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Neurodegenerative diseases (NDs) are a diverse group of disorders charac-
terized by the progressive degeneration of the structure and function of the
central or peripheral nervous systems. One of the major features of NDs,
such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and Hunting-
ton’s disease (HD), is the aggregation of specific misfolded proteins,
which induces cellular dysfunction, neuronal death, loss of synaptic connec-
tions and eventually brain damage. By far, a great amount of evidence has
suggested that TRIM family proteins play crucial roles in the turnover of
normal regulatory and misfolded proteins. To maintain cellular protein qual-
ity control, cells rely on two major classes of proteostasis: molecular
chaperones and the degradative systems, the latter includes the ubiquitin-
proteasome system (UPS) and autophagy; and their dysfunction has been
established to result in various physiological disorders including NDs.
Emerging evidence has shown that TRIM proteins are key players in facili-
tating the clearance of misfolded protein aggregates associated with
neurodegenerative disorders. Understanding the different pathways these
TRIM proteins employ during episodes of neurodegenerative disorder
represents a promising therapeutic target. In this review, we elucidated
and summarized the diverse roles with underlying mechanisms of members
of the TRIM family proteins in NDs.
1. Introduction
Neurodegenerative diseases (NDs) are a diverse group of disorders character-
ized by the progressive degeneration of the structure and function of the
central or peripheral nervous systems. Aetiologically, many NDs share and
are associated with misfolding and aggregation of specific polypeptides and
the ensuing loss of neurons [1]. Although some of these diseases are caused
by germline mutations that result in the production of defective proteins, the
vast majority of these diseases are sporadic and are caused by the aggregation
of normal proteins expressed at physiological levels. The most common type of
aggregated proteins are amyloid fibril, which is made up of β strands that
makes up the cross-β structure [2,3].

Some examples of NDs include Alzheimer’s disease (AD), Parkinson’s dis-
ease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS),
spinocerebellar ataxias (SCAs), frontotemporal dementia (FTD), progressive
supranuclear palsy (PSP), dementia with Lewy bodies (DLB), multiple system
atrophy (MSA), prion diseases/transmissible spongiform encephalopathies
(TSEs) and so on [4]. Among these diseases, PD is the most prevalent [5,6].
Interestingly, the process of protein aggregates in NDs differs; for example,
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AD harbours numerous inclusion bodies containing β-amy-
loid (Aβ) [7] and tau proteins [8]. Whereas in MSA, PD,
and DLB, they are linked with abundant inclusions contain-
ing α-synuclein [9,10]; while mutant huntingtin aggregation
is found in HD [11].

Since protein misfolding is inevitable and often irrever-
sible, it can result in mutations, biogenetic errors or
irreparable damage in the cellular compartment [12]. The
structure of proteins determines its functions; and to
obtain protein functional three-dimensional structure, and
to ensure proper protein folding and avoid proteotoxic
stress in vivo, cells develop a system known as the protein
quality control (PQC) [13]. The PQC is a well-organized,
tightly regulated system that includes the molecular chaper-
one system (ensure the correct folding of proteins) and the
degradative pathways: autophagy and the ubiquitin-protea-
some system (UPS) (eliminate misfolded proteins once
formed) [14]. Molecular chaperones cooperate in de novo
folding, refolding of misfolded proteins, maintaining pre-
existing native protein structure stability and lowering the
level of protein aggregates. When unfolded proteins
accumulate, they activate stress responses known as the
unfolded protein response (UPR) or the heat-shock response
(HSR), depending on the cellular compartment [15]. Inter-
estingly, when misfolded proteins cannot be refolded, the
degradative pathways such as the UPS, autophagy and
endoplasmic reticulum-associated degradation (ERAD)
begin to promote their degradation [16–18]. Thus, the
cooperation of these PQC regulating systems is critical in
maintaining cellular proteostasis.

Proteostasis disruption has serious consequences such as
the pathogenesis of a variety of disorders, including NDs,
ageing and cancer [18–20]. Additionally, mutations in genes
encoding pathogenic proteins can cause misfolding and
sequential aggregation in NDs [21]. The proteostasis network
can clear aggregated proteins in the absence of gene
mutations; however, this capacity declines with age, resulting
in proteostasis dysfunction [22]. Numerous studies have
highlighted the neurotoxic effects of misfolded proteins on
the disease duration of NDs [23]. Furthermore, chronic
expression of misfolded-prone proteins like polyQ impairs
the robustness of the proteostasis network, exacerbating mis-
folding, aggregation, and disease progression and posing a
threat to proteostasis integrity [24–26].

The tripartite motif-containing (TRIM) superfamily is
structurally defined by TRIM or RBCC motif in its N-terminal
region, which contains a RING finger domain, one or
two B-boxes, and a coiled-coil domain (CCD) [27,28]. The
RING-finger domain contains a Cys3HisCys4 amino acid
motif that binds two zinc atoms, and it plays a critical role
in ubiquitylation pathways such as recruiting ubiquitin-
conjugating enzymes [29,30]. The B box domain can also con-
tain one or two zinc-binding motifs which are typically
composed of B1 and B2 domains, but some TRIM members
only contain the B2 domain [29,30]. TRIM proteins often
self-associate through their coiled-coil regions, forming large
protein complexes that later localize in the cytoplasm or
nucleus [28]. The CCD is also responsible for interacting
with other proteins [29] and it defines the individual function
of members of TRIM proteins. TRIM protein family can be
classified into sub-family I to XI and one unclassified
sub-group that lacks the RING domain but has conserved B-
boxes and CCD motif in order and spacing [27,30] (figure 1).
TRIM family proteins play a diverse role in cellular pro-
cesses including innate immunity [28], genetic disorders
[31], cancer [30] and NDs [32]. Our group has shown that sev-
eral TRIM protein families, including TRIM11/TRIM25/
TRIM28, play important roles in regulating cellular proteo-
stasis [32–37]. For example, TRIM11 can facilitate the
degradation of defective proteins such as Atxn1 [82Q]—a
pathogenic protein that causes spinocerebellar ataxia type1
(SCA1)—in the nucleus and cytoplasm in familial NDs via
the proteasome [33,38]. Besides, TRIM11 can reduce USP14
recruitment to the proteasome by inhibiting the association
between USP14 and PSMD2, resulting in the promotion of
the activity of the proteasome, which further decreases aggre-
somes and amyloid-like fibrils in cells [34]. We also
confirmed that TRIM25 can also promote the degradation
of misfolded proteins in the endoplasmic reticulum via
ERAD [35].

Other research has found a link between the single
nucleotide polymorphism (SNP) rs564309—an intronic var-
iant of the tripartite motif-containing protein 11 (TRIM11)
gene—and the clinical phenotype and pathology severity of
PSP [39,40]. Thus, emerging evidence suggests that TRIM
family proteins play important roles in NDs by regulating
proteostasis. This review summarized the roles of TRIM
family proteins in regulating protein aggregation and
clearance related to NDs via various mechanisms.
2. TRIMs functioning as a molecular
chaperone or disaggregase

Protein misfolding is the most common pathogenic feature of
NDs, manifested primarily by intracellular and/or extracellu-
lar protein aggregate deposits [19]. Pathogenic features of
NDs include amorphous and fibrillar aggregation [13]; the
accumulation of intracellular inclusions containing aggregated
α-Synuclein is likely to be a key element in PD [19,41]. Owing
to the crowded and complicated intracellular microenviron-
ment, multidomain proteins face significant challenges in
achieving native conformation states and maintaining solubi-
lity. As a result, the chaperone system acts as a significant
buffer for the proper folding of proteins in vivo [42].

Molecular chaperones are also known as stress proteins or
heat-shock proteins (HSPs) because they are upregulated in
response to cellular stress. They are classified according to
their size and they include HSP40, HSP60, HSP70, HSP90,
HSP100 and other small HSPs [42]. To refold misfolded pro-
teins, molecular chaperones use three distinct approaches, for
example, most chaperones, such as HSP70, keep substrate
proteins unfolded until the spontaneous fold state is reached
[42,43]. In addition, some molecular chaperones, such as
HSP70 and HSP60, unfold stable misfolded proteins and
restore them to their native protein conformations in an
ATP-dependent manner [42,44]. Other chaperones, such as
yeast HSP104, are known as ‘disaggregases’ because they
dissolve preformed protein deposits and convert them into
natively refolded states.

2.1. TRIM11
TRIM11, a member of the TRIM family protein that comprises
three zinc-binding domains, a RING domain, a type 2 B-box
and a coiled-coil region [28]. TRIM11 can prevent protein
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Figure 1. Illustration of TRIM proteins domain structure and classification related to neurodegenerative diseases. Structure classification of TRIM proteins that par-
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aggregation and pre-existing protein deposits such as amy-
loid fibrils in neurodegenerative disorders, thereby relieving
the pathogenic features of NDs [13,32–34]. In contrast to
canonical chaperones, TRIM11 processed the activity of mol-
ecular chaperones by acting in an ATP-independent manner.
TRIM11, similar to HSP70 and HSP40, protects model
substrates of disease-associated proteins from thermal
misfolding, enzymatic inactivation and amorphous aggrega-
tion. TRIM11 also functions as a disaggregase, dissolving
heat-denatured proteins trapped in amorphous aggregates
and restoring their native activities [13].

TRIM11 was shown to be preferentially bound to a patho-
genic protein form rather than a non-pathogenic form in vitro
[13,33], implying that TRIM11 can distinguish misfolded
states from the native state of the same protein [13].
TRIM11 abrogated both the de novo and pre-formed fibrils-
seed α-Syn fibrillization and prevented the formation of
mature fibrils, thereby increasing the soluble α-Syn fraction.
Instead of degrading α-Syn proteins, TRIM11 suppresses
α-Syn pathology and restores cell models’ viability [13]. In
the same vein, TRIM11 also inhibited the fibrillization of
disease-associated protein, Atxn1 [82Q], the pathogenic
protein indicted in SCA1 [12,13,38].

In a mouse model of PD, recombinant TRIM11 injection
significantly reduced α-Syn pathology, indicating that
TRIM11 does inhibit α-Syn aggregation in mammals. Also,
TRIM11 can inhibit dopaminergic neuron loss in the substan-
tial nigra and rescue motor impairments caused by α-Syn
aggregation [45]; and animals in the TRIM11 group have
better locomotor activity and less anxiety [13].

Based on the evidence presented above, TRIM11 inhibits
the seeding and transmission of α-Syn fibrils between cells
via its molecular chaperones, and disaggregates activity; it
can also rescue mice neurodegeneration and accompanying
motor impairments.

2.2. TRIM19 and TRIM21
The promyelocytic leukemia protein (PML) is also known as
TRIM19. It has the classic TRIM/RBCC motif at the
N-terminus and localizes to nuclear structures, but it lacks
a recognizable C-terminal domain [46]. TRIM21 is also
known as Ro52. It comprises a RING domain, a B-box
domain, a coiled-coil domain, and a PRY-SPRY/B30.2
region at its C-terminal [28,47].

TRIM19 and TRIM21, like TRIM11, can degrade Atxn1
[82Q] using their chaperone and disaggregases activities.
Notably, TRIM21 can prevent heat inactivation of proteins
and solubilize pre-denatured ones; it also can discern mis-
folded states of proteins [13]. TRIM19, on the other hand,
can reactivate thermally misfolded proteins both in vivo and
in vitro. It also has disaggregases activity, which allows it to
dissolve Atxn1 [82Q] found in nuclear bodies [13].

In summary, TRIM19 and TRIM21 can act as chaperones
and disaggregases in the same way that TRIM11 does in
degrading protein aggregations without the need for ATP
hydrolysis.
3. TRIMs involved in the ubiquitin-
proteasome pathway

Ubiquitylation is a post-translational modification that
involves the attachment of ubiquitin molecules to a target
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protein. The ubiquitin-proteasome pathway is crucial for the
degradation of most cellular proteins, including short-lived,
misfolded proteins and other important proteins related to
intracellular processes [48,49].

Ubiquitylation consists of three steps: 1-ubiquitin-
activating enzymes (UBA) (E1 enzymes), 2-conjugation by
ubiquitin-conjugating enzymes (UBCs) (E2 s) and 3-attach-
ment to the substrate protein by ubiquitin ligases (E3 s).
This is done via a multi-step enzymatic cascade, to transfer
the ubiquitin moieties to the lysine residues of target proteins
[50,51]. The ubiquitinated target proteins are transferred into
the core of the proteasome for degradation. The E3 ligases
determine the specificity of ubiquitination; a number of
these E3 ligases participate in the clearance of toxic aggre-
gate-prone proteins that are linked to NDs [52,53].
Interestingly, TRIM family proteins can function as canonical
RING-type E3 ligases and help to clear pathogenic related
proteins.

As stated above, certain members of the TRIM protein
family are capable of eliminating pathogenic proteins via
the ubiquitin-proteasome pathway. Some of these TRIM
protein families are discussed below:
3.1. TRIM11
TRIM11 processes SUMOylation (SUMO, small ubiquitin-like
modifier) activity in addition to chaperone and disaggregase
activity to promote the degradation of misfolded proteins.
TRIM11 promoted the SUMOylation of Atxn1 [82Q] with
the presence or absence of exogenous SUMO2 proteins
[12,13]. However, its SUMO ligase activity is dependent
on the identity and/or folding state of substrates, as
TRIM11 failed to ubiquitinate soluble α-Syn, a normally
folded protein. Taken together, it appears that TRIM11’s
chaperone/disaggregase and SUMO ligase work together to
remove abnormal proteins [13].

Our research team has previously demonstrated that
TRIM11 inhibited the association of USP14 with PSMD2
and thus reduced the recruitment of USP14 to the protea-
some, preventing its association with the USP14 and thus
increasing proteasome activity. These findings revealed that
TRIM11 increases the proteasome’s degradative capacity [34].

We also observed that TRIM11 promotes the degradation
of both abnormal and normal regulatory proteins, as well as
increases the overall rate of proteolysis. TRIM11 contributes
to the degradation of the misfolded proteins, and its effects
are more pronounced in a heat shock environment. TRIM11
activated the proteasome and prevented the decline in pro-
teasomal activity under thermally stressed conditions,
rather than promoting the ubiquitination of normal regulat-
ory proteins or misfolded proteins—a feature that differed
from TRIM11’s canonical function [34].

Moreover, TRIM11 has been shown to interact with
Atxn1[82Q] and promote its ubiquitination for sequential
proteasome degradation. Overexpression of TRIM11 reduced
Atxn1[82Q] inclusions as well as Atxn1[82Q] protein levels in
cell lysate fractions. Similarly, TRIM11 reduced cytoplasm-
localized Httex1p-97QP (a pathogenic protein associated
with HD) as it did for Atxn1[82Q] [12,33]. Furthermore,
endogenous misfolded proteins such as K48 polyUb-
modified proteins and defective ribosome products were
also reduced by TRIM11 [33].
Based on the above findings, TRIM11 regulates misfolded
protein degradation through multiple pathways, implying a
promising role for TRIM11 in the treatment of neurodegen-
erative disorders.

3.2. TRIM19/PML
TRIM19/PML removes a variety of protein aggregates in the
nucleus associated with NDs such as HD, ALS, and fronto-
temporal lobar degeneration with ubiquitinated inclusions
(FTLD-U). For instance, Httex1p-97QP inclusions that form
in the nucleus can be eliminated by PML, but those that
form in the cytoplasm cannot [12,54]. In comparison to
non-pathogenic substrates, PML interacts strongly with
pathogenic substrates, and following its recognition, PML
uses its SUMO ligase activity to conjugate these proteins
with SUMOs. Similarly, PML can reduce the abundance of
a specific pathogenic ataxin-1 protein (Atxn1 [82Q]) instead
of a nonpathogenic ataxin-1 protein (Atxn1 [30Q]) [12].

According to a study conducted by Guo et al. the overex-
pression of RNF4 was shown to reduce the level of
aggregated Atxn1 [82Q] in the cell lysates as well as Atxn1
[82Q] inclusions in the nucleus. In addition, RNF4 reduced
the half-life of aggregated but not soluble Atxn1 [82Q]
proteins. Interestingly, PML and RNF4 formed a mutual
dependence relationship in degrading pathogenic misfolded
proteins in the mammalian nucleus; RNF4 can also recognize
SUMOylated misfolded proteins and then ubiquitinate them
for subsequent proteasomal degradation [12]. This research
establishes RNF4’s critical role in the degradation of
misfolded proteins, particularly those implicated in NDs.

Even though PML lacks recognizable C-terminal regions,
it is still able to reverse the denatured state of thermally
impaired proteins [13]. In the presence of PML, the
pathogenic Atxn1 protein was destabilized, and its level
decreased by 20%. Furthermore, overexpression of PML
would hasten the degradation of aggregated proteins and
reduce their half-life, whereas it would not affect the
condition of normal Atxn1 protein. As a result, PML can
form direct associations with polyQ proteins, preferring the
pathogenic form [12].

Together, PML and RNF4, a SUMOylation-dependent
ubiquitin ligase, play an important role in protecting against
NDs by SUMOylating misfolded proteins and corporately
promoting protein degradation.

3.3. TRIM8, TRIM22 and TRIM36
The structure of TRIM8 is composed of a RING finger
domain, two B-box domains, and a coiled-coil domain at
the N-terminal region [31]. According to report, TRIM22
and TRIM36 belong to different subgroups but share the
same N-terminal structure, comprising a RING finger
domain, one B-box type2 region, and a coiled-coil domain
[55]. Based on our previous research, we found that TRIM8,
22 and 36 genes have elevated expression levels during
oncogenic transformation, and silencing these TRIM genes
impaired the ability of the oncogenic transformed PHMLER
(transformed primary human mammary epithelial cells)
cells to degrade Atxn1 [82Q], albeit they bolster the steady-
state levels of Atxn1 [82Q] in the cells [33].

As a transcription factor, Nrf2 regulates intracellular
antioxidant responses and the expression of proteasome
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subunit proteins [56]. The deregulation of Nrf2 signifi-
cantly reduced the expression of TRIM8/22/36 in
oncogenic transformed PHMLER cells. More importantly,
the dysregulation of Nrf2 in PHMLER cells showed the
impaired degradative capacity of pathogenic protein aggre-
gates Atxn1 [82Q] and Httex1p-97QP and increased the
number of aggresomes, implying that Nrf2 positively regu-
lates the degradation of misfolded proteins partially due to
the upregulation of proteasome activity [33]. In summary,
TRIM8, TRIM22 and TRIM36 work together to degrade
misfolded proteins, possibly via the UPS; however, the
precise mechanism of degradation requires further
investigations.
Open
Biol.12:220098
3.4. TRIM21
AD has two distinct pathogenic protein aggregates: extra-
cellular amyloid-β plaques cleaved from amyloid precursor
proteins (APPs) and intracellular neurofibrillary tangles com-
posed of the microtubule-associated protein tau [57,58]. The
accumulation of Aβ proteins and hyperphosphorylated tau
proteins in neurofibrillary tangles, as well as neuroinflamma-
tion, are the most important causes of the development and
progression of AD [59,60].

TRIM21 is regarded as an autoantigen, and has been
shown to interact with interferon regulatory factors; based
on these interactions, it is a crucial regulator of the type I
interferon immune response [61]. The cytosolic Fc receptor
of TRIM21 is widely expressed and active in a variety of tis-
sues, including the CNS and neural-derived cells. IFNs (IFN-
α (type I) and IFN-β (type II)) can stimulate TRIM21
expression, resulting in potentiated neutralization activity
[62]. Besides, TRIM21 is also capable of detecting antibody-
bound tau proteins and sequentially reducing tau protein
degradation [63].

Microtubule-associated protein tau lesions show higher
associations with dementia severity than Aβ plaques; thus,
targeting pathogenic tau protein is very effective in clinical
treatment [64]. McEwan and colleagues established tau
‘seeding’ procedures in human cells (similar to cytoplasmic
protein aggregates in Alzheimer patients) and discovered
that TRIM21 could intercept and neutralize antibody-
labelled tau assemblies. Their study reveals that the intra-
cellular immune system can react to self-propagating
misfolded proteins, which has significance for ongoing
efforts to create antibody-based treatments for NDs [63]. A
recent study found that infusing anti-tau protein antibodies
into mouse disease models can drastically reduce tau
pathology [65].

It is worth noting that TRIM21 neutralizes tau seeding
within the cellular compartment in a way similar to how it
defends against viral invasion. TRIM21 is recruited to anti-
body-labelled tau aggregates upon their entry into the
cytoplasm to induce proteasome- and valosin-containing
protein (VCP) or p97 (a type of molecular unfoldase involved
in multiple cellular functions, including protein degradation
via the UPS-dependent tau seeding degradation). VCP,
on the other hand, plays a more dominating role in the
neutralization process [63]. These findings suggest that a
TRIM21-dependent neutralizing response on target patho-
genic proteins may represent a promising treatment option
for tau-seeding diseases.
4. TRIMs involved in autophagy
The autophagy pathway helps to remove soluble cytosolic
proteins as well as proteins aggregated into irreversible
complexes or aggregates. When the autophagic system is
compromised, damaged proteins accumulate in the form of
protein inclusions [66]. The autophagy pathway is also
responsible for degrading long-lived proteins and damaged
organelles via the lysosomes [67]. Autophagy is required to
keep the central nervous system (CNS) functioning normally
by preventing the accumulation of misfolded and aggregated
proteins. Impairment of autophagy has consistently been
linked to the pathogenesis of different neurodegenerative
disorders [68].

Under normal conditions, brains contain few autophago-
some vesicles; however, autophagosome vesicles are found in
dystrophic neurites in AD brains. The accumulation of autop-
hagy vacuoles is most likely due to impaired clearance rather
than autophagy induction [57]. Autophagy receptors can
identify signals on specific cargo proteins such as aggregated
proteins, damaged mitochondria, excess peroxisomes, and
invading pathogens [69]. Emerging evidence suggests that
TRIM proteins play a variety of roles in selective autophagy
[70,71]. The following section discusses the involvement of
selected TRIM proteins in the clearance of neurodegenerative
protein aggregates via the autophagy pathway.
4.1. TRIM5α
TRIM5α includes a RING, B-box and coiled-coil (RBCC)
domains [72]. TRIM5α was shown to function as a receptor
for selective autophagy [70]. According to earlier studies,
TRIM5α has been implicated with autophagy receptor
p62. p62 knockdown inhibited TRIM5α-mediated retroviral
restriction in cells expressing epitope-tagged TRIM5α or
endogenously expressed human TRIM5α. As a result, p62
may function to augment TRIM5α-mediated retroviral restric-
tion, contributing to the antiviral state of cells after IFN
treatment [73].

TRIM5α colocalized with the ULK1(the Ser/Thr protein
kinase, also called Atg1 in yeast) complex and interacted
with it; the SPRY domain of TRIM5α is required for its bind-
ing, indicating that TRIM5α has a role in the early stages of
the autophagy pathway [70]. TRIM5α serves as a platform
for assembling and activating ULK1 and Beclin1, thereby
initiating autophagy [70].

Importantly, the HIV-1 capsid protein p24 is an autop-
hagy degradation substrate that is dependent on several
factors (Atg7, Beclin1, p62, ALFY and TRIM5). TRIM5α’s
LIR-1 and LIR-2 are vital motifs required for their interaction
with mammalian Atg8 s and are also required for autophagy
degradation when functioning as an autophagy receptor [70].

These findings show that TRIM5α has a non-canonical
role in the cytoplasmic quality control pathway that assem-
bles autophagy machinery to aid in the clearance of protein
aggregates linked to NDs.
4.2. TRIM16
TRIM16 lacks a RING domain at its N-terminus but contains
two B-box domains that possess RING-like folds which
possessed auto-polyubiquitination activity and act as an E3
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ubiquitin ligase, one coiled-coil region and one SPRY domain
[74]. In addition, TRIM16 homodimerized with itself and het-
erodimerized with other members of the TRIM family with
the help of the coiled-coil domain [74]. The SPRY domain is
known to facilitate protein–protein interactions [75] and is
required for p62 and Nrf2 binding. The B-box domains, on
the other hand, impede the interaction of p62 with TRIM16
[76].

Jena and colleagues discovered that TRIM16 is essential for
protein aggregation assembly, they also observed that TRIM16
functions as a critical regulator in response to oxidative or
proteotoxic stress, primarily by stimulating the synthesis
and degradation of protein aggregates [76]. An earlier
report revealed that upregulation of p62 and p62-containing
aggregates caused by deregulation of autophagy are associated
with NDs and cancer [77]. The ablation of the gene p62
suppressed the accumulation of ubiquitin-positive protein
aggregates in neurons, indicating that p62 is required for the
formation of inclusion bodies; however, the deletion of p62
did not influence neuronal degeneration [78].

Importantly, TRIM16 increased the expression of ubiquitin
system pathway genes, which are required for the ubiquitina-
tion of misfolded proteins that form protein aggregates in a
sequential manner. Nrf2 plays a critical role in this process,
and its deletion reduced the formation of Ub, p62 and LC3B-
marked protein aggregates [76]. TRIM16 serves as a scaffold
protein, interacting with p62, ULK1, ATG16L1 and LC3 to pro-
mote autophagic degradation of protein aggregates [76]. These
studies demonstrate that TRIM16 is physically present on
protein aggregates and works in tandem with the autophagy
adaptor protein p62, the initiation protein ULK1, and the
elongation protein ULK2 (ATG16L1, LC3B). These findings
imply that TRIM16 is necessary for the degradation of protein
aggregates designated for autophagy.
5. TRIMs involved in other proteostasis
mechanisms

Recent studies have focused on the roles of TRIM proteins in
the proteolysis of defective proteins; however, many TRIM pro-
teins function in the cellular protein quality control system,
including during the onset of NDs characterized by protein
aggregation formation. Aside from the ubiquitin-proteasome
system and autophagy pathways, metazoans have a repertoire
of protein quality control systems that function in the
coordination, recycling and maintenance of proteostasis.
The following section discusses the involvement of selected
TRIM proteins in the clearance of neurodegenerative protein
aggregates via other mechanisms.

5.1. TRIM17 and TRIM41
α-Synuclein (SNCA) is a presynaptic neuronal protein associ-
ated with PD both genetically and neuropathologically.
SNCA gene is the first gene thought to be mutated in familial
PD which encodes α-synuclein [79]. Besides, ZSCAN21 (also
known as Zipro1/RU49/ZNF38) is a transcription factor that
can target the first intron of the SNCA gene [80] and promote
the transcription of this SNCA gene [81,82]. α-Synuclein may
contribute to PD pathogenesis in a variety of ways, but it is
widely assumed that its aberrant soluble oligomeric confor-
mations, known as protofibrils, are the toxic species that
facilitate disruption of cellular homeostasis and neuronal
death via its effects on various intracellular targets, including
synaptic function [83].

Structurally, both TRIM17 and TRIM41 comprise a RING
finger domain, one B-box domain and one coiled-coil domain
at its N-terminal, it also possesses a PRY-SPRY domain at the
C-terminal region [72,84]. According to a report, ZSCAN21
appears to bind primarily to TRIM17 and TRIM41 among
all members of TRIM proteins [81]. Previous data have
demonstrated that TRIM17’s E3 ubiquitin ligase activity is
required and capable of initiating neuronal death by
mediating ubiquitination and degradation of Mcl-1 [85,86].

ZSCAN21 can stimulate SNCA transcription in neuronal
cells and besides the function of TRIM41 in immune
response, catalyzes the ubiquitin-mediated degradation of
other substrates including ZSCAN21. Interestingly, TRIM17
can reverse this ubiquitination, stabilizing ZSCAN21 and
inhibiting TRIM41-induced ubiquitination [81], further estab-
lishing its regulatory role on TRIM41. According to emerging
evidence, TRIM17 and TRIM41 prefer homotypic rather than
heterotypic interactions, resulting in significantly reduced
interaction between ZSCAN21 and TRIM41 in the presence
of TRIM17 [81,87].

The study also showed that patients with familial PD
have rare genetic variants in the ZSCAN21, TRIM17 and
TRIM41 genes. The expression of these variants in the
ZSCAN21 and TRIM41 genes causes the ZSCAN21 protein
to be stabilized. This study suggests that deregulation of
the TRIM17/TRIM41/ZSCAN21 pathway may be involved
in the pathogenesis of PD [81], targeting this pathway
holds a lot of promise for PD treatment.

5.2. TRIM28
Some NDs are caused by the harmful gain-of-function of
cellular proteins inside brain neuron cells. Increased levels
of α-Syn, for example, have been proven to promote neuro-
toxicity in PD, while tau protein neuronal aggregation is a
hallmark of AD, and their elevated levels including alteration
in their subcellular location have been confirmed to induce
neurodegeneration in humans and different model species.
Despite clinical distinctions, multiple lines of evidence
demonstrate that α-Syn and tau proteins overlap pathologi-
cally in AD and PD [88].

Structurally, TRIM28 contains a RING domain, two
B-boxes, and a coiled-coil region, with intrinsic E3 Ubiquitin
ligase activity. TRIM28 has been shown to promote α-syn and
tau proteins accumulation in the nucleus via its E3 ubiquitin
ligase activity, resulting in the pathogenesis of PD or AD
[88].TRIM28 regulates the pathogenic stage of α-syn and
tau proteins post-translationally, and any slight decrease in
TRIM28 abundance can lead to a decrease in both α-syn
and tau protein aggregates. Using transgenic Drosophila
tauopathy model and α-syn-overexpression-induced Parkin-
sonism mouse model confirmed that suppressing TRIM28
reduced the accumulation of pathogenic proteins α-syn and
tau proteins in the nervous system [88].

TRIM28 was found to negatively regulate the SUMOyla-
tion of both α-Syn and tau proteins. Since SUMOylation
has earlier been proposed to facilitate the nuclear localization
of certain proteins, it was postulated that TRIM28 may act as
a SUMO ligase for α-Syn and tau proteins [89]. While this
assertion may be true, more research should be undertaken



Figure 2. Molecular mechanisms of TRIM proteins in clearing misfolded proteins and protein aggregate via different mechanisms. Molecular chaperone/disaggre-
gases: TRIM11 functions as a chaperone and a disaggregase, preventing the formation of protein aggregates and dissolving pre-existing protein deposits in an ATP-
independent manner. TRIM11 also augments the native protein folding and solubility; the chaperone and disaggregases activity of TRIM11 has been confirmed in
the Parkinson’s diseases mouse model. TRIM19 and TRIM21 function similarly to TRIM11 in preventing and reversing protein aggregation. Ubiquitin–proteasome
pathway: (1) TRIM19 promotes the SUMOylation of misfolded proteins. SUMOylated proteins are further ubiquitinated by RNF4 and are subsequently degraded by
UPS. The role of TRIM19 in protecting against NDs has been confirmed in a mouse model of SCA1. TRIM11 inhibits the association of USP14 with PSMD2 and reduces
its recruitment to the proteasome. TRIM11 specifically inhibits USP14’s de-ubiquitinase activity, whereas forced USP14 expression significantly increased aggresomes
and amyloid-like fibrils in cells. (2) TRIM8/22/36 promotes the ubiquitination of misfolded proteins via UPS. (3) The cytosolic Fc receptor of TRIM21 can detect
antibody-bound tau proteins and degrade the tau assembly complexes via UPS and VCP (a type of molecular unfoldase). Autophagy: (1) TRIM5α serves as a scaffold
for the assembly and activation of both ULK1 and Beclin1, thereby initiating autophagy. TRIM5α also acts as a selective autophagy receptor, delivering cargo protein
for autophagy degradation via interacting with mammalian Atg8. (2) TRIM16 acts as a scaffold protein and interacts with p62, ULK1, ATG16L1 and LC3 to facilitate
autophagic degradation of protein aggregates. TRIM16 also leads to the ubiquitination of misfolded proteins and the clearance of protein aggregates. Other mech-
anisms: (1) ZSCAN21 stimulates the transcription of SNCA (gene encoding α-synuclein). TRIM41 promotes the ubiquitination of ZSCAN21 for subsequent degradation
via UPS. TRIM17 can inhibit TRIM41 to stabilize ZSCAN21 thus allowing ZSCAN21 to be stabilized and thus favouring α-syn expression. A mouse model of Parkinson’s
disease has confirmed this regulating pathway. (2) TRIM28 promotes the nucleus accumulation of α-Syn and tau proteins, leading to the late pathogenic process of
PD or AD. A transgenic Drosophila tau disease model, a PD mouse model, and pre-symptomatic mouse models of α-Syn and tau-disorders all showed the involve-
ment of TRIM28 in the pathogenicity of protein aggregates associated with NDs.
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to uncover such a mechanism using genetically engineered
mice that allow monitoring such modification in vivo.

Taken together, these findings revealed that TRIM28
drives the nuclear accumulation of α-Syn and tau proteins,
implying that inhibiting TRIM28 late in the pathogenic pro-
cess of these protein aggregates may hold promising
therapeutic benefits with fewer side effects.
6. Discussion and future perspectives
In this review, we summarize the emerging roles of the
tripartite motif-containing protein family in clearing and
regulating protein aggregation associated with the patho-
genic process of NDs via the ubiquitin-proteasome
pathway, autophagy, and other mechanisms (figure 2). For
instance, TRIM21 can detect antibody-bound tau proteins
via its cytosolic Fc receptor and further degrade the tau
aggregation through UPS and VCP, which provides an
opportunity for antibody-based therapy against NDs,
especially AD [63]. Several pieces of research show promising
results from animal model experiments in treating PD;
TRIM11, for example, can prevent and reverse protein aggre-
gation through its chaperone and disaggregase activity [13].
In the nucleus, TRIM28 promotes the accumulation of
α-Syn and tau proteins, leading to the pathogenic progression
of PD or AD [88]. The PML/TRIM19 and RNF4 axis is
another regulatory pathway implicated in the nucleus and
confirmed in the SCA1 animal disease model, and PML can
selectively SUMOylates misfolded proteins. SUMOylated
misfolded proteins are sequentially ubiquitinated by RNF4
and finally degraded via the proteasome [12]. Furthermore,
silencing ZSCAN21 and TRIM17 can reduce SNCA
expression while silencing TRIM41 increases it, confirming
that ZSCAN21, TRIM17 and TRIM41 all work together to
regulate α-Syn expression in PD [81]. TRIM5 and TRIM16
also function as scaffold proteins, facilitating protein
degradation via autophagy, which may be linked to
aggregation-related diseases like neurodegeneration [70,76].

A significant number of neurodegenerative illnesses are
triggered by the aggregation of normal proteins produced at
physiological levels and can develop spontaneously (such as
aggregates of β- amyloid fibril) [2,3]. Many recent studies
have focused on the emerging roles of TRIM proteins in the
clearance of misfolded and protein aggregates. Although
members of the TRIM family proteins can be found in different
parts of the cell, such as the nucleus, cytoplasm or ER, they
perform their functions by facilitating the degradation of
misfolded and aggregated proteins via various pathways
such as the UPS, autophagy, and other mechanisms.
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Apart from the TRIM family proteins mentioned above,
a genome-wide association study found that SNPs at the
TRIM10, TRIM15 and TRIM26 genes are linked to
vulnerability to multiple sclerosis (MS)—a chronic and
demyelinating disorder of the central nervous system that
has become a major cause of neurological disability in
young adults [90–92].

Our previous research also confirmed that the capacity to
degrade misfolded proteins by proteasome and autophagy
pathway was increased albeit with smaller inclusions formed
during HMEC transformation in breast cancer cell lines. Altera-
tion in key genetic elements (including TRIM proteins) in
tumour cells has previously been reported to regulate certain
physiological processes involved in the cell cycle, cell prolifer-
ation, and many signalling pathways including protein
turnover [93]. Tumour cells have an enhanced ability to
degrade misfolded proteins [94,95], whereas abnormal
accumulation of these misfolded proteins (such as Atxn1
[82Q] or Httex1p-97Q) prevented immortalized cell lines from
transforming into oncogenic transformed cell lines [33].
Moreover, during anchorage-independent growth, the accumu-
lation of misfolded proteins stimulates a higher level of
oxidative stress and thus impairs tumour growth. Meanwhile,
tumour cells have an enhanced capacity to degrade misfolded
proteins to facilitate malignant growth [33], because misfolded
protein accumulation forms protein aggregates that induce
pathogenesis of NDs; this suggests another intriguing causal
linkage between cancer and onset of neurodegenerative
disorders [96–99].

Several emerging therapeutic strategies in treating NDs
include regulating and augmenting chaperone levels, adap-
tively increasing proteasome activity, directly decreasing
misfolded protein levels, selectively inactivating the disease-
associated mutant allele, and immune approaches are some
of the currently available approaches. However, challenges
in the delivery system in crossing blood–brain barriers, as
well as side effects associated with chemical treatment and
immunization approaches, make interventions in treating
neurodegenerative disorders difficult to achieve [58].
Therefore, the use of TRIM proteins to regulate protein degra-
dation and clearance in the treatment of NDs and cancer
holds a lot of promise.

In the current review, we discovered that several other
TRIM proteins do not directly participate in the clearance of
misfolded proteins related to NDs, but they have been impli-
cated in playing critical roles in the pathophysiology of NDs
other than protein degradation, as well as other functions
related to them (figures 1 and 2). For example, TRIM9, a
specific brain E3 ubiquitin ligase, participates in the regulation
of neuronal functions and the pathogenic progression of NDs
through its ligase activity [100]. Also, TRIM59 hypermethyla-
tion is linked to cell cycle and DNA repair regulation, which
may contribute to AD pathology [101]. Furthermore, the
M694 V mutation in the TRIM20/pyrin gene has been
shown to contribute to the age at which AD manifests [102].
Apart from TRIM5, many other TRIM proteins, such as
TRIM6/17/22/49, also regulate autophagy initiation, acting
as a platform for recruiting ULK1 and Beclin1 [70]. According
to an interesting study, TRIM27 deficiency can reduce apopto-
sis and dopaminergic neuron loss, making it a potential target
for treating PD [103]. Furthermore, during the neuronal differ-
entiation process, the transcription levels of TRIM6 and
TRIM24 were different between PD patients and normal
people, which reflects their possible roles in the neurodegen-
eration pathology process at the early stages of PD [104].

Although we only discussed the identified members of
the TRIM protein family implicated in the pathophysiology
of NDs in this review, and we highlighted the possible mol-
ecular mechanisms by which they are involved in these
debilitating diseases, there may be cross-talk between these
pathways (UPS, autophagy and other pathways). Since
TRIM proteins can form heterodimers with other TRIM
proteins, it is critical to investigate the involvement of
other unidentified TRIM protein family members to see if
they can play cooperative, synergistic, or antagonistic roles
during episodes of neurodegenerative pathophysiology.

Misfolded proteins have a proclivity to undergo sequen-
tial ubiquitination and SUMOylation mediated by one, two
or more TRIM protein members, prompting the direct associ-
ation between ubiquitination and SUMOylation and how
they affect misfolded protein degradation, which will shed
more light on the unique roles of these TRIM proteins and
require further study [105]. Therefore, it is essential to inves-
tigate the crosstalk among these TRIM protein families,
particularly how they participate in the degradation of
misfolded proteins associated with NDs via the UPS,
autophagy, other pathways, or a combination of all.
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