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Tuning characteristics of low-
frequency EEG to positions and 
velocities in visuomotor and 
oculomotor tracking tasks
Reinmar J. Kobler, Andreea I. Sburlea    & Gernot R. Müller-Putz   

Movement decoders exploit the tuning of neural activity to various movement parameters with the 
ultimate goal of controlling end-effector action. Invasive approaches, typically relying on spiking 
activity, have demonstrated feasibility. Results of recent functional neuroimaging studies suggest that 
information about movement parameters is even accessible non-invasively in the form of low-frequency 
brain signals. However, their spatiotemporal tuning characteristics to single movement parameters 
are still unclear. Here, we extend the current understanding of low-frequency electroencephalography 
(EEG) tuning to position and velocity signals. We recorded EEG from 15 healthy participants while they 
performed visuomotor and oculomotor pursuit tracking tasks. Linear decoders, fitted to EEG signals 
in the frequency range of the tracking movements, predicted positions and velocities with moderate 
correlations (0.2–0.4; above chance level) in both tasks. Predictive activity in terms of decoder patterns 
was significant in superior parietal and parieto-occipital areas in both tasks. By contrasting the two 
tracking tasks, we found that predictive activity in contralateral primary sensorimotor and premotor 
areas exhibited significantly larger tuning to end-effector velocity when the visuomotor tracking task 
was performed.

Access to neural activity through various recording modalities allowed us to study its tuning characteristics in 
upper-limb movements from microscale up to macroscale levels. At the microscale level, neural spiking activity 
in primary motor1 and premotor2 as well as posterior parietal3 areas is tuned to reach direction among other 
movement parameters4. By exploiting these tuning characteristics, non-human primates4,5 and selected humans6 
with spinal cord injuries have been able to control artificial end-effectors in a 3D world. At the macroscale level, 
in terms of non-invasively accessible neural activity, spatiotemporal tuning characteristics are not yet clearly 
understood with regard to upper-limb movements.

The results of functional Magnetic Resonance Imaging (fMRI) studies in humans have revealed a 
fronto-parietal reach network comprising dorsal premotor (PMd) and medial areas of the superior parietal 
lobule (SPL)7,8. This network is active during executed and observed reaching movements7,8 as well as during 
saccadic eye movements9 and exhibits directional tuning10. The fMRI findings, in conjunction with the success-
ful decoding of positions and velocities from low-frequency electrocorticography (ECoG) signals11, suggested 
that information about directional movement parameters might be accessible from outside the brain. Not much 
later, research groups reported successful classification of reach directions12, and regression of end-effector posi-
tions and velocities13 on the basis of low-frequency magnetoencephalographic (MEG) and electroencephalo-
graphic (EEG) signals. Since then, research in this context has focused on regression of end-effector positions and 
velocities or classification of reach direction in center-out tasks with linear models14. In this paper, we focus on 
the regression approach.

A general limitation of studying reaching movements with a regression approach in center-out tasks is that 
the 2D or 3D position and velocity vectors of the end-effector point always in the same direction - the direction 
of the target stimulus. As a consequence, the position and velocity signals are strongly correlated during the 
reaching movement. For this reason, it is difficult to identify the covariate (target position, end-effector position 
or velocity) to which the recorded neural activity is preferentially tuned15. Alternatively, by studying continuous 
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movements in a pursuit tracking task (PTT), instantaneous position and velocity can be decorrelated15. In a PTT, 
the goal is to track a moving target with an end-effector. This requires the brain to visually monitor the moving 
target stimulus in relation to the end-effector so that the end-effector movement can be updated to achieve the 
goal. In such a visuomotor (VM) task, the eyes naturally track the moving target stimulus16. As a consequence of 
this natural tracking behavior, the oculomotor network, which also spans parietal and frontal regions17, is acti-
vated at the same time as the reaching network9.

To facilitate natural behavior and isolate the neural activity related to the involvement of the upper-limb, a 
control condition can be introduced. In the control condition, participants would perform an oculomotor (OM) 
task by tracking a target stimulus only with their eyes9,18. In the other condition (VM task), upper-limb movement 
is additionally involved in the tracking. By contrasting these conditions, it should be possible to infer whether 
low-frequency EEG carries more information about end-effector positions and velocities during the performance 
of the VM or OM task, and to identify where the differences are expressed at the cortical level. We hypothesized 
that contralateral, primary motor and premotor areas carry more information about end-effector positions and 
velocities when the VM task is being performed, and that activity in areas related to the reaching and oculomotor 
networks is tuned to positions and velocities in both tasks.

Here, we present the tuning characteristics of low-frequency EEG activity to positions and velocities during 
continuous tracking movements. In two conditions, participants were asked to track a pseudo-randomly mov-
ing target either visually (OM task) or by additionally controlling a cursor with their right arm (VM task). We 
evaluated our approach offline by examining the recordings of healthy participants. Our experimental results 
confirmed that low-frequency EEG carries information about target and cursor positions and velocities in both 
conditions. More interestingly, when contrasting conditions, we found that the low-frequency EEG carried more 
information about the instantaneous cursor velocity during the VM task rather than during the OM task. The 
differences were mainly reflected in the premotor and contralateral primary sensorimotor areas. The temporal 
tuning characteristics of these differences indicated that the predictive neural activity preceded cursor velocity 
with 150 ms. Therefore, we could show that low-frequency EEG activity, originating in premotor and primary 
sensorimotor areas, can at least offline be used to predict the velocities of executed upper-limb movements.

Results
To test our hypotheses, we recorded high-density EEG and electrooculography (EOG) from 15 healthy partici-
pants during a two-dimensional PTT. In every trial, the PTT was preceded by a short, visually guided, center-out 
reaching task. Here, we present our findings during the PTT. Figure 1 depicts the experimental setup and par-
adigm. The paradigm separated two conditions. In the first condition (execution, VM task), participants were 
asked to track a pseudo-randomly moving target with their gaze and right hand by manipulating a cursor 
(Fig. 1a). In the second condition (observation, OM task), participants were asked to track the moving target 
with their gaze, while keeping their right hand in a resting position. To obtain similar visual input and tracking 
dynamics in both conditions, we replayed the participant’s most recent, matching, executed cursor trajectory in 
observation condition trials. All results presented subsequently were determined after pre-processing, correcting 
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Figure 1.  Experimental setup and paradigm. (a) Participants sat in a comfortable chair positioned 1.4 m from a 
computer screen. Both arms were supported at the same height. The right arm rested on a table at a comfortable 
position. The friction between arm and surface was reduced by a sleeve and a circular pad positioned between 
hand and table. Palm position movements were recorded by a LeapMotion controller (LeapMotion Inc., USA) 
located 20 cm above the hand. Forward/backward hand movements on the table were mapped to upward/
downward cursor movements on the screen. (b) Each trial started with a 3–4 s break during which the target 
(large ball) resided in the center. A 2 s baseline period was initiated when the target turned yellow. During this 
period, participants were asked to keep their hand in the resting position and, thereby, the cursor in the center 
of the screen. A visual cue indicated the condition, either execution (green target) or observation (blue target), 
followed by a center-out task in four directions. The direction was indicated by the target movement (0.5 s 
duration; arrows visualize movement in the individual images). After 1 s of fixation, a pursuit tracking task was 
performed for 16 s. A colored target stimulus (yellow, green, or blue) instructed the participants to fixate and 
track the target with their eyes. In the execution condition the participants controlled the cursor, while in the 
observation condition, the computer replayed a previously executed cursor trajectory which matched to the 
current target trajectory. See Supplementary Video S1 for examples.
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for EOG artifacts19 and downsampling the recorded data to 10 Hz (see Methods). Throughout the text, grand 
average results are presented in the form of the mean value and its standard error.

Tracking analysis.  To analyze the tracking dynamics, we computed cross-correlations between the positions 
and velocities of both stimuli in execution and observation conditions. Figure 2a summarizes the grand average 
cross-correlations in the execution condition. The large cross-correlations (r > 0.7) observed between signals of 
the same movement parameter (e.g, target and cursor position) show that participants complied with the instruc-
tion to minimize the distance to the target. Cross-correlations between the position and velocity of the same stim-
ulus were negligible (|r| < 0.02; e.g, target position and target velocity), while we observed moderate (|r| ~ 0.4; e.g, 
target position and cursor velocity) cross-correlations across stimuli. Our target trajectory generation procedure 
ensured decorrelated horizontal and vertical components. Hence, cross-correlations observed with any signal 
from the other component were negligible (|r| < 0.05). Figure 2b summarizes the grand average cross-correlations 
in observation condition. We did not detect significant differences to the execution condition results (Fig. 2c).

To estimate the temporal dependencies among the four movement parameters (target position, target velocity, 
cursor position, cursor velocity) per component, we computed cross-correlations over lags in the interval [−0.5 s, 
0.5 s] in steps of 0.1 s. Figures 3a–d depict the results for the horizontal (a,b) and vertical (c,d) components. We 
aligned the individual figures based on the peak cross-correlations between pairs of movement parameters. For 
example, the origin in Figure 3b is shifted by −0.525 s compared to that in Figure 3a because the cursor velocity 
was maximally correlated with cursor position 0.525 s in the future. In the execution condition, the participants 
reacted with their hand movements (cursor trajectories) to the pseudo-random target trajectories. This means 
that the properties of the target trajectories (e.g, cross-correlation peak between target position and velocity) also 
determined the properties of the cursor trajectories.

The cross-correlation peak between target and cursor position can be used to infer information about the 
participants’ tracking behavior. We used the lag of the cross-correlation peak to estimate the latency between the 
target and cursor. In the execution condition, the latency reflected the duration that a participant took to adjust 
the cursor movement to the pseudo-random target movement. The cross-correlation between the target and cur-
sor position peaked at a delay of 153 ± 19 ms at group level. After accounting for a 55 ± 1 ms delay, introduced by 
our online processing system which transformed hand movements into cursor movements, the average latency of 
hand movements was approximately 100 ms. This result is in accordance with the findings of behavioral studies, 
which report that a minimum latency of 80–100 ms is needed for a visual or proprioceptive signal to influence an 
ongoing movement20,21.

Movement parameter tuning curves.  We estimated tuning curves for each movement parameter with a 
single sample, sliding-window, linear regression approach13,22. The regression approach is outlined in Figure 3e. 
At different lags, a partial least squares (PLS)23 estimator was used to decode each movement parameter from 
the EEG within the sliding window (one sample). This modelling approach implied that the relevant activity in 
the signal used for decoding (EEG) has to be in the same frequency range as the signal to be decoded (e.g, hori-
zontal cursor velocity)24. To extract the relevant activity in the frequency range (0.3 to 0.6 Hz) of the target and 
cursor trajectories, we bandpass-filtered the EEG (Supplementary Fig. S3 shows power spectral densities of the 
bandpass-filtered EEG and the movement parameters). In a cross-validation scheme, we computed correlations 
between the signals to be decoded (e.g, horizontal cursor velocity) and their estimates for each lag to generate the 
tuning curves.

Figure 2.  Group-level stimuli cross-correlations in both conditions. (a) Cross-correlations between the 
two-dimensional movement parameters (target position, target velocity, cursor position, cursor velocity) in 
execution condition. (b) Cross-correlations in observation condition. (c) P-values for paired Wilcoxon sign 
rank tests between conditions. P-values were adjusted55 for 28 comparisons to control the false discovery rate 
(FDR) at a level of 0.05.
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Figures 3f–i summarize the grand average tuning curves for both conditions. Due to the independence 
between the horizontal and vertical components (Fig. 2), the tuning curves in Figures 3f–i are complementary. 
For both components, the grand average correlations ranged from 0.2 to 0.4. We used a shuffling approach to 
estimate chance levels for each participant. The chance levels were similar across components, conditions and lags 
(target position rchance = 0.13 ± 0.003, target velocity rchance = 0.12 ± 0.002, cursor position rchance = 0.12 ± 0.003, 
cursor velocity rchance = 0.10 ± 0.002). Compared to chance level, the observed correlations were significant for all 
participants, components, conditions, movement parameters and lags. As in Figures 3a–d, we aligned the tuning 
curves (Fig. 3f–i) according to the peak cross-correlations between pairs of movement parameters. After the 
alignment, we observed three effects.

As a first effect, we found that in the observation condition the tuning curves in Figures 3f–i (dashed lines) 
were modulated by the auto-/cross-correlation with target position. That is, an increase in the tuning curve of 

Figure 3.  Grand average movement parameter auto-/cross-correlation curves, and movement parameter 
tuning curves. (a–d) Grand average stimuli auto- and cross-correlations. (a) Auto- and cross-correlation curves 
of horizontal components relative to the horizontal cursor position during execution (solid lines) and 
observation (dashed lines). Movement parameters are color-coded. Shaded areas represent the standard-error 
of the mean. Cross-correlations were evaluated for lags, ranging from −0.5 s (leading relative to cursor position) 
to 0.5 s (lagging) in 0.1 s steps. (b) Auto- and cross-correlation curves of horizontal components relative to the 
horizontal cursor velocity. (c), Auto- and cross-correlation curves of vertical components relative to the vertical 
target position. (d) Vertical target velocity. (e) Outline of the regression approach. After EEG preprocessing 
(including bandpass-filtering), a sliding window (one sample) was used to decode the movement parameters at 
different lags. (f–i) Grand average correlations between movement parameters and their estimates at different 
lags (tuning curves). (f) Tuning curves for the horizontal target position (blue) and velocity (orange). The mean 
and its standard error summarize the results for execution (solid lines), observation (dashed lines) and their 
paired difference (dash dotted lines). Cross-correlation peaks between target position and velocity were used 
to align the time-lag axes. Lags with significant differences between conditions (paired Wilcoxon sign-rank 
tests, FDR adjustment for 88 comparisons, 0.05 significance level) are highlighted (*). (g) Tuning curves for 
horizontal cursor position (violet) and velocity (green). (h) Tuning curves for vertical target position (blue) and 
velocity (orange). (i) Tuning curves for vertical cursor position (violet) and velocity (green).
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a movement parameter coincided with an increase in the absolute auto-/cross-correlation between the move-
ment parameter and the target position signal. We observed this effect for all movement parameters due to the 
dependencies between them. The dependencies are reflected in the auto-/cross-correlation curves (Fig. 3a–d). For 
example, the tuning curve of the vertical target position (Fig. 3h, blue dashed line) exhibited a similar waveform 
compared to the target position’s autocorrelation curve (Fig. 3c, blue line). The tuning curve of the horizontal 
cursor position (Fig. 3g, violet dashed line) and its cross-correlation curve with the target position (Fig. 3a, blue 
line) represents another example. The size of the effect was approximately 0.1 for both components and maximal 
for target position. In the execution condition (solid lines), we detected the same modulation. However, it was 
partially masked by the other effects.

The second effect observed concerns the vertical component (Fig. 3h,i). The paired differences between exe-
cution and observation conditions (dash-dotted lines) exhibited a positive effect on all movement parameters 
and lags. That is, in the execution condition, the low-frequency EEG contained significantly more information 
about the movement parameters of the vertical component. The effect was largest for vertical cursor position and 
velocity with an average difference in correlation of 0.05 (Fig. 3i, violet and green dash-dotted lines).

The third effect concerned the differences in tuning curves for both components (Fig. 3f–i, dash-dotted lines). 
The differences were modulated by the absolute auto-/cross-correlation between a movement parameter and cur-
sor velocity (Fig. 3a–d, green lines). The effect was prominent for the horizontal component and largely masked 
by the second effect for the vertical component. For example, the difference in tuning curves for the horizontal 
cursor position (Fig. 3g, violet dash-dotted line) resembled the absolute value of its cross-correlation curve with 
the horizontal cursor velocity (Fig. 3a, green line). The size of the effect was maximal (approx. 0.07) for the hori-
zontal cursor velocity at lag 0 (Fig. 3g, green dash-dotted line). Taken together, we inferred that the extracted 
EEG carried significantly more information about the instantaneous (lag 0 s) cursor velocity in the execution 
condition.

We were also interested in assessing which brain areas encoded more information in the execution condition 
than in the observation condition. To determine which brain areas contributed to the third effect, we selected 
the cursor velocity decoder models at a lag of 0 s as representatives and computed their associated activation 
patterns25. The patterns were subsequently mapped to the cortical surface by applying EEG source imaging26,27 
on a template head model. In source space, we computed pairwise differences between the conditions for the 
Euclidean norm of each voxel (see Methods).

Figure 4 depicts the grand average difference in pattern norms for the horizontal (Fig. 4a) and vertical 
(Fig. 4b) cursor velocities at lag 0. We defined eight anatomical regions of interest (ROIs) to span areas related to 
the fronto-parietal reaching network7,9. They are dorsomedial occipital cortex (DMOC), superior parietal lobule 
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Figure 4.  Grand average pattern activity difference between conditions in source space for single-lag (lag 0) 
cursor velocity decoder models. (a) Horizontal cursor velocity pattern. Voxel color indicates the sign of the 
difference in norms; positive (red) indicates larger pattern activity in execution. Voxels with a difference in 
norms less than half of the absolute maximum are shaded with gray to emphasize the sites with the largest 
effects. (b) Vertical cursor velocity pattern. (c) Anatomical regions of interest (ROI)s, covering dorsomedial 
occipital cortex (DMOC), superior parietal lobule (SPL), fronto-central (FC) and primary sensorimotor areas 
(SM) of both hemispheres. (d) Density estimates of the differences in ROI activity for participants for the 
horizontal cursor velocity. Each point represents one participant. Density curves follow the ROI color-coding 
scheme. (e) As in (d) for vertical cursor velocity.
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(SPL), fronto-central (FC) and primary sensorimotor areas (SM) of both hemisphere (Fig. 4c). We summarized 
the pattern activity of each ROI as the average of its voxels. Figures 4d,e depict the distribution of both horizon-
tal and vertical components for all participants. Regarding the horizontal component (Fig. 4d), we observed a 
positive effect in FC and left SM areas. For the vertical component (Fig. 4e), we observed positive effects in right 
SPL and both FC areas. Considering their positive sign, the results indicate that the activity in the areas contained 
more information about the instantaneous cursor velocity in execution condition.

In Figure 5 we show the difference in pattern norms for all single-lag models (Fig. 3f–i), to demonstrate how 
the differences in tuning curves are reflected on the cortical surface. Negative lags indicated leading brain activity 
(causal tuning), while positive lags indicated lagging brain activity (anti-causal tuning). The difference in acti-
vation patterns in fronto-central and contralateral sensorimotor areas was tuned to the horizontal and vertical 
cursor velocity in the [−0.5, 0.1] s interval and peaked around −0.1 to −0.2 s (Fig. 5b,d; bottom rows). As before, 
due to the temporal dependence between the position and velocity signals (Fig. 3a–d), we also observed tuning 
effects for the position signals. The difference in activation patterns was anti-causally tuned to cursor position for 
lags in the range [0, 0.5] s (Fig. 5a,c; bottom rows). Overall, the strength of the differences was more pronounced 
for the horizontal component. Similar to the cursor velocity pattern at lag 0 (Fig. 4b,e), we observed a positive 

Figure 5.  Grand average pattern activity differences between conditions for all single-lag decoder models. (a) 
Single-lag decoder patterns for the horizontal target (top) and cursor (bottom) positions for lags ranging from 
−0.5 s (brain activity leading relative to the position signals) to 0.5 s (brain activity lagging). As before, cross-
correlation peaks between the target and cursor positions were used to align the time-lag axes. The red color 
indicates larger voxel activity in the execution condition. (b) Single-lag decoder patterns for the horizontal 
target (top) and cursor (bottom) velocities. (c) As in (a) for the vertical positions. (d) As in (b) for the vertical 
velocities.
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effect in SPL only on the vertical component movement parameters (Fig. 5c,d). With respect to vertical cursor 
velocity (Fig. 5d; bottom row), the positive effect started in the right SPL at lag −0.3 s, peaked at lag 0 s, subse-
quently translated to the left SPL and faded at lag 0.3 s.

Multiple-lag cursor velocity prediction.  To exploit the tuning of neural activity over multiple lags, we 
extended the feature set by using multiple samples in the sliding window, linear regression approach. We evalu-
ated sliding windows covering the samples at lags [−0.1, 0] s to [−0.5, 0] s in 0.1 s steps to predict the horizon-
tal and vertical cursor velocities. The correlations between the recorded and decoded cursor velocities initially 
increased, but became saturated for windows exceeding [−0.3, 0] s (Fig. S4). For the [−0.3, 0] s window, the 
grand average test set correlations were rexe = 0.40 ± 0.02, robs = 0.36 ± 0.04 for the horizontal component and 
rexe = 0.41 ± 0.03, robs = 0.33 ± 0.03 for the vertical component.

To visualize the decoded cursor velocities, we selected a representative trajectory and summarized the results 
over participants. Figures 6a–c show the recorded target, cursor and the decoded cursor velocities for this par-
ticular trajectory in both conditions. The small standard-error around the recorded cursor velocities (green 
shaded area) demonstrates that the participants were tracking the target consistently. Compared to the recorded 
cursor velocities, the decoded cursor velocities exhibited more variance over participants than their neural pre-
dictions (Fig. 6c). Still, the grand average decoded cursor velocities were strongly correlated for both components 
and conditions. The grand average correlations were rexe = 0.83 ± 0.02, robs = 0.82 ± 0.02 on average for the 90 
trajectories on the horizontal component, and rexe = 0.85 ± 0.02, robs = 0.80 ± 0.03 on the vertical component. This 
reflects a 0.40 gain in correlation at the group level compared to the results at participant level.

As before, we computed activation patterns and projected them to the cortex. Figures 6d,e depict the grand 
average patterns (average over participants and lags), and Table 1 lists the p-values of non-parametric permuta-
tion paired t-tests for the eight ROIs. Compared to chance level, the pattern activity was significant in DMOC 
areas in both conditions. SPL pattern activity was significant in the execution and mainly in the observation 
condition; the effect on vertical cursor velocity did not reach significance in observation condition. FC pattern 
activity was generally larger in the execution condition (Fig. 6f,g). The differences observed between execution 
and observation conditions were in line with the single-lag results (Fig. 3f–i). They were significant in right FC 
and left SM for the horizontal component, and in right SPL for the vertical component. The effects on left FC (and 
right FC for the vertical component) did not reach significance.

Figure 6.  Grand average cursor velocity prediction for a [−0.3, 0] s estimation window. (a–c) Illustrations 
of executed and decoded cursor velocities for a specific target trajectory. (a) Grand average horizontal target 
(orange line), cursor (green line) and decoded cursor velocity in execution (gray solid line) and observation 
(gray dashed line) conditions. Shaded areas summarize the standard error of the mean. (b) As in (a) for 
the vertical component. (c) 2D representation for single time points. Dots indicate the group-level average. 
Dispersion over participants is summarized by the square root of the covariance matrix. (d–g) Grand average 
multiple-lag decoder patterns. (d) Horizontal cursor velocity patterns in the execution (left) and observation 
(right) conditions. Pattern activity norms were averaged over lags. The voxel color indicates strength of activity. 
(e) Vertical cursor velocity patterns in the execution (left) and observation (right) conditions. (f) Difference 
between lag-averaged pattern norms for the horizontal component. The voxel color indicates the sign and 
strength of the difference in the pattern activity. (g) As in (f) for the vertical component.
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Visual tracking analysis.  We examined the EOG signals to compare the visual tracking behavior between 
conditions by computing cross-correlations between the horizontal and vertical target position and the asso-
ciated EOG derivative signals. The cross-correlations peaked at lag 0 for both conditions, indicating that the 
participants’ gaze was focused on the target’s instantaneous position. By comparing the correlation values at lag 0,  
we detected significant differences among conditions and components (significance levels were Bonferroni cor-
rected from 0.05 to 0.01 for 5 two-sided paired Wilcoxon sign-rank tests). We found a slightly lower degree of 
correlation in the execution condition compared to the observation condition for the horizontal component 
(rexe = 0.88 ± 0.01, robs = 0.90 ± 0.02, p = 0.00537), while the degree of correlation was higher in the execution 
condition for the vertical component (rexe = 0.79 ± 0.02, robs = 0.70 ± 0.04, p = 0.00153). Within conditions, the 
degrees of correlation were higher for the horizontal component (pexe = 0.00012; pobs = 0.00006).

In the execution condition, the VM task required the processing of visual feedback about the cursor in relation 
to the moving target, while in the observation condition, the cursor was not task-relevant. Authors of previous 
behavioral studies have reported a reduced blink rate (BR) if more visual information was processed28,29. In our 
study, we detected blinks by thresholding the vertical EOG derivative19. As predicted, we found a significantly 
lower BR in terms of blinks per second (bps) in the execution condition as compared to the observation condition 
(BRexe = 0.019 ± 0.006 bps, BRobs = 0.028 ± 0.006 bps, p = 0.0015).

Discussion
We have presented a novel paradigm, which was tailored to study the tuning characteristics of human, 
low-frequency EEG to target and cursor (end-effector) positions and velocities in the presence of eye movements. 
Our paradigm allowed us to distinguish between two conditions with similar tracking dynamics, but with differ-
ent cursor-control origin. By not inhibiting eye movements during the PTT, we could study tracking movements 
in a natural fashion and focus on the effects related to the involvement of the upper limb. We presented evidence 
that this involvement indeed influences the spatiotemporal expression of information about end-effector posi-
tions and velocities in the low-frequency EEG activity.

In a PTT, participants typically manipulate an end-effector to minimize its distance to a target. Typically, 
task compliance results in high cross-correlations between movement parameters of the same type (e.g, posi-
tion). However, the cross-correlations between positions and velocities depend on the properties of the target 
trajectories. We created a trade-off between task difficulty, bandwidth and steepness of the increase in correlation 
over lags. By using the 0.3 to 0.6 Hz band, we could study EEG in a similar frequency range as those examined in 
previous studies13,22, and shift the peak in cross-correlation between target velocity and position to 0.55 s. After 
accounting for the dependence between the movement parameters by aligning the tuning curves, we determined 
one effect in both conditions and two effects in the difference between conditions.

The effect observed in both conditions and components concerned the modulation of the tuning curves by 
the amount of cross-correlation between a movement parameter and target position. This effect let us to infer 
that information about the instantaneous target position was encoded in the low-frequency EEG. In the obser-
vation condition, the effect was prominent, while it was partially masked by the other effects in the execution 
condition. The target position was particularly relevant during the PTT. In both conditions, the participants had 
to keep their gaze fixated on the target. The fact that a peak in the correlation between target position and EOG 
derivatives occurred at lag 0 confirmed that the participants were able to accomplish the task. This finding is in 
accordance with findings for human smooth pursuit behavior for a bandlimited pseudo-randomly moving stim-
ulus30. As a consequence, eye movement artifacts were also phase locked to the target position signal. To assess 
which sources contributed to the observed effect, we computed patterns for target position decoders at lag 0 and 
projected them to source space (Fig. S5). The grand average patterns for both conditions indicated that the con-
tributions originated from a combination of brain activity with the largest predictive activity in parieto-occipital 
areas and residual eye artifacts.

As with the modulation of the tuning curves with target position in both conditions, we observed a modu-
lation of the differences between conditions with cursor velocity. By mapping single-lag cursor velocity model 
patterns to source space and computing differences between conditions, we observed a stronger effect during 
the execution condition in both FC and contralateral SM ROIs (Fig. 5). The FC ROIs covered dorsal premotor 
(PMd) and supplementary motor areas (SMA). Their involvement in reaching is in accordance with the findings 

movement 
parameter condition

ROI

DMOC right DMOC left SPL right SPL left FC right FC left SM1 right SM1 left

horizontal cursor vel

exe 0.0270 0.0096 0.0373 0.0096 0.0373 0.13 0.49 0.15

obs 0.0096 0.0096 0.0096 0.0120 0.32 0.36 0.79 0.30

exe - obs 0.79 0.57 0.60 0.60 0.0224 0.067 0.25 0.0148

vertical cursor vel

exe 0.0096 0.0120 0.0096 0.0096 0.068 0.11 0.74 0.72

obs 0.0096 0.0096 0.068 0.094 0.79 0.14 0.79 0.53

exe - obs 0.82 0.49 0.0171 0.36 0.098 0.051 0.65 0.51

Table 1.  Significance of ROI activation for multiple lag cursor velocity decoders (exe vs. shuffled exe, obs vs. 
shuffled obs, and exe vs. obs). P-values were computed with two-sided non-parametric permutation paired 
t-tests (1000 permutations). Significant differences (FDR adjustment of p-values for 48 comparisons, 0.05 
significance level) appear in bold text.
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of imaging studies in humans31. The difference in activation patterns in FC and contralateral SM ROIs was sus-
tained over multiple lags, with its peak activity leading cursor velocity by approximately 150 ms. The delay can be 
reduced to about 95 ms by accounting for the 55 ms delay between the hand and cursor movement, introduced 
by the online processing system. The remaining 95 ms could be explained by motor output delays32. Estimating 
the actual motor output delay is not a straightforward task, since it depends on the task demands and the type 
of perturbation among other factors32. However, Paninski et al. studied the tuning of movement parameters in 
a comparable PTT15. They investigated M1 single unit activity in non-human primates and reported that neural 
activity was tuned to cursor velocity in a [−400, 400] ms lag range (peak at −100 ms; neural activity leading). 
Thus, a stronger degree of tuning of neural activity to cursor velocity in motor areas during the execution condi-
tion offers a plausible explanation. An alternative explanation would be offered by anti-causal tuning to the cursor 
position for lags in the range [0, 500] ms (Fig. 5a,c). Tuning to the cursor position peaked at 300 to 400 ms, which 
would reflect feedback processing (neural activity lagging). Experimental results on decoding movement parame-
ters in behaving non-human primate spiking activity1,4 and local field potentials33, together with results of studies 
on human MEG34 and ECoG35, show that tuning of SM activity to movement parameters yields peaking activity 
around 100 ms before the movement. Taken together, the differences in the activation patterns reflects more likely 
information about upcoming cursor velocities. Consequently, the observed effects for the cursor positions can be 
explained by the cross-correlations between the movement parameters (Fig. 3a–d).

The third effect observed concerned the vertical component alone. In the execution condition, we observed 
that the correlations of the tuning curves were generally higher (Fig. 3h,i), a 0.1 higher correlation between ver-
tical EOG derivative and target position and a decrease in blink rate. Moreover, the activation patterns were 
significantly stronger in the SPL (Fig. 5b,d, Table 1). Relative decreases in the blink rate have been shown to be 
related to the processing of more visual information28 and more demanding tasks29. This reflects the difference 
between visuomotor (VM) and oculomotor (OM) tasks studied here. Behavioral and decoding results combined 
indicate greater engagement in tracking vertical component signals in the VM task. We offer two non-exclusive 
explanations for this phenomenon. First, unlike the horizontal component, the vertical component mapping was 
not congruent; this means that forward hand movements were mapped to upward cursor movements. Therefore, 
the increase in SPL activity could be explained by the integration of incongruent proprioceptive and visual infor-
mation. Second, we studied two stimuli, moving in two uncorrelated dimensions, which meant that the oculo-
motor system had to keep track of both dimensions. The findings of behavioral studies30 and our results show 
that smooth pursuit is more accurate for the horizontal component. Accurate control of the upper-limb in the 
VM task could require the visual system to extract more information about the vertical component and, as a side 
effect, improve smooth pursuit. Since the SPL is involved in smooth pursuit control36, the increase in information 
about the vertical component could be explained.

By combining multiple lags to predict cursor velocities we could raise grand average decoder correlations 
by around 0.05 to 0.4 in the execution condition and to 0.35 in the observation condition. These correspond 
to correlations reported in previous EEG decoding studies in center-out13 and continuous movement tasks37,38. 
By averaging over participants, the correlations improved drastically to 0.8. The 2D plots in Figure 6c illustrate 
the reason for this effect. The grand average decoded cursor velocity is frequently in the same quadrant as the 
recorded cursor velocity; however, the variance among participants is considerable. Thus, the individual correla-
tions are substantially lower. We inferred that the signal to noise ratio could be drastically improved by averaging 
the response over participants and consequently that the low-frequency EEG strongly correlates with positions 
and velocities at the group level in both conditions.

The grand average multiple lag cursor velocity decoder model patterns (Fig. 6d,e) demonstrate that the con-
tributing sources were primarily of cortical origin in both conditions. Therefore, it is unlikely that the cursor 
velocity decoders relied on residual eye movement artifacts. It is also unlikely that arm or neck movement artifacts 
contributed, considered that there was no arm movement in the observation condition, and that the difference in 
decoder patterns (Fig. 6f,g) were primarily located in contralateral primary sensorimotor, fronto-central and pari-
etal areas. In both conditions and in both components, pattern activity was strongest in the parieto-occipital and 
parietal areas (Fig. 6d,e). The associated DMOC and SPL ROIs showed significantly stronger pattern activity com-
pared to the patterns of shuffled data (Table 1). This is in accordance with an increase in blood oxygenation level 
dependent (BOLD) activity in these areas during executed and observed reaching movements39. Moreover, the 
strong tuning of parieto-occipital and parietal areas in both conditions, reported here, is in accordance with the 
modulation of BOLD activity by movement direction in an fMRI adaptation study10. Since there was no signifi-
cant difference in the DMOC ROIs between conditions (Table 1; exe - obs), we inferred that the predictive activity 
in the parieto-occipital areas was not specific to the VM task. That is, the predictive activity in parieto-occipital 
areas did not require the involvement of the upper-limb.

In conclusion, we demonstrated that low-frequency EEG carries information about target and cursor posi-
tions and velocities, which is primarily encoded in fronto-parietal and parieto-occipital networks. By con-
trasting between the decoder patterns of the VM and OM tracking tasks, we found that the degree of tuning in 
fronto-central and contralateral primary sensorimotor areas to the instantaneous cursor velocity was significantly 
larger in the VM tracking task. The temporal tuning characteristics indicate that neural activity lead cursor veloc-
ity by approximately 150 ms (hand velocity by 95 ms). Altogether, the presented results on spatial and temporal 
tuning characteristics of the low-frequency EEG extend the findings of previous decoding studies. Moreover, 
we believe that it is possible to transfer our findings to individuals with tetraplegia, since the participants in this 
study moved their right arm only during the VM task, but the decoder correlations were clearly above chance 
level in both tracking tasks. Future closed-loop studies need to investigate whether the tuning characteristics of 
low-frequency EEG can be exploited to control an end-effector and whether the control skill can be improved.
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Methods
Participants.  Fifteen people, aged 23.8 ± 0.8 years, participated in this study. All received payment to com-
pensate for their participation. Nine of the participants were female. All participants self-reported to have normal 
or corrected-to-normal vision and to be right handed. Eleven participants had previously participated at least 
once in an EEG experiment. All signed an informed consent form after they had been instructed about the pur-
pose and procedure of the study. The experimental procedure conformed to the declaration of Helsinki and was 
approved by the ethics committee of the Medical University of Graz (approval number 29-058 ex 16/17).

Experimental set-up.  Figure 1a depicts the recording environment. Participants sat in a shielded room, 
positioned 1.4 m away from a computer screen. Their left arm was supported by an arm rest, while the right 
arm was supported by a planar surface at the same height. To reduce friction between the right arm and the 
surface, participants were asked to wear a sleeve and place their hand on a circular pad. A LeapMotion control-
ler (LeapMotion Inc., USA), placed 20 cm above the hand, was used to record the right hand’s palm position. 
After participants found a comfortable resting position, the right hand’s palm position was mapped to the origin 
(center of the screen) in the virtual environment. In analogy to the interaction with a computer by using a com-
puter mouse, we decided to map rightward/forward hand movements to rightward/upward cursor movements. 
In order to create a trade-off between movement range and movement/muscular artifacts in the EEG, we mapped 
a circle with a 5 cm radius around the resting position to a circle with a 16 cm radius on the screen. The limits of 
the circle on the screen were indicated by the bounds of a virtual grid. E.g. by moving their hand 5 cm to the right, 
the participants could make the cursor touch the grid on the right side.

Experimental procedure.  The experimental procedure consisted of 4 blocks, lasting 3 hours in total. In 
the first block, participants were asked to familiarize themselves with the paradigm (approx. 10 min). In the 
second and fourth block, eye artifacts (blinks and eye movements) and resting activity were recorded for 5 min. 
The detailed procedure is described in19. In the third block, participants performed the main experimental task 
according to the paradigm illustrated in Figure 1b. Each trial implemented a center-out reaching task followed by 
a PTT. A yellow target stimulus marked the beginning of a trial. It triggered the participants to fixate their gaze 
upon the target. The paradigm distinguished between two conditions. In the observation condition (blue target), 
participants merely tracked the moving target visually while the computer replayed a previous cursor trajectory. 
In the execution condition (green target), participants additionally had to minimize the distance between the 
target and cursor by moving their right hand and thereby the cursor. A total of 180 trials (90 per condition, 
pseudo randomly distributed) were recorded in 20 runs with short breaks in between. We additionally recorded 
180 short trials (90 per condition, pseudo randomly distributed with the other trials within the 20 runs). A 
short trial ended after the center-out task. The data recorded during short trials were not used in this analysis. 
Supplementary Movie S1 shows the tracking behavior of representative participants in both conditions during 
long (center-out + PTT) and short (center-out) trials.

Target trajectories were generated offline and were identical across participant. Twelve base target trajectories 
were sampled from pink noise, which was band-passed in the frequency range of 0.3 to 0.6 Hz according to the 
procedure described by Paninski et al.15. We sampled the horizontal and vertical components independently 
so that they were uncorrelated. The trajectory pool was extended by adding rotated (90°, 180° and 270°) and 
mirrored versions of the base target trajectories. This yielded a total of 96 trajectories; 90 of these were randomly 
distributed over the 180 trials (once per condition). This procedure ensured uncorrelated position and velocity 
signals at lag 0 (Fig. S1).

The results of pilot studies revealed that the tracking dynamics varied among participants and over time. To 
achieve similar and participant specific tracking dynamics between the conditions, we implemented an adaptive 
approach. In observation condition trials, the most recent cursor trajectory of all matching versions (original, 
rotated and/or mirrored) of the associated base target trajectory was selected for replay. Details about the cursor 
trajectory replay procedure are described in the supplementary methods.

Data recording and pre-processing.  All data was recorded using the labstreaming layer (LSL) protocol 
(https://github.com/sccn/labstreaminglayer). 64 active electrodes (actiCAP, Brain Products GmbH, Germany) 
were placed on the scalp according to the 10–10 system. The reference and ground electrodes were positioned at 
the right mastoid and AFz. Six additional active electrodes were placed at the superior, inferior and outer canthi 
of the right and left eyes to record EOG. Figure S2 visualizes the locations of all 70 electrodes. EEG and EOG 
data were recorded at 1 kHz (BrainAmp, Brain Products GmbH, Germany). The paradigm was implemented in 
Python 2.7 based on the simulation and neuroscience application (SNAP) platform (https://github.com/sccn/
SNAP) and the 3D engine Panda3D (https://www.panda3d.org). The screen position signals of the visual stim-
uli (cursor, target) were recorded via LSL at 60 Hz and synchronized offline with the EEG signals by means of a 
photodiode, which captured an impulse on the screen at the start of each trial. All signals were then resampled 
to 200 Hz.

The pre-processing pipeline is depicted in Figure 7 and was implemented in Matlab (Matlab 2015b, Mathworks 
Inc., USA) and the open source software EEGLAB40 version 14.1.1. EEG data were high-pass filtered (0.25 Hz 
cut-off frequency, Butterworth filter, eighth order, zero-phase). Data cleaning was initiated by a spherical interpo-
lation of channels with poor signal quality (visual inspection). We interpolated 2.1 channels on average (Table S1). 
Eye movements and blinks were attenuated by applying the artifact subspace subtraction algorithm (outline in 
subsection eye artifact correction). The EEG channels were subsequently converted to common average reference 
(CAR). We then applied robust principal component analysis (Robust PCA)41 to attenuate occasional electrode 
pops and low-frequency drifts. The motivation behind Robust PCA is to separate a data matrix X (raw EEG) into 

https://github.com/sccn/labstreaminglayer
https://github.com/sccn/SNAP
https://github.com/sccn/SNAP
https://www.panda3d.org
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a sum of a low rank matrix L (EEG) and a sparse matrix S (occasional single or few electrode outliers, e.g, pops). 
The optimization problem can be formulated as

+ λ . . = +⁎L S X L Smin s t (1)1

and solved iteratively41. We fixed the regularization parameter λ = .1 5
N

 with N being the number of samples. All 
subsequent processing steps were applied to the extracted low rank data matrix L. We epoched the data into 14 s 
trials, starting 1 s after tracking onset. Trials were marked for rejection if (1) the EEG signal of any channel 
exceeded a threshold of +/−200 µV or had an abnormal probability or kurtosis (more than 6 standard deviations 
beyond the mean), (2) the correlation of any EOG derivative (HEOG/VEOG) with the target position (horizon-
tal/vertical) was improbable (more than 4 standard deviations beyond the mean), and (3) if a tracking error 
appeared (i.e, if hand tracking was lost or jerky). We applied the joint probability and kurtosis rejection criteria 
twice to detect gross outliers in the first iteration, and subtle outliers in the second iteration. All criteria combined 
marked an average of 16% of the trials for rejection. Supplementary Table S1 lists detailed information for each 
participant. Before actually rejecting trials, a low-pass filter (0.8 Hz cut-off frequency, Butterworth filter, fourth 
order, zero-phase) was used to extract EEG signals in the frequency of the target and cursor movements.

Stimuli position signals were low-pass filtered at 5 Hz (cut-off frequency, moving average finite impulse 
response filter, 17 filter taps, zero-phase) before velocities were extracted by computing first order, finite differ-
ences. Thereafter, the brain and stimuli signals were merged and resampled at 10 Hz. Then, the previously marked 
trials were rejected. Optionally, samples at various lags were concatenated to extend the feature space before 
fitting a regression model.

Eye artifact correction.  The eye artifact correction approach is based on a block design19,42. We fitted a 
linear eye artifact model to the recordings of blocks 2 and 4 (eye artifacts and resting brain activity) and applied 
the correction to the data of block 3.

The eye artifact model assumes a linear and stationary mixing of eye artifact sources s (t)(a)  ( ×n 1artifact sources ) 
with brain activity, denoted as noise n(t) ( ×n 1artifact sources ). The activity at the EEG and EOG channels tx( ) 
( ×n 1channels ) is then

= +x A s n(t) (t) (t) (2)a( ) (a)

with a ×n nchannels artifact sources mixing matrix A a( ). The brain activity tx ( )c  can be recovered by subtracting the eye 
artifact activity at each channel

= − ≈ˆ ˆx x A s n(t) (t) (t) (t) (3)c
(a) (a)

if Â
a( )

 and ˆ ts ( )(a)  are good estimates of the unknown true mixing matrix and eye artifact sources. We applied the 
artifact subspace subtraction algorithm19,43 to compute the estimates. The algorithm estimates the source signals 
ˆ ts ( )(a)  by linearly combining all channels

=ŝ V x(t) (t) (4)(a) (a)

with a ×n nartifact sources channels unmixing matrix V(a). The correction in Equation (3) simplifies to

= − = −ˆ ˆ ˆx x A s I A V x(t) (t) (t) ( ) (t) (5)c
(a) (a) (a) (a)

Figure 7.  Signal pre-processing pipeline. After synchronization, brain signals were resampled, high-pass 
filtered and bad channels were spherically interpolated. Then, eye artifacts were attenuated19, followed by 
a conversion to a common average reference. Next, Robust PCA41 was applied to attenuate single electrode 
outliers. A subsequent low-pass filter was applied to extract the EEG signals in the frequency range of the target 
and cursor movements. Stimuli position signals were low-pass filtered before computing velocities and then 
concatenated to the EEG. After epoching, marked trials were rejected. Samples were optionally concatenated to 
extend the feature space for PLS regression.



www.nature.com/scientificreports/

1 2SCIENTIfIC REPOrTS |         (2018) 8:17713  | DOI:10.1038/s41598-018-36326-y

The eye artifact model parameters (Â
(a)

 and V(a)) were estimated in a two step approach19. First, penalized 
logistic regression was used to estimate each eye artifact source signal (e.g. horizontal eye movements) and its 
associated mixing coefficients (columns of Â

(a)
). Second, given the mixing matrix Â

a( )
 and the covariance matrix 

of the channels during resting brain activity Rn ( ×n nchannels channels), the unmixing matrix V(a) can be computed 
via regularized weighted least squares43:

Λ= + −ˆ ˆ ˆV A R A A R( ) (6)n n
(a) (a)T (a) 1 (a)T

with Λ being a ×n nartifact sources artifact sources diagonal regularization matrix. The original publication19 contains 
details about the model fitting procedure, choice of regularization parameters and a comparison to state of the art 
eye artifact correction approaches.

Movement parameter estimation.  As low-frequency EEG is strongly correlated over time and space, 
there is considerable multicollinearity among the extracted features. An application of the partial least squares 
(PLS) regression44 method is particularly suitable in this scenario. As in22, we fit one model per movement param-
eter, condition and participant.

Let X be a ×F N matrix of F predictor variables with N  samples (i.e, the EEG data), and let y be a × N1  
vector representing the dependent variable (i.e, a particular movement parameter). The predictor variables are 
modelled as

= +X PT E (7)

with T representing a ×D N  matrix of latent components and E, a ×F N  matrix of additive independent and 
identically distributed (iid) noise. P, representing a ×F D matrix, projects the latent components T to the 
observed predictors X. The goal of applying PLS regression is to find latent components T that have maximal 
covariance with the dependent variable y, while reducing the dimension from F to D. The dependent variable is 
then modelled as

= +y v T g (8)T

with v, representing a ×D 1 weight vector, and additive iid noise g. Here, we applied the SIMPLS algorithm23 to 
estimate P and v for =D 10 latent components. The estimates can be combined to a ×F 1 weight vector to 
directly estimate the dependent variable

=ˆ ˆy w X (9)T

from the predictor variables X.
The model was evaluated by applying 10 times a 5-fold cross validation (CV). That is, the data was randomly 

partitioned to 5 folds. Then model parameters were fit to 4 folds. Model prediction was tested on the held out fold 
by computing the Pearson correlation coefficient ˆryy between y and ŷ. This was repeated until each fold was tested 
once. Thereafter, the random partitioning was repeated another 9 times, resulting in 50 estimates of ˆryy.

Chance level performance was estimated by applying the 5-fold CV to shuffled data. We broke the association 
between X and y while maintaining the correlation structure by randomly exchanging y across trials. The shuf-
fling and 5-fold CV procedure was repeated 100 times.

To interpret the extracted models, we transformed weight vectors to activation patterns25. We scaled the 
unit-less patterns45 with the standard-deviation of ŷ to express the patterns in terms of voltages. The scaled pat-
tern associated with an estimated weight vector is then

σΣ= −ˆ ˆ ˆ ˆ ˆa w (10)X y
1

with empirical covariance matrix Σ̂X and standard-deviation σ̂ŷ of predictors and estimated dependent variable, 
respectively. Analytical shrinkage regularization46 was applied to compute the estimate Σ̂X. We then summarized 
the 50 CV models by computing the geometric median47 across their patterns. This procedure yielded a represent-
ative pattern per movement parameter, condition and participant. To summarize the patterns obtained from 
chance level models, we randomly picked 50 patterns associated with 10 out of all 100 repetitions and computed 
their geometric median.

Pattern source mapping.  We applied EEG source imaging26,27 to map the scaled patterns from channel 
space (i.e, scalp level) to source space (i.e, cortical surface). Head models were created by co-registering the 
ICBM152 boundary element model (BEM) template48 with recorded electrode positions (ELPOS, Zebris Medical 
Gmbh, Germany) using the open source software Brainstorm49 version 19-Jan-2018. The BEM comprised three 
layers (cortex, skull, scalp) with relative conductivities (1, 0.008, 1). The cortex was modelled with 5001 voxels. 
BEM and electrode positions were co-registered by three anatomical landmarks (nasion, left and right preau-
ricular points). Due to deviations between participant and template anatomy, we completed the co-registration 
by projecting floating electrodes to the scalp layer (Fig. S2b). OpenMEEG50,51 was used to compute the forward 
model; that is, to describe the propagation of the electric fields from cortex to scalp. sLORETA52 was applied to 
compute the corresponding inverse model for unconstrained sources. For unconstrained sources the activity at 
each voxel is described 3 components (x, y, z coordinates). We used three minutes of resting EEG, recorded during 
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blocks two and four, to estimate sensor noise. The pre-processing of resting EEG was conducted indentically as 
explained above. We then estimated the noise covariance matrix by applying analytical shrinkage regularization46.

Before mapping the regression model patterns to source space, we normalized them to alleviate 
participant-dependent scaling. Since the scaled patterns reflected the potential at the scalp, their magnitude 
reflected the magnitude of the recorded signals. However, in the EEG, the global field power can vary considera-
bly among participants. To compensate for this effect, we normalized the patterns by the average channel power. 
The average channel power was estimated by taking the median of the diagonal elements of the noise covariance 
matrix. The inverse scalar was then applied to scale participant-specific patterns. We then projected the final 
channel space patterns onto source space in Brainstorm, extracted the Euclidean norm of the three components 
(x, y, z coordinates) per voxel and optionally averaged over lags if the model comprised multiple lags.

Source space statistics.  Group level analysis was performed by computing paired differences between pat-
terns of a movement parameter in source space. Significance was assessed at eight regions of interest (ROI)s, 
which have consistently been associated with movement processing. The ROIs are depicted in Figure 4c and cover 
fronto-central, primary sensorimotor, parietal and parieto-occipital areas. Activity at each ROI was summarized 
by the mean of its voxels. Significant ROIs were detected by applying two-tailed non-parametric permutation 
paired t-tests53,54 with 1000 repetitions. Regarding multiple comparisons, we controlled the false discovery rate 
(FDR) at a significance level of 0.05 by adjusting the p-values55.

Code availability.  The codes used for data collection and analysis in this study are available from the corre-
sponding author upon request.

Data Availability
The data that support the findings of this study are available from the corresponding author upon request.
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