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Abstract: We theoretically study the plasmonic coupling between magnetic plasmon resonances
(MPRs) and propagating surface plasmon polaritons (SPPs) in a three-dimensional (3D) metamaterial
consisting of vertical Au split-ring resonators (VSRRs) array on Au substrate. By placing the VSRRs
directly onto the Au substrate to remove the dielectric substrates effect, the interaction between MPRs
of VSRRs and the SPP mode on the Au substrate can generate an ultranarrow-band hybrid mode
with full width at half maximum (FWHM) of 2.2 nm and significantly enhanced magnetic fields,
compared to that of VSRRs on dielectric substrates. Owing to the strong coupling, an anti-crossing
effect similar to Rabi splitting in atomic physics is also obtained. Our proposed 3D metamaterial on a
metal substrate shows high sensitivity (S = 830 nm/RIU) and figure of merit (FOM = 377), which
could pave way for the label-free biomedical sensing.

Keywords: magnetic plasmon resonances; split-ring resonators; ultranarrow-band hybrid mode;
metamaterial

1. Introduction

Plasmonic and metamaterial structures allow the coherent oscillations of free electrons,
known as surface plasmons [1–3]. The resonant excitation of the localized surface plasmon
resonances (LSPRs) and propagating surface plasmon polaritons (SPPs) concentrates light
into subwavelength volumes and induces large electric field enhancements, known as ”hot
spots”, which can be exploited in potential applications such as sensing [4,5], nonlinear op-
tics [6,7], optical switching [8,9], photodetection [10,11], and solar energy absorbers [12,13]
and related devices. Meanwhile, significant efforts have also been taken to explore nanos-
tructures which are capable of providing localized magnetic enhancements [14–18].

Metamaterial composed of periodic arrays of sub-wavelength metallic split-ring res-
onators (SRRs) with the capability of enhancing magnetic field has been developed to
give rise to novel electromagnetic properties and potential applications such as optical
nonlinearity and magnetic biosensors [19–24]. Nevertheless, the magnetic resonance of the
conventional planar SRRs usually has a relatively broad bandwidth and thus, a relatively
weak enhancement of electromagnetic fields due to the fast radiation damping [25]. One ef-
fective method to enhance magnetic fields of the magnetic resonance and narrow the broad
bandwidth is through coupling the MP resonance to other optical narrow-band resonance
modes with high-quality factors, such as surface lattice resonances [26–28], Fabry-Perot
cavity resonances [29,30], optical waveguide mode [31,32], or Tamm plasmons [33,34].
Chen et al. theoretically reported that the interactions between periodic metallic nanodisks
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and optical waveguide modes propagating in the adjacent dielectric waveguide lead to
a narrow-band mixed mode with greatly enhanced magnetic fields, which can be tuned
continuously by changing the array period [35].

Most of the planar SRRs are directly placed on dielectric substrates, which leads to a
quite appreciable amount of electromagnetic energy spreading into the dielectric substrates
and hampers the metamaterials sensing applications [20,21,36–39]. In recent years, vertical
U-shaped SRRs on a dielectric substrate have been reported, in which the sensing medium
can be fully spread into the free space of the hot spots of electromagnetic fields at the
magnetic resonance [40,41]. This can be circumvented by removing the dielectric substrates
and developing all-metal designs, allowing for the strong absorption of incident light
through the excitation of magnetic hot spots [42–45].

In this work, we present an effective method to realize an ultranarrow-band hybrid
plasmon mode with the full width at half maximum (FWHM) of 2.2 nm and greatly
enhanced magnetic fields by plasmonic coupling between magnetic plasmon resonances
(MPRs) and propagating surface plasmon polaritons (SPPs) in a three-dimensional (3D)
metamaterial consisting of vertical Au split-ring resonators (VSRRs) array on Au substrate.
By placing the VSRRs directly onto the Au substrate, to removing the effect of dielectric
substrates, both the enhancement of the quality factor (Q) and magnetic field of the VSRRs
hybrid plasmon mode are up to 5 and 2 up fold compared with those of VSRRs array on
dielectric substrates. Moreover, an anti-crossing phenomenon similar to Rabi splitting in
atomic physics, is also observed. Our proposed 3D metamaterials on the metal substrate
have high sensing performance factors (S = 830 nm/RIU and FOM = 377), indicating its
significant application potential in biomedical and sensing applications.

2. Materials and Methods

The designed 3D metamaterial is schematically depicted in Figure 1a. The array of
Au VSRRs is directly on the Au substrate. Figure 1b shows the magnified front view of
a unit cell of the Au VSRRs structure. The structural parameter of an individual VSRR:
lx = lz = 90 nm and w = 20 nm. The periodicity P along x direction is set as 800 nm. The
electric field Ein, magnetic field Hin and wave vector Kin of the incident light are along
the x, y, and z axes, respectively. Our proposed Au VSRRs structure is able to be achieved
experimentally by the following process: Firstly, a thick Au film with a thickness of 100 nm
is deposited on a glass substrate. Then, the Au VSRRs array is prepared by electron
beam lithography with the double exposure process. We employ the commercial software
package “EastFDTD, version 5.0” based on the finite-difference time-domain method to
numerically simulate the plasmonic resonant behaviors of our designed Au VSRRs struc-
ture. In the z axis direction and the x axis direction, perfectly matched layers and periodic
boundary conditions were applied, respectively. The permittivity of Au was calculated
by using the Drude model [43] with the plasma frequency of ωp = 1.37 × 1016 s−1 and the
damping constant of ωc = 4.08 × 1013 s−1.

Figure 1. (a) Schematic view of the array of the Au VSRRs structure directly on the Au substrate.
(b) The magnified front views of a unit cell of the Au VSRRs array.

3. Results and Discussion

Figure 2 shows the calculated normal-incidence reflection spectra of the designed
array of Au VSRRs on Au substrate with the period P = 800 nm. The structural parameter of
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a single VSRR is the same as shown in Figure 1. For a normal incident transverse magnetic
(TM) wave, a broad reflection dip (labeled as I) centered at 696 nm and an ultranarrow
reflection dip (labeled as II) centered at 830 nm are observed, which are shown by the
solid red line in Figure 2, respectively. The broad reflection dip arises from the excitation
of magnetic resonances in an individual Au VSRR. More importantly, the ultranarrow
reflection dip with its FWHM of 2.2 nm arises from the hybridization of propagating
surface plasmon polaritons and magnetic resonances. For comparison, we also calculated
the normal-incidence transmission spectra of Au VSRRs directly on silica substrate with
the refractive index of 1.45 shown by the dotted blue line. The structural parameter of a
single VSRR and the period are the same as those of Au VSRRs on Au substrate. There is a
relatively narrow transmission dip (labeled as III) at 815 nm and a broad weak transmission
dip on the left side of dip III at around 784 nm with the FWHM of 21 nm. Such an
asymmetric Fano lineshape is due to the coupling between collective diffraction mode and
the magnetic resonances of Au VSRRs on a silica substrate. Nevertheless, the Fano-like
transmission window is weak and the bandwidth is much broader than the reflection dip
II of Au VSRRs on Au substrate because of the reduced dielectric substrate effect.

Figure 2. The calculated reflection of Au VSRRs on Au substrate and transmission of Au VSRRs on
silica substrate. (I) denotes the MP resonance and (II) denotes the narrowband mixed mode of the Au
VSRRs on Au substrate. (III) denotes the transmission dip of the SRR on a silica substrate.

Figure 3 shows the normalized electromagnetic field (H/Hin and E/Ein) distributions
on the xoz plane for the dip (I) and dip (II) of the Au VSRRs on Au substrate and for the dip
(III) of the Au VSRRs on silica substrate, respectively. Obviously, both the magnetic field
and electric field distributions of dip (II) are very similar to those of the dip (I) resonance,
but the maximum magnetic field and the maximum electric field at the resonance of dip
(II) are enhanced to be about 50 and 70 times of incident magnetic and electric fields, which
are 2 and 2.33 times as strong as the corresponding values at the dip (III) resonance of the
Au VSRRs on silica substrate.

In order to get a deeper insight into the nature of two hybrid modes of the Au VSRRs
on Au substrate, the positions of reflection dips for different periods P increased from
550 nm to 1050 nm in steps of 50 nm are shown by the two branches of the open circles
and red lines in Figure 4. We use a coupling model to investigate the coupling effects
between MP resonance and the SPPs in the proposed metamaterials by the equation [2]:

E± = (EMP + ESPPs)/2 ±
√

∆/2 + (EMP − ESPPs)
2/4. Here, EMP and ESPPs are the exci-

tation energies of the MP resonance and the SPPs, respectively. ∆ represents the value
of coupling strength. The black solid line denotes the MP resonance. For our proposed
structure, the incident light wavelength to excite the SPPs under normal incidence can
be calculated [2]: λn

SPPs = (P/n)
√

εm/(εm + 1), where n is integer and εm is the relative
permittivity of gold. The positions of reflection dips for different period P can be predicted
accurately, as shown by the two branches of red lines in Figure 4. At the crossing of the SPPs
and the MP resonance, the reflection dips exhibit an obvious anti-crossing similar to the
Rabi splitting in atomic physics, indicating the strong coupling between the SPPs and the
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MP resonance. Such strong coupling in our proposed the Au VSRRs on Au substrate is able
to generate an ultranarrow hybrid mode and a large electromagnetic field enhancement at
the dip II resonance.

Figure 3. Normalized magnetic field (H/Hin) and electric field (E/Ein) distributions on the xoz plane
for the dip I (a) and dip II (b) of the Au VSRRs on Au substrate and for the dip III (c) of the Au VSRRs
on silica substrate.

Figure 4. The dependence of the reflection dip positions (I) and (II) on the period P. The positions of
the MP resonance (solid black line) and the SPPs (solid blue line) are also presented.

We next investigate the effects of the prong length lz, the base rod length lx and the
width w shown in Figure 1b on two hybrid modes of the Au VSRRs on Au substrate. As
shown in Figure 5a, under the condition of other fixed structural parameters (lx = 90 nm,
w = 20 nm and P = 800 nm), when the prong length lz increases from 80 nm to 120 nm in
steps of 10 nm, both the reflection dips (I) and (II) show the obvious redshift. Meanwhile,
the reflection intensity of the two reflection dips, (I) and (II) become weaker, and the
bandwidth of the two reflection dips become broader as lz is increased. As shown in
Figure 5b, when the base rod length lx increases from 80 nm to 120 nm in steps of 10 nm
under the condition of other fixed structural parameters (lz = 90 nm, w = 20 nm and
P = 800 nm), the reflection dips (I) shows a blueshift while the reflection dips (II) shows
a redshift. Both the reflection intensity of dips (I) and dips (II) are enhanced. Figure 5c
exhibits that both the reflection dips (I) and (II) show the obvious blueshift when the
width w increases from 10 nm to 30 nm in steps of 5 nm under the condition of other fixed
structural parameters (lz = lx= 90 nm, and P = 800 nm). Meanwhile, the reflection intensity
of both the two reflection dips (I) and (II) become stronger as w is increased.
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Figure 5. The calculated reflection spectra of the Au VSRRs on Au substrate (a) for different prong
length lz (b) for different length of base rod lx at normal incidence and (c) for different width w of the
Au split-ring resonators.

Finally, we proceed to investigate the performance of the Au VSRRs on Au substrate
for optical sensing. Figure 6a shows the calculated reflection spectra of our proposed 3D
metamaterials immersed in different environmental media under the TM normal incidence
while keeping geometrical parameters of the Au VSRRs on Au substrate is as the same
as that of in Figure 2. For the refractive index of the environmental medium increased
from 1.00 to 1.04 in intervals of 0.01, the two reflection dips (I) and (II) have obvious
red-shifts. The dependence of the positions of the reflection dip II of the ultra-narrowband
hybrid mode on the refractive index is shown in Figure 6b. By linearly fitting the data in
Figure 6b, the refractive index sensitivity (S) [28] of the ultra-narrowband hybrid mode
of the proposed Au VSRRs structure on Au substrate is obtained to be 830 nm/RIU. The
figure of merit (FOM) is more meaningful to quantify the overall performance of a sensor,
defined as the refractive index sensitivity divided by the resonance linewidth [28]. For the
reflection dip II of the ultra-narrowband hybrid mode, its FWHM is 2.2 nm, and the FOM
is achieved to be 377, which is enhanced up to 18 times as high as that of the reflection dip
I of the MP resonance. The high FOM obtained in our proposed structure now reach nearly
the highest values of the recently reported plasmonic sensors [46,47]. Such a good sensing
capability of our proposed metamaterials is beneficial to highly sensitive detection of small
changes of the refractive index of different environment media, which may have potential
applications in biosensing.

Figure 6. (a) The calculated normal-incidence reflection spectra of the Au VSRRs on Au substrate
with TM polarization immersed in different environment media. (b) The resonance wavelength of
the dip II extracted from (a) as a function of refractive index.

4. Conclusions

In conclusion, we demonstrated a powerful method to realize an ultranarrow-band
hybrid plasmon mode and greatly enhanced electromagnetic fields in a 3D metamaterial
composed of VSRRs array on Au substrate. By placing the VSRRs directly onto the Au
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substrate to removing the effect of dielectric substrates, both the enhancement of the quality
factor (Q) and magnetic field of the VSRRs hybrid plasmon mode are up to 5 and 2 up fold
compared with these of VSRRs array on dielectric substrates through the strong plasmonic
coupling between magnetic plasmon resonances and propagating surface plasmon polari-
tons. An anti-crossing phenomenon, similar to Rabi splitting in atomic physics, is also
obtained. The ultra-narrowband hybrid mode of our proposed 3D metamaterials on metal
substrate has an ultrahigh sensing performance factors (S = 830m/RIU and FOM = 377),
indicating its significant application potential in biosensing applications.
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