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Background and Aims. Accurate prediction is essential for the survival of patients with nonmetastatic gastric signet ring cell
carcinoma (GSRC) and medical decision-making. Current models rely on prespecified variables, limiting their performance
and not being suitable for individual patients. Our study is aimed at developing a more precise model for predicting 1-, 3-, and
5-year overall survival (OS) in patients with nonmetastatic GSRC based on a machine learning approach. Methods. We selected
2127 GSRC patients diagnosed from 2004 to 2014 from the Surveillance, Epidemiology, and End Results (SEER) database and
then randomly partitioned them into a training and validation cohort. We compared the performance of several machine
learning-based models and finally chose the eXtreme gradient boosting (XGBoost) model as the optimal method to predict the
OS in patients with nonmetastatic GSRC. The model was assessed using the receiver operating characteristic curve (ROC).
Results. In the training cohort, for predicting OS rates at 1-, 3-, and 5-year, the AUCs of the XGBoost model were 0.842, 0.831,
and 0.838, respectively, while in the testing cohort, the AUCs of 1-, 3-, and 5-year OS rates were 0.749, 0.823, and 0.829,
respectively. Besides, the XGBoost model also performed better when compared with the American Joint Committee on
Cancer (AJCC) stage. The performance for this model was stably maintained when stratified by age and ethnicity. Conclusion.
The XGBoost-based model accurately predicts the 1-, 3-, and 5-year OS in patients with nonmetastatic GSRC. Machine
learning is a promising way to predict the survival outcomes of tumor patients.

1. Introduction

Gastric cancer (GC) is the fifth most frequently diagnosed
cancer worldwide and the third leading cause of cancer-
related death, which has had a severe influence on global
health [1, 2]. In 2020, GC caused more than 1 million new
cases and approximately 770 000 deaths, with China alone
accounting for approximately half (478 000) of the number
of global new cases [3]. According to the WHO classifica-
tion, GC can be divided into papillary adenocarcinoma,
tubular adenocarcinoma, mucinous adenocarcinoma, and
signet ring cell carcinoma [4]. Among them, gastric signet
ring cell carcinoma (GSRC), which is named because a large

amount of mucus in cancer cells pushes the nucleus to one
side like a ring, is one of the most malignant tumors,
accounting for about 3.4%-39% of GC [5, 6]. Though the
incidence of GC has declined in the world since the active
treatment of Helicobacter pylori, the incidence of GSRC is
still increased significantly [7, 8].

GSRC is one of the types of GC with poor tissue differen-
tiation, which has the characteristics of low differentiation,
high invasiveness, and poor prognosis. Therefore, patients
with GSRC often have a poorer prognosis than other types
of GC [9]. According to the previous studies, GSRC is an
independent factor for survival prediction, and the 5-year
survival rate was 30%-46.1% [10–12]. Besides, medical
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decision-making in GSRC is particularly complex and
requires weighing treatment benefit against tumor progres-
sion. Therefore, the development of accurate models to pre-
dict outcomes and make medical decisions is essential to
improve the prognosis of patients with GSRC.

Accurate prediction is essential for the survival of
patients with nonmetastatic GSRC and medical decision-
making. Previous regression analysis-based models have
been developed to predict the survival of patients with non-

metastatic GSRC [13–15]. Nonetheless, these models are
commonly based on the assumption that each parameter,
and the survival outcomes of GSRC were linear dependent
(regression model). Hence, one possibility is that these
models may weaken the complex relationships, which may
include nonlinear associations, nonlinear interactions, or
effect modification. In addition, the subjects in these studies
were not followed up for more than 5 years. The model con-
structed based on this may have some bias in survival

Seer database (2004-2014)

GSRCC patients under above criteria
(n = 7124)

Included primary cohort
(n = 2127)

Excluded (n = 4978)
Distant metastasis of tumor (n = 3562)
Tumor grade or race or tumor size unknown (n = 1198)
TNM or AJCC stage unknown (n = 215)
Unknown surgical information (n = 3)
Age less than 15 or more than 90 years old (n = 19)

Inclusion criteria 
ICD-O-3 identified the primary site as the stomach
ICD-O-3 confirmed the histological type or signet
ring cell carcinoma, encoding 8490/3
Only one primary tumor
Complete survival information

Training cohort
(n = 1488)

Testing cohort
(n = 639)

Figure 1: The flowchart of patients included in the present study.

Table 1: Performance of machine learning models in OS.

Model
Training cohort Testing cohort

AUC with 95% CI AUC with 95% CI

1-year survival

KNN 0.773 (0.747-0.799) 0.715 (0.669-0.760)

Support vector machines 0.784 (0.757-0.810) 0.738 (0.695-0.782)

Random forest 0.998 (0.997-0.999) 0.725 (0.681-0.770)

XGBoost 0.842 (0.819-0.863) 0.749 (0.708-0.791)

Neural network 0.789 (0.764-0.815) 0.706 (0.662-0.751)

3-year survival

KNN 0.801 (0.779-0.823) 0.800 (0.766-0.835)

Support vector machines 0.795 (0.773-0.818) 0.812 (0.779-0.846)

Random forest 0.997 (0.995-0.998) 0.807 (0.773-0.841)

XGBoost 0.831 (0.811-0.852) 0.823 (0.790-0.854)

Neural network 0.814 (0.792-0.836) 0.765 (0.729-0.802)

5-year survival

KNN 0.813 (0.791-0.836) 0.765 (0.725-0.806)

Support vector machines 0.813 (0.789-0.836) 0.774 (0.733-0.815)

Random forest 0.996 (0.994-0.998) 0.774 (0.734-0.814)

XGBoost 0.838 (0.816-0.858) 0.829 (0.793-0.863)

Neural network 0.811 (0.787-0.836) 0.776 (0.737-0.815)
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Table 2: Demographic and clinicopathological characteristics of patients.

Variables All patients (n = 2127) Training cohort (n = 1488) Validation cohort (n = 639)
Age (year, mean ± SD) 61:6 ± 0:31 61:37 ± 0:37 62:15 ± 0:55
Sex (no. (%))

Female 1027 (48.3) 701 (47.1) 326 (51)

Male 1100 (51.7) 787 (52.9) 313 (49)

Race (no. (%))

White 1393 (65.5) 975 (65.5) 418 (65.4)

Black 318 (15) 215 (14.4) 103 (16.1)

Other 416 (19.5) 298 (20) 118 (18.5)

Marital status (no. (%))

Married 1284 (60.4) 909 (61.1) 375 (58.7)

Unmarried 843 (39.6) 579 (38.9) 264 (41.3)

Grade (no. (%))

I 3 (0.1) 1 (0.1) 2 (0.3)

II 63 (3) 46 (3.1) 17 (2.7)

III 1992 (93.7) 1392 (93.5) 600 (93.9)

IV 69 (3.2) 49 (3.3) 20 (3.1)

Size (no. (%))

≤1 cm 128 (6) 90 (6) 38 (5.9)

1-2 cm 278 (13.1) 187 (12.6) 91 (14.2)

2-3 cm 315 (14.8) 220 (14.8) 95 (14.9)

3-4 cm 258 (12.1) 191 (12.8) 67 (10.5)

4-5 cm 218 (10.2) 149 (10) 69 (10.8)

>5 cm 930 (43.7) 651 (43.8) 279 (43.7)

Stage A (no. (%))

Localized 652 (30.7) 460 (30.9) 192 (30)

Regional 1343 (63.1) 935 (62.8) 408 (63.8)

Distant 132 (6.2) 93 (6.3) 39 (6.1)

T stage (no. (%))

T1 428 (20.1) 296 (19.9) 132 (20.7)

T2 892 (41.9) 637 (42.8) 255 (39.9)

T3 609 (28.6) 417 (28) 192 (30)

T4 198 (9.3) 138 (9.3) 60 (9.4)

N stage (no. (%))

N0 754 (35.4) 530 (35.6) 224 (35.1)

N1 739 (34.7) 504 (33.9) 235 (36.8)

N2 424 (19.9) 299 (20.1) 125 (19.6)

N3 210 (9.9) 155 (10.4) 55 (8.6)

Site (no. (%))

Cardia 351 (16.5) 259 (17.4) 92 (14.4)

Fundus of stomach 67 (3.1) 44 (3) 23 (3.6)

Body of stomach 220 (10.3) 162 (10.9) 58 (9.1)

Gastric antrum 543 (25.5) 375 (25.2) 168 (26.3)

Pylorus 185 (8.7) 131 (8.8) 54 (8.5)

Lesser curvature of stomach 111 (5.2) 82 (5.5) 29 (4.5)

Greater curvature of stomach 271 (12.7) 189 (12.7) 82 (12.8)

Overlapping/NOS 379 (17.8) 246 (16.5) 133 (20.8)
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prediction. Therefore, there is no satisfactory survival predic-
tion model for patients with GSRC in real-world practice [16].

To overcome this dilemma, the emerging machine learn-
ing has provided an alternative to survival prediction models.
Machine learning is a data-driven application of artificial intel-
ligence in which systems learn and improve automatically
without explicit programming. It is remarkable that machine
learning does not emphasize a certain assumption for data
relationships but rather takes into account all possible effects
between variables. Thus, machine learning is able to autono-
mously use datasets to identify new variables and more com-
plex relationships between them. Its applications are rapidly
growing in health care and are increasingly being used to
develop novel prognostic models for several diseases [17].
Besides, using machine learning methods to construct predic-
tionmodels for the survival of cancer patients has been proven
to be more accurate, robust, and generalizable [17–19].

Our study is aimed at developing a more precise model
for predicting 1-, 3-, and 5-year overall survival (OS) in
patients with nonmetastatic GSRC based on machine learn-
ing approaches. Instead of single information derived from
image segmentation or image recognition based on artificial
intelligence, the parameters used in machine learning for
modeling here were the more dimensional data derived from
clinical practice. The significance of this study not only lies
in the development of prediction model for GSRC survival
but also includes a call for action to reduce the bias of sur-
vival prediction studies in the field of gastrointestinal
tumors.

2. Methods

2.1. Data Source and Study Population. The data was col-
lected from the Surveillance, Epidemiology, and End Results
(SEER) program with the National Cancer Institute’s SEER∗

Stat software (version 8.3.9, http://seer.cancer.gov/seerstat/).
SEER collects cancer diagnoses and survival data for approx-
imately 30% of the US population and benefits from exten-
sive quality review model development. GSRC patients
were preliminarily screened according to the International
Classification of Diseases in Oncology (ICD-O-3) and histol-
ogy code (8490/3).

Patients were further screened according to the following
criteria: the inclusion criteria were (1) patients diagnosed in
2004−2014, (2) ICD-O-3 identified the primary site as the
stomach, (3) patients with only one primary tumor, and
(4) patients with complete survival information. The exclu-
sion criteria were (1) patients with distant metastasis of
tumor, (2) tumor grade or race or tumor size unknown,
(3) TNM or the American Joint Committee on Cancer
(AJCC) stage unknown, (4) surgical information unknown,
and (5) age less than 15 or more than 90 years old.

We collected the following variables from the SEER data-
base: age, sex, race, marital status, tumor location, tumor size,
histologic grade, T stage, N stage, number of regional lymph
nodes (LNs) examined, AJCC stage, and survival month.
Finally, a total of 2127 patients were included in our study
and then randomly assigned with R 3.6.1 to the training cohort
and the validation cohort at a ratio of 7 to 3. Access to the
SEER database does not require formal ethical approval, and
its open access policy is included. The detailed screening pro-
cess for GSRC patients is shown in Figure 1.

2.2. Study Design. Race was classified into three types: White,
Black, and other. Marital status was recorded as married and
unmarried. The grade was classified into four types: well-
differentiated (grade I), moderately differentiated (grade
II), poorly differentiated (grade III), and undifferentiated/
anaplastic (grade IV). Historic stage A was recorded as local-
ized, regional, or distant. T stage was recorded as T1, T2, T3,

Table 2: Continued.

Variables All patients (n = 2127) Training cohort (n = 1488) Validation cohort (n = 639)
Therapy (no. (%))

None 61 (2.9) 39 (2.6) 22 (3.4)

Surgery only 728 (34.2) 511 (34.4) 217 (34)

Chemo/radio only 158 (7.4) 113 (7.6) 45 (7)

Surgery plus chemo/radio 1180 (55.5) 825 (55.4) 355 (55.6)

Regional nodes examined (no. (%))

≤16 1192 (56) 825 (55.4) 367 (57.4)

>16 935 (44) 663 (44.6) 272 (42.6)

AJCC (no. (%))

I 686 (32.3) 476 (32) 210 (32.9)

II 473 (22.2) 325 (21.8) 148 (23.2)

III 637 (29.9) 450 (30.2) 187 (29.3)

IV 331 (15.6) 237 (15.9) 94 (14.7)

Overall survival (no. (%))

1 years 1540 (72.4) 1080 (72.6) 460 (72)

3 years 895 (42.1) 623 (41.9) 272 (42.6)

5 years 625 (29.4) 440 (29.7) 185 (29)
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Figure 2: Continued.
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Figure 2: Continued.
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Figure 2: A comparison of the area under the receiver operating characteristic curve (AUROC) of different machine learningmodels in predicting
(a) 1-, (b) 3-, and (c) 5-year overall survival (OS) in patients with nonmetastatic GSRC in the training cohort and (d) 1-, (e) 3-, and (f) 5-year OS in
the validation cohort. KNN: k-nearest neighbor; SVM: support vector machines; RF: random forest; NT: neural networks; XGB: an eXtreme
gradient boosting.
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Figure 3: Continued.
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Figure 3: A comparison of the area under the receiver operating characteristic curve (AUROC) of eXtreme gradient boosting (XGB) and the
American Joint Committee on Cancer (AJCC) stage in predicting (a) 1-, (b) 3-, and (c) 5-year overall survival (OS) in the training cohort
and (d) 1-, (e) 3-, and (f) 5-year OS in the validation cohort.
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or T4. N stage was recorded as N0 (negative), N1 (1-2 positive
LNs), N2 (3-6 positive LNs), or N3 (>6 positive LNs).

Previous studies classified the number of examined LNs
into two types: regional nodes examined ≤16, and regional
nodes examined >16 [19]. All patients were restaged according
to AJCC criteria described in AJCC 8th edition staging manual
[20] and recorded as I, II, III, and IV. Tumor size was catego-
rized into 6 groups: ≤1 cm, 1-2 cm, 2-3 cm, 3-4 cm, 4-5 cm,
and >5 cm. The primary sites were recorded as the cardia, fun-
dus, body, antrum, pylorus, lesser curvature, greater curvature,
and overlapping lesion/not otherwise specified (NOS). The
therapy was recorded as none, surgery only, chemo/radio only,
and surgery plus chemo/radio. The primary outcome was the
prediction of OS rate at 1-, 3-, and 5-year, assessed in patients
aged 15–90 years with nonmetastatic GSRC.

2.3. Model Development. To improve the accuracy of our
model, the following variables were included: age, sex, race,
marital status, tumor location, tumor size, histologic grade,
T stage, N stage, and the number of regional LNs examined.
The training cohort was used to train an eXtreme gradient
boosting model (with the XGBoost package in R), and the
validation cohort was used to verify the model’s accuracy.

Before choosing and optimizing the XGBoost model, we
performed rigorous exploratory analyses of k-nearest neighbor
(KNN), support vector machines (SVM), random forest (RF),
and neural networks (NT). Separate models were generated
with hyperparameter tuning to optimize their performance
for each outcome, and all models underwent validation using
the validation cohort. The receiver operating characteristic
curve (ROC), the area under ROC (AUC), and the accuracy
were used to assess the precision and specificity of models.
The AUC ranges from 0 to 1, with 1 indicating perfect concor-
dance, 0.5 indicating no better concordance than chance.

The preliminary findings suggested that RF and XGBoost
appeared to perform better than other models in the training
cohort (Table 1). However, in the validation group, the perfor-
mance of the RF algorithm is poor, which means that the RF
algorithm may have an overfitting phenomenon. Hence, we
chose the XGBoost algorithm as our final model. XGBoost is
a regression tree algorithm based on machine learning, which
combines the outputs of other decision trees to improve the
classification. XGBoost is a recently developed gradient tree
boosting algorithm, which is scalable and allows faster cal-
culations [21].

2.4. Statistical Analysis. All analyses were performed using R
statistical software 3.6.1 (http://www.r-project.org). For nor-
mally distributed data, continuous variables were expressed
as mean ± standard deviation (SD). Categorical variables

were presented as proportions. Variables with P < 0:05 were
taken into consideration as significant.

3. Results

3.1. Baseline Characteristics of Patients. Figure 1 shows our
data assembly process. Between 2004 and 2014, a total of
7124 patients from the SEER database with histologically
confirmed GSRC were enrolled in our study. Of these,
3562 patients who presented with evidence of distant metas-
tasis were excluded. 1198 patients had missing data for
tumor grade or race or tumor size, 215 patients did not have
TNM or AJCC stage information, 3 patients did not have
surgical information, and 19 people outside of the study
age range (15–90 years) were also excluded.

The final study population included 2127 patients. Base-
line characteristics of the study cohort were shown in
Table 2. The mean age was 61:6 ± 0:31 years old. 1100
(51.7%) were male. Most patients were White (65.5%), and
15% were Black. 60.4% of patients were married. The pri-
mary grade was grade III (93.7%), the central stage A was
regional (63.1%), and the main AJCC stage was I (32.3%).
Meanwhile, 930 patients (43.7%) had a tumor size >5 cm.
T1 (41.9%), N0 (35.4%), and regional nodes examined ≤16
(56%) accounted for predominance. The gastric antrum
was the most common site for GSRC (25.5%). Among all
included patients, the OS rates at 1, 3, and 5 years were
72.4%, 42.1%, and 29.4%, respectively.

3.2. Performance of the ML Model. Figure 2 shows the ROC
of different machine learning models in predicting the OS of
GSRC. Table 1 shows the AUC with 95% CI of different
machine learning models in predicting the OS of GSRC.
We can see that the XGBoost model performed well both
in the training and testing cohorts. In the training cohort,
for predicting OS rate at 1, 3, and 5 years, the AUCs of the
XGBoost model were 0.842, 0.831, and 0.838, respectively,
while in the testing cohort, the AUCs of 1-, 3- and 5-year
OS rates were 0.749, 0.823, and 0.829, respectively.

Next, we established the ROC curve and calculated the
corresponding AUC to compare the XGBoost model and
AJCC staging accuracy in predicting patients’ OS. As shown
in Figure 3, the 1-, 3-, and 5-year AUCs predicted by ROC
analysis of the XGBoost model were significantly higher
than the AUC values calculated from the AJCC staging sys-
tem. It means that the XGBoost model had superior predic-
tive ability to the AJCC staging system. Besides, we also
compared the 1-, 3-, and 5-year AUCs of the XGBoost
model stratified by age and race.

In our study, model performance was marginally better
in men aged 65 years or older than in men younger than
65 (Table 3 and Figure 4). And the model was the best in
predicting the 5-year OS rate of people aged 65 years or
older (AUC: 0.849, 95% CI: 0.820-0.878). Then, we tested
performance in different ethnic groups. The XGBoost model
also performed well (Table 4 and Figure 5). The significance
of the predictors in the XGBoost model is presented in
Figure 6. The most important predictor was the T stage,
followed by age, therapy, primary site, and tumor size.

Table 3: Performance of XGBoost models in OS stratified by age.

Age < 65 years∗ Age ≥ 65 years∗

1-year survival 0.710 (0.677-0.744) 0.749 (0.718-0.781)

3-year survival 0.796 (0.771-0.822) 0.832 (0.804-0.859)

5-year survival 0.805 (0.779-0.832) 0.849 (0.820-0.878)
∗AUC with 95% CI.

11Computational and Mathematical Methods in Medicine

http://www.r-project.org


0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Se
ns

iti
vi

ty

Specificity

0.217 (0.634, 0.691)

AUC: 0.710

(a)

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0
Se

ns
iti

vi
ty

Specificity

0.290 (0.758, 0.707)

AUC: 0.796

(b)

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Se
ns

iti
vi

ty

Specificity

0.290 (0.690, 0.777)

AUC: 0.805

(c)

Figure 4: Continued.

12 Computational and Mathematical Methods in Medicine



0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Se
ns

iti
vi

ty

Specificity

0.171 (0.794, 0.616)

AUC: 0.749

(d)

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Se
ns

iti
vi

ty

Specificity

0.230 (0.787, 0.740)

AUC: 0.832

(e)

Figure 4: Continued.
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4. Discussion

GSRC is a highly malignant type of GC, accounting for 8-
30% of GC cases [22, 23]. Although the incidence rates of
GSRC are low, its reported 5-year survival rate was only
15.9% [24]. Besides, the prognosis of GSRC remains contro-
versial. Previous studies demonstrated that the survival of
GSRC patients was relatively better than other histological
types in the early stage. Probably because the tumor of GSRC
is more frequently found in early-stage GC, the early-stage
GSRC has a lower risk of lymph node metastasis [12,
25–27]. However, study about the accurate prognosis of
early GSRC is rare. Hence, it is imperative to establish a pre-
dictive model to guide the clinical work better.

In this study, we used a large and public dataset to con-
struct and validate a machine learning-trained prognostic
model for predicting 1-, 3-, and 5-year OS rates in patients
with nonmetastatic GSRC and assessed its performance
against the eighth edition AJCC staging system. To our best
knowledge, our study is the first to use the SEER cohort to
establish a machine learning model for predicting OS rate
in patients with nonmetastatic GSRC.

AJCC staging system currently used prognostic GC
patients. However, the current GC monitoring prediction
model is not suitable for the tracking of GSRC. Notably, the
AJCC staging system does not account for some significant
clinicopathological characteristics, such as age, gender, and
treatment method, which were all related to patients’ survival.
In the present study, our model incorporated the above charac-
teristics into machine learning, and the results showed our
model’s performance was better than the AJCC staging system.

Prior research has been carried out to develop simple
multivariable regression predictive models for GSRC. Xu
et al. developed a prognostic nomogram based on log odds
of positive lymph nodes to predict the OS and CSS rate of
GSRC [12]. However, the model was not good at predicting
the 1-year OS rate (AUC: 0.768), and its 5-year OS rate pre-
diction ability showed only a slight preponderance over
AJCC. Besides, this study selected patients diagnosed from
2010 to 2015 from the SEER database, and the database only
has follow-up data up to 2018. Hence, there may be a certain
deviation for this study in predicting the 5-year OS rate.

The studies carried out by Wang et al., Zhang et al., and
Guo et al. also had similar problems [13, 14, 28]. Wei et al.
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Figure 4: The area under the receiver operating characteristic curve (AUROC) of the eXtreme gradient boosting model in predicting (a) 1-,
(b) 3-, and (c) 5-year overall survival (OS) in patients aged < 65 years old and (d) 1-, (e) 3-, and (f) 5-year OS in patients age ≥ 65 years old.

Table 4: Performance of XGBoost models in OS stratified by race.

White∗ Black∗ Other∗

1-year survival 0.744 (0.716-0.771) 0.729 (0.666-0.792) 0.755 (0.699-0.810)

3-year survival 0.816 (0.794-0.839) 0.788 (0.737-0.838) 0.849 (0.812-0.885)

5-year survival 0.817 (0.793-0.842) 0.848 (0.800-0.896) 0.840 (0.801-0.878)
∗AUC with 95% CI.
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Figure 5: Continued.

15Computational and Mathematical Methods in Medicine



0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Se
ns

iti
vi

ty

Specificity

0.202 (0.603, 0.868)

AUC: 0.788

(e)

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Se
ns

iti
vi

ty
Specificity

0.290 (0.762, 0.793)

AUC: 0.848

(f)

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Se
ns

iti
vi

ty

Specificity

0.182 (0.586, 0.787)

AUC: 0.755

(g)

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Se
ns

iti
vi

ty

Specificity

0.303 (0.783, 0.804)

AUC: 0.849

(h)

Figure 5: Continued.
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collected 1,030 patients from the SEER database and con-
structed CSS prognostic model. They found that patients
who received postoperative radiotherapy had a better prog-
nosis than patients who underwent surgery alone [29].
Guo et al. constructed a nomogram predicting lymph node
metastasis [30]. However, these studies have limited popula-
tion selection, and the predictive ability is not good.

Many consider machine learning as a “black box,” in
which a computer generates predictions. Unfortunately,
most clinicians have a limited understanding of the machi-
nations involved to generate these predictions. While medi-
cine remains behind other disciplines in utilizing machine
learning, its predictive power has been demonstrated with
increasing frequency [16, 17, 31, 32]. Compared with the
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Figure 5: The area under the receiver operating characteristic curve (AUROC) of the eXtreme gradient boosting model in predicting (a) 1-,
(b) 3-, and (c) 5-year overall survival (OS) in the White race; (d) 1-, (e) 3-, and (f) 5-year OS in the Black race; and (g) 1-, (h) 3-, and (i) 5-
year OS in the other race.
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Figure 6: Significance of the predictors in the eXtreme gradient boosting model.
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traditional parametric model, machine learning has more
flexible, accurate, and robust predictive capabilities [17].
Besides, machine learning methods based on specific sam-
ples with explicit characteristic attributes are more suitable
for identifying individual patients [33].

In recent years, the research on medical image diagnosis
based on artificial intelligence has increased significantly.
Different image vision classification and image segmentation
tools can be used to identify abnormalities caused by dis-
eases. Compared with manpower, the main advantages of
image information capture technology based on artificial
intelligence are fast detection speed, high accuracy, and sta-
ble results. However, instead of single information derived
from image segmentation or image recognition based on
artificial intelligence, the parameters used in machine learn-
ing for modeling here were more dimensional data from
clinical practice. XGBoost is a regression tree algorithm
based on machine learning, which combines the outputs of
other decision trees to improve the classification and allows
faster calculations.

XGBoost, a regression tree algorithm for faster calcula-
tions, is recently developed as an open source project. The
whole execution process of XGBoost is easy and can run as
packages in a freely available language R 3.6.1. In our study,
by comparing several other algorithms, we chose the
XGBoost algorithm for modeling. XGBoost algorithm has
the advantages of regularization and parallel processing,
which made the model perform well in our research [34].

Although our model has a satisfactory accuracy, several
limitations also deserve to be mentioned. First, though SEER
is a huge population-based database, some critical informa-
tion was not explained, potentially making the models even
more accurate. Second, the model was constructed using a
retrospective nationwide database. Therefore, the current
analysis of the patient population could not exclude the pos-
sibility of selection bias. Finally, external validation is lacking
in this study. Further study is needed to validate the advan-
tages of the model in survival prediction.

In conclusion, this study is the first to explore the perfor-
mance of machine learning in predicting OS in patients with
nonmetastatic GSRC. XGBoost is a regression tree algorithm
based on machine learning, which combines the outputs of
other decision trees to improve the classification and allows
faster calculations. The XGBoost-based model accurately
predicts the 1-, 3-, and 5-year OS in patients with nonmeta-
static GSRC. Machine learning is a promising way to predict
the survival outcomes of tumor patients.
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