or sheets, detached from any stromal elements that
may have been scraped off [34]. This observation is also true
for gastric epithelial cells [4]. The problem is that in most
clinical situation, there is no direct access to the mucosa and
the technique simply cannot be used.

Consequently, we may wonder whether some useful bio-
logical information can be recorded from relatively low num-
bers of cells, isolated as a mixture of cellular phenotypes with
different physiological states? Magnetic beads and antibodies
are well-known systems to recover low numbers of epithelial
cells in biological fluids or to recover highly purified ep-
ithelial phenotypes. Antibodies against human cell surface
antigens like anti-Hep [48], or antiepithelial Surface marker
[4] from an original antibody described by Moldenhauer
et al., [49] or anti-Ber-Ep4 [34, 35] from an original antibody
described by Sheibani et al. [50] labeled with paramagnetic
particles are used to capture and to purify epithelial cells.
Viability of recovered cells by this exfoliation/enrichment
method as well as by other similar techniques is on average
between 90 and 100% by the Trypan blue exclusion assay.
However, in our experience, shieving is necessary to perform
immunocapture. With samples containing sheets of 5 to 30
cells, shieving or Percoll gradients are not adapted as this pre-
cious cellular material is discarded by the purification proc-
ess. In addition, microbial contaminations are not easily
removed by such density gradient methods because microbes
are tightly associated with cells. Even with the manual ex-
foliation technique [35], the exfoliated cell populations may
contain other cell types, most notably lymphocytes and plas-
ma cells. It should be underlined that the problem of cross-
contaminations by other sources of exfoliated epithelial cells
like breast cells from the milk with gastric cells of lactating
infants or exfoliated cells from manipulators is particularly
difficult to ward off calling for the development of biomark-
ers of tissue origin which can guarantee both the cellular
origin and the affordability of testing.

The next section discusses recent works in 3D mammary
reconstruction and the functioning of acini which have shed

new light on the capacity of surface epithelial cells to survive
outside their epithelium. Laboratory rodent models are also
discussed as they open the possibility to induce exfoliation by
nutritional manipulations.

3. In Vitro and Animal Model to
Study Exfoliation

3.1. In Vitro Model to Study the Loss of Contact of Epithe-
lial Cells with Extracellular Matrix and Cellular Neighbors.
Exfoliated epithelial cells are in a situation similar to freshly
isolated primary cells. Primary cells are inoculated as single-
cell suspensions or small clumps of cellular aggregates. These
cells have also lost contact with the tissue architecture (com-
panion fibroblasts, epithelial cell neighbors, and with the
extracellular matrix), as well as with the nervous regulation
or the blood nutriments. From tissue cultures, we know
that a molecule of nutriment has to be within 50 nm away
from a single cell to be accessible. So even if some cells are
exfoliated in a nutritious matrix (milk for instance), they
may have to trigger a survival mechanism. Some set of genes
are progressively turned-down like clock genes [51], but in
this particular situation, they can be reinduced under specific
stimulation in culture. Over the years, the conditions of cul-
ture have been adapted to mimic the tissue architecture by
creating three-dimensional (3D) environment.

Recent works have shown that autophagy can be ob-
served during lumen formation in 3D cell cultures in vitro.
The MCF-10A cells are a nontransformed human mammary
epithelial cell line, which can form spherical structures
(called acini) in which a layer of polarized epithelial cells
surrounds a hollow lumen, mimicking the glandular epithe-
lium in vivo [8, 9]. The lesson we can learn from this 3D
reconstruction of mammary gland is that epithelial cells are
able to flexibly leave or reenter an epithelium. The property
is useful for tissular growth as well as to heal rapidly microle-
sion in the epithelium cell lining. Epithelial cells exfoliated
in milk are able to withstand lumen environment. Their
biochemical state should be close to the state of cells having
lost contact with the 3D reconstructed gland. In the next
section, we present recent works in laboratory rodents which
have shown that this capacity of an epithelial cell to adapt
to changing environmental conditions is highly context de-
pendent.

3.2. Animal Models to Study Exfoliation. Laboratory rodent
models have been developed to study the inducing effect of
nutrient intake on the exfoliation of epithelial cells in the
digestive lumen. On adult rats fastened for 24 hours and
refed for one hour, the feeding intake induces exfoliation
of quiescent parietal cells at the top of the gastric gland
through an unknown exfoliation factor [5]. Under these
conditions, stem cells located in the neck region of gastric
glands are believed to be recruited actively to repopulate the
surface of the adult rat stomach. On lactating rat pups, we
obtained similar results by fastening the pups for 5 hours and
allowed them to be reunited with their mother for one hour
before sacrifice [43]. By contrast, on adult laboratory mice,
fatty acids (like palmitate) are inducers of intectin, a protein
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implicated in the exfoliation of apoptotic cells at the top of
the villus of the small intestine within an hour after meal
[3]. These models of nutritional manipulations to induce
exfoliation on small intestine of mice [3] or gastric mucosa of
rats [5] indicate that the mechanism of exfoliation is highly
context dependent, but they also open the possibility to
develop in vivo studies of anoikis and autophagy in relation
with the functioning of peripheral circadian clocks. The
disponibility of laboratory rodent models is of paramount
importance to develop in vivo studies on anoikis and its con-
nection with molecular circadian clocks to evaluate the sta-
bility of chronobiological molecular information in exfoli-
ated cells. The proof that exfoliation of quiescent cells is fol-
lowing a circadian rhythm is still missing, probably because
the set of physiological parameters leading to the induction
of active exfoliation is difficult to handle and the interpreta-
tion of data obtained from manual exfoliation is also highly
context-sensitive.

In conclusion, exfoliation is a broad term recovering
many different biological or experimental situations but as
illustrated by the next section, progress in the understanding
of the delicate balance between autophagy and apoptosis will
help scientists to design new bioassays tailored for specific
clinical situations.

4. Stability of Biological Information in
Exfoliated Epithelial Cells

Exfoliated cancerous cells of epithelial origin have been the
first to be used to help design noninvasive screening assay of
cancerous patients [52, 53]. The relatively high loss of can-
cerous epithelial cells by patients as well as the stability of
molecular information (genetic alterations related to colon
cancer, for instance) have helped to establish the methodol-
ogy.

Recently, Chapkin et al. [6] have developed and patented
a transcriptomic approach to explore exfoliation in stools
of infants as well as in adults [6]. The weak point of this
approach is that the morphological information of the cell
population is lost during the extraction process of mRNA,
and there is no possibility to check for the exact cellular
origin of these molecules. Exfoliation in stools is still highly
debated; some visual proof of typical intestinal cells have
been published [4, 48], but in my experience if whole crypt
material or typical colonocytes can be found, most of the
time the criticism of Loktionov [29] that these cells cannot
be distinguished from epithelial cells of the anal zone is
correct. The proof of similarity between exfoliated epithelial
cells with the ones remaining in the mucosa will be probably
easier to perform on gastric epithelium following the seminal
work of Aoyama et al. [5]. However, the detection of proteins
and structural elements will remain possible only in a limited
number of clinical situations narrowing the possibility of
using exfoliated epithelial cells as indicator of good health.

Most biological information is highly labile and is rapidly
lost after exfoliation. However, a better understanding of the
key factors allowing the cellular survival outside the tissue
architecture will open new avenues to derive useful screening

assays from clinical material. The detachment of epithelial
cells from the tissue architecture triggers both pro- and anti-
apoptotic signals, such as nuclear factor kappa-B and inhibi-
tor of apoptosis protein family members; these antiapoptotic
mechanisms presumably delay the onset of apoptosis and
allow cells to survive [54–56]. The balance between these sig-
nals and the duration of detachment determine further fate
of these cells. Antiapoptotic signals presumably delay the
onset of anoikis, allowing cells to survive provided that they
can reestablish extracellular matrix contact in a timely man-
ner [16]. In cells having lost contact with tissular structure,
autophagy corresponds to the recycling of cellular material as
well as to the cell capacity to mobilize reserves during periods
of starvation. Autophagy is a biochemical pathway allowing
survival during fasting period which can be stopped at the
organism level to prevent self-digestion. There are three main
forms of autophagy: microautophagy, macroautophagy, and
chaperone-mediated autophagy [57–59]. In macroautopha-
gy, a portion of the cytosol or organelles are sequestered
in a double-membrane-bound vesicle, the autophagosome
(Figures 2(a) and 2(b)). A core molecule in autophagy regu-
lation is the kinase mammalian target of rapamycin (mTOR).
By sensing signals that monitor nutrient levels, mTOR can
trigger protein translation by specific phosphorylation of the
ribosomal protein S6 kinase (pS6K) [60].

Recent works on the molecular pathway regulating mi-
crotubule-associated protein light chain 3b (LC3b) and au-
tophagy [38] support the idea that regulation of autophagy
is interconnected with regulation of apoptosis. LC3b may
regulate the extrinsic apoptosis pathway in the lung through
direct interactions with caveolin-1 and Fas [61]. Implication
of Beclin-2 modifying factor and the antiapoptotic proteins
of the Bcl-2 family in the anoikis process have been proposed
to play a central role in the survival of human intestinal
epithelial cells [62]; this work partly explains, at the mo-
lecular level, the low survival rate of exfoliated epithelial
intestinal cells. However, autophagy has been demonstrated
to occur in vivo in the surface epithelial cells of neonatal
small intestine of piglets [63]. In contrast with the data
of Hausmann et al. [62], the reports of Nair et al. [64]
and Chandel et al. [65] are indicating that high amount of
living colonocytes can be recovered from stools (5 × 104–
2×106 cells/g of stool). From a physiological point of view in
infants as well as in adults, some epithelial cells may survive
in a state of macroautophagy close to the surface of the epi-
thelium up to finding their way back in the cellular lining. A
device can then easily remove such cells (i.e., exfoliate these
cells) by mechanical forces. In theory, the physiological status
and the genetic profile of these epithelial cells should be close
to the ones at the surface of the mucosa.

At the intracellular level, autophagosomes are connected
to mTOR and CLOCK pathways, and if needed to apoptotic
pathways. Autophagy can be described in amino-acid-free
situations (Figure 2(a)) as well as in glucose-free situations
(Figure 2(b)). The balance is specially relevant in protein
kinetics in preterm infants where amino acids are provided
by intravenous solutions [66]. The autophagic stage is prob-
ably deeply affecting the cellular metabolism. In mammals,
autophagy undergoes rhythmic variation in accordance with
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Figure 2: From a physiological point of view, exfoliated epithelial cells resulting from nutritional induction or mild stress are in anoikis by
activating a survival mechanism partly using the molecular paths of macroautophagy. Macroautophagy, here referred to as autophagy has
been described in amino-acid-free (a) as well as in glucose-free (b) situations. Autophagosome elongation is triggered by lipid modification
of LC3 (by phosphatidylethanolamine, PE). The first pathway is linked to growth factors and nutrient-sensing pathways (a), and the second is
related to energy-sensing pathway (b). Detachment of extracellular matrix induces both pathways and may activate also the integrated stress
response through PERK and eIF2alpha, [16] as such the situation of exfoliated cells is complex and needs more biochemical description
to delineate stable molecular tags, useful in assay design, from the labile ones. The experimental starvation of primary or cancerous cells in
culture consists in exposing cells to eagle minimum essential medium without serum for few hours. Under these conditions, amino-acid-free
situations have been described [37, 38]. Phosphorylation involving Ulk1 in AMPK regulation has been demonstrated [39]. Survivin has also
been involved in the inhibition of the conversion of LC3-I to LC3-II form (i.e., acting as an inhibitor of autophagosome formation—[40])
but in cancer cells or stem cells. However, the role of survivin in the turnover of adult cells is still debated [41, 42]. The expression of survivin
has been reported in gastric parietal cells both in adult rat and human [38]. Gastric exfoliated epithelial cells of preterm infants do express
high amount of survivin suggesting a crucial role of this molecule in the survival of these cells [43, 44]. Glucose starvation occurs at birth
[45, 46]. Along with cytokines and drugs, nutritional factors are now considered to be able to alter the balance between cellular survival and
death [47].
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the feeding cycles. The relationship between autophagy and
circadian rhythms has been proposed [67], but the molecular
link between these two phenomena is not yet known. Cells
have to process diverse signals such as temperature, pH,
and nutrient concentrations in order to maintain a normal
physiology. In vivo, cells are believed to use clock genes to
organize and adapt cellular metabolisms and coordinate
three-dimensional macromolecular organization (their phe-
notype) in a noisy molecular environment (molecular signals
criss-crossing in and between cells and irrelevant chemical
messages). Exfoliated epithelial cells in anoikis can be seen
as a way to obtain chronobiological information dating back
to the time of cells leaving the top of the functional units.
Signals encoded in the amplitude domain are predominantly
based on concentrations of signaling molecules, a parameter
difficult to measure on exfoliated cells in anoikis without
proper normalization related to the single cell level on highly
purified cellular phenotypes. In addition, some highly labile
biochemical modifications like phosphorylation are probably
lost during the storage of biological fluids and in the isolation
process or can be made irrelevant to the pathophysiology of
the mucosa due to the turnover of the signal by the cellular
machinery. However, addition of phosphatase inhibitors to
cell extracts may preserve period proteins [68]. Significant
improvements in the quality of cellular extracts may be
achieved by using extraction buffers suitable to preserve
clock gene products. The biological information encoded in
the frequency domain of an oscillatory signal can be trans-
mitted as concatenated signals with multiple biologically sig-
nificant signals to gene behind the regulatory sequence
within the promoter. On transgenic mammals, oscillations
can be measured by recording rhythms of light emissions by
cells in which the promoter of some clock gene is linked to
a luciferase reporter. On human or nontransgenic mammals,
oscillations per se cannot be measured in absence of spectro-
fluorimetric methods applicable on freshly recovered living
cells, but indirect evidence of gene-circuit activation may
be recovered. Long-lasting or resilient information may be
accessible either through (1) the machinery of transcription
at the site of fixation on the DNA of the cells or (2) by the
histone code as these epigenetics modifications are believed
to be acquired with a stability related to the original tissue
([69] and to the time of day [70]).

The chronobiological information that we can extract
from exfoliated epithelial cells depends on the techniques
used to isolate cellular material or the manipulation of phys-
iological parameters (Figure 1) and on the affinity of interac-
tions of clock molecular components with stable molecules
like DNA or the persistence of the physiological effects that
they are inducing. We may speculate that quiescent cells like
epithelial gastric cells are retaining fully functional clocks,
that is, consistent information with their time at exfoliation
and subsequent cell survival out of the organism. The induc-
tion of gastric cell exfoliation by nutrient cycle developed
in rats [5] that we have adapted on lactating rat pups
[43] can be used in the future to address questions about
the stability of clock information during anoikis. Exfoliated
epithelial cells can be followed by microscopic examination
from the initial step of loss of contact at the mouth of

the gastric gland to the recovery of cells in the stomach
lumen. In addition, the model is clearly relevant to clinical
situation in which patients are equipped with nasogastric
tubing. However, there may be tissue-specific differences in
the molecular composition of the circadian clock, and clock
components that have subtle effects on the central clock
function may play a more prominent role in the regulation of
peripheral clocks. Yagita et al. [71] have used spontaneously
immortalized mouse embryo fibroblasts to explore the
main clock components (proteins and mRNA) suggesting
that peripheral clocks in cultured cells may be similar in
composition and regulation as central clock, but all these
components are not always present in cells depending on
their tissular origin. The most striking example is the appar-
ent redundancy of clock with its homolog npas2, which are
largely equivalent molecules with strict structural differences
[72, 73]. Exfoliated epithelial cells after loosing contact with
extracellular matrix are surviving by activating autophagy.
Three main physiological pathways have been described
associated to the regulation of autophagy: AKT (energy sens-
ing), EGR-R (growth factor sensing), and bcl-2 (stress-
related programmed-cell death). According to Gan et al.
[74], mTOR downregulation is also observed following ex-
tracellular matrix detachment. Clock components are proba-
bly also altered during this process, but there are no data on
the relation between autophagy and clock regulation.

By contrast, explants of tissue isolated from transgenic
rat for period1 gene is giving some chronobiological infor-
mation about the chaotic expression of this gene under the
drastic external conditions of explantation [75]. Recording of
luminescence emitted in vitro by the explants maintained in
classic tissue culture conditions (37◦C, 5% CO2) has clearly
shown that the chaotic light emissions by the transgene sys-
tem stands up to 12–14 hours, thereafter the rhythms of light
emissions by liver explants are organized according to an
oscillatory model reminiscent of period1’s in vivo oscillations
(as of Stokkan et al., [75], the phase of the peak has
been recorded during the first subjective day in culture i.e.,
between 12 and 36 hours). To avoid such chaotic evolution
with the loss of chronobiological information, experimenters
are using mechanical punches of mucosae which are directly
snap frozen in liquid nitrogen. This strategy is a reliable but
invasive solution to study clock gene expression in time
series. Otherwise, tissue biopsies can be explanted in culture
to derive primary cells or cell lines and record clocks func-
tioning just like with exfoliated cells. However, cell lines have
lost contact with body’s network, and their clock systems
are probably quickly reorganized to tune up with their new
in vitro environment [76, 77]. In the future, the use of
transgenic mice for autophagic gene circuitry will also help
to appreciate the exfoliation status and the molecular link
between clocks and autophagy [78].

5. Perspectives

The development of non-invasive methods is crucial to allow
easy sampling of human populations in nutritional/clini-
cal intervention studies. Exfoliated epithelial cells could be
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extremely useful to deal with subtle environmental influences
during development causing persistent changes in epigenetic
regulation. They represent an alternative to fibroblasts which
can be easier to collect on adults, and they putatively are
giving molecular information from inner tissues difficult to
access. The problem in the recovery of exfoliated cells is
to relate the cell phenotypes and their physiological status
with the intact tissue structure of the donor. In addition, the
degradation of biological information depends on the bio-
active compounds present in the biological fluids which can
be heavily loaded with enzymes like digestive fluids.

A specific application explored in our laboratory is to
develop studies in exfoliation in order to improve nursing
care in preterm infants and to prevent the onset of such a syn-
drome during adult life. Tracking exfoliated epithelial cells
can be used to follow the renewal of the gastric epithelium
in order to monitor nutritional or pharmacological prac-
tices. Recently, we have shown that circadian clock genes were
disregulated following an episode of perinatal denutrition
[79]. The isolation of exfoliated epithelial cells from pups or
infants suffering from perinatal denutrition at the onset of
the problem or later in adult life may help to know whether
the histone acetyltransferase’s activity of CLOCK can be used
to explore the stability of epigenetic profile in exfoliated
epithelial cells. However, there is a lack of biomarkers to
study exfoliated epithelial cells and the role of clock genes,
if any, in autophagy. Among many unsolved questions which
can be listed, we can wonder what is the biological informa-
tion retained, altered, or lost during anoikis? Future works
may focus on the mTOR signaling pathway which has been
found downregulated in detached epithelial cells [74] and, in
adipocytes, linked to diurnal gene expression and metabolic
regulation [80]. Recent data on the molecular biology of
clock components indicate that central and peripheral clocks
differ in their coupling with the different categories of
synchronizers as well as in their output on rodent models [81,
82] as well as on human data [68]. A better understanding of
exfoliation may be useful not only to translational research
but also to tissue reconstruction of mucosa.
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