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Abstract

Background and Purpose: Reproducible segmentation of brain tumors on magnetic resonance images is an important
clinical need. This study was designed to evaluate the reliability of a novel fully automated segmentation tool for brain
tumor image analysis in comparison to manually defined tumor segmentations.

Methods: We prospectively evaluated preoperative MR Images from 25 glioblastoma patients. Two independent expert
raters performed manual segmentations. Automatic segmentations were performed using the Brain Tumor Image Analysis
software (BraTumIA). In order to study the different tumor compartments, the complete tumor volume TV (enhancing part
plus non-enhancing part plus necrotic core of the tumor), the TV+ (TV plus edema) and the contrast enhancing tumor
volume CETV were identified. We quantified the overlap between manual and automated segmentation by calculation of
diameter measurements as well as the Dice coefficients, the positive predictive values, sensitivity, relative volume error and
absolute volume error.

Results: Comparison of automated versus manual extraction of 2-dimensional diameter measurements showed no
significant difference (p = 0.29). Comparison of automated versus manual segmentation of volumetric segmentations
showed significant differences for TV+ and TV (p,0.05) but no significant differences for CETV (p.0.05) with regard to the
Dice overlap coefficients. Spearman’s rank correlation coefficients (r) of TV+, TV and CETV showed highly significant
correlations between automatic and manual segmentations. Tumor localization did not influence the accuracy of
segmentation.

Conclusions: In summary, we demonstrated that BraTumIA supports radiologists and clinicians by providing accurate
measures of cross-sectional diameter-based tumor extensions. The automated volume measurements were comparable to
manual tumor delineation for CETV tumor volumes, and outperformed inter-rater variability for overlap and sensitivity.
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Introduction

Glial tumors are the most frequent primary brain tumors in

adults, accounting for 70% of adult primary cerebral malignan-

cies. Glioblastoma (GBM), the most common malignant primary

brain tumor in humans, exhibits very rapid infiltrative growth and

a poor prognosis, with an average survival time after GBM

diagnosis of one year [1]. In recent years, the overall survival of

glioblastoma patients has increased due to more extensive

treatment strategies such as concomitant radio- and chemotherapy

[2] and advanced surgical techniques [3] like fluorescence-guided

surgery with 5-aminolevulinic acid (5-Ala) or advanced mapping

methods [4,5].

Prognostic biomarkers for improved survival include imaging of

the extent of resection based on the amount of postoperatively

enhancing tissue as determined by structural MRI. Depending on

the study populations, gross resection of 78% to 98% of the

enhancing tumor volume is associated with an improved survival

in patients with previously untreated or recurrent GBM [6,7].

Preoperative imaging characteristics associated with better survival

are: i) absence of necrosis, ii) amount of contrast enhancing tumor,

and iii) extent of solid tumor exceeding the enhancement [8,9].

Whole tumor and sub-compartment segmentation is performed

manually in most centers and is still considered the ‘‘gold

standard’’ procedure. Several studies reported failures of individ-

ual expert rater segmentations because structural MRI may
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obscure the precise visual delineation of glioma boundaries [10–

12]. In addition, manual segmentation is time-consuming and is a

rate-determining step for further treatment planning [13]. Fully

automated user-independent segmentation tools are available for

research purposes. However, up to now they were considered

limited with regard to ease of use, accuracy and speed, and

therefore not adequate for clinical applications [14].

There is a large body of literature available on automatic brain

tumor segmentation [14], but only recently the focus is shifting

towards segmentation of individual tumor sub-compartments from

multi-modal images. Most of the relevant fully automatic brain

tumor segmentation methods employ a supervised or unsupervised

tissue classification, that assigns labels based on voxel-wise or

regionally extracted features. Corso et al. [15] segmented tumor

core and edema using Bayesian tissue classification fused with

affinity assignment by weighted aggregation. Verma et al. [16]

used a support vector machine classifier to segment necrotic, active

and edema tumor tissues. Bauer et al. [17] followed a similar

approach, but added regularization constraints to increase

robustness. Menze et al. [18] combined an atlas of normal

individuals with a latent tumor atlas to employ a generative model

for segmenting tumor compartments in different modalities. Zikic

et al. [19] used context-aware voxel features as input for a decision

forest classifier to segment 3 different tumor compartments from

multi-modal images. A comparison of the performance of many

recent methods on a standardized research dataset can be found in

[20].

Almost all evaluations so far focus on the assessment of overlap

measures like Dice coefficient, which are well established for

comparing segmentation algorithms. However, other clinically

more relevant measures like the diameter-based RANO metrics

[21], volume error or the tendency to over- or undersegment are

hardly ever reported. Moreover, there are only very few methods,

for which the source code is publicly available (e.g. [22,23]), and to

the best of our knowledge there exists not a single publicly

available fully automatic segmentation tool with a graphical user

interface that can be used by non-specialists and that can be

applied to clinical images directly.

This study was designed to compare a novel clinically-oriented

fully automated segmentation tool for brain tumor image analysis

with manually defined tumor segmentations by two independent

raters. Specifically, we aimed to evaluate: i) whether the fully

automated tool can reproduce current 2D diameter-based criteria

for brain tumor assessment [21]; ii) whether volumetric criteria

can be reliably estimated by fully automated segmentation,

including susceptibility to failure within dedicated sub-compart-

ments. Furthermore, we also report iii) whether tumor localization

has an effect on the quality of automated segmentations; iv) how

improved image acquisition protocols impact the segmentation

result.

Methods

Study population
Patients with newly diagnosed and histologically confirmed

glioblastoma pre-operatively admitted to our institution between

October 2012 and July 2013 were eligible for this prospective

study. Exclusion criteria were: incomplete image acquisition,

Karnofsky performance status ,70%, abnormal hematologic,

renal or hepatic function, and previous cranial neurosurgery. The

study was approved by the Local Research Ethics Commission

(Kantonale Ethikkommission Bern). All patients provided written

informed consent.

MR Imaging Protocol
MR images were acquired on two different 1.5 TMR scanners

(Siemens Avanto and Siemens Aera, Siemens, Erlangen/Ger-

many). Every patient underwent a standardized MRI protocol

including: i) 3D-T1w-MPR in sagittal acquisition, 1 mm isotropic

resolution; ii) post-contrast 3D-T1w-MPR in sagittal acquisition,

1 mm isotropic resolution; iii) 3-D T2w (SPC) in sagittal

acquisition, 1 mm isotropic resolution; iv) fluid-attenuated inver-

sion recovery (FLAIR) (TIR 2D) in axial acquisition. The

sequence parameters were as follows: for pre-contrast 3D-T1w-

MPR sequences TE = 2.67 ms, TR = 1580 ms,

FOV = 2566256 mm2, FA = 8u, with an isotropic voxel resolution

of 1 mm61 mm61 mm; for post-contrast T1w TE = 4.57 ms,

TR = 2070 ms, FOV = 2566256 mm2, FA = 15u, using isotropic

1 mm61 mm61 mm voxels; for 3D T2w (SPC) in sagittal

acquisition TE = 380 ms, TR = 3000 ms, FOV = 2566256 mm2,

FA = 120u, using isotropic 1 mm61 mm61 mm voxels; for the

2D fluid-attenuated inversion recovery sequence TE = 80 ms,

TR = 8000 ms, FOV = 2566256 mm2, FA = 120u, using a non-

isotropic voxel size 1 mm61 mm63 mm.

Re-evaluation of pooled datasets from the MICCAI BraTS
challenge

In order to compare the impact of the modified imaging

protocols on the segmentation quality, we additionally analyzed a

dataset composed of MR images from the MICCAI 2012 Brain

Tumor Segmentation (BraTS) challenge consisting of in-silico and

research datasets of brain tumor patients [20]. This dataset is

different from the dataset in our clinical study described above.

The BraTS images included the same MRI sequences with lower

resolutions and various parameter settings. Quality of the

automated segmentation was tested compared to the manually

generated ground truth using the online evaluation tool (http://

www2.imm.dtu.dk/projects/BRATS2012).

Two-dimensional measurements
In order to compare the accuracy of automated versus manual

segmentation, we computed the product of two maximum

diameters for 2-dimensional measurements, as recommended for

reporting of gross tumor volume by the WHO and the refined

RANO guidelines [21,24]. The automated 2-dimensional mea-

surements were extracted from the largest perpendicular diameters

of the contrast-enhancing lesions of the automatically segmented

tumor expansion. These were compared to the measurements of

our two expert raters using the product of maximal cross-sectional

enhancing diameters. In case of multiple lesions, the sum of

products of diameters (SPD) of all lesions was calculated [25].

Manual volumetric segmentation
The manual segmentations were performed by two independent

expert raters: an expert in brain tumor imaging (SB) and a

neurosurgeon experienced in brain tumor analysis (NP). Both

raters were supervised independently by two neuroradiologists

with more than 10 years of experience in brain tumor imaging

(RW and RKV). Manual segmentation was performed with the

open source software 3D Slicer Version 4.2.2.3 (www.slicer.org)

[26]. Every patient (n = 25) was segmented manually slice by slice.

Segmentation was performed on T1w, T1wGd, T2w and FLAIR

sequences according to the Vasari MR feature guide v.1.1

(https://wiki.nci.nih.gov/display/CIP/VASARI). Four different

tumor compartments were classified: i) non-enhancing tumor, ii)

enhancing tumor, iii) necrosis and iv) edema. Hence, non-

enhancing tumor was defined on FLAIR, T2w and T1w.

Multi-Modal Glioblastoma Segmentation
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Enhancing tumor parts were classified on post-contrast T1

weighted images compared to pre-contrast T1-weighted images

excluding hemorrhage. Necrosis was defined as a region within the

tumor that did not enhance and had a hyper-intense signal on

T2w and FLAIR. Edema was classified on FLAIR, T1w, T2w and

contrast-enhanced T1w [27]. The average time for manually

segmenting all subcomponents of one study patient was approx-

imately one hour.

Automated Segmentation
Automatic segmentations were performed using the Brain

Tumor Image Analysis (BraTumIA) software (available under this

link http://www.istb.unibe.ch/content/research/medical_image_

analysis/software/index_eng.html). The software offers a com-

pletely integrated segmentation pipeline, where the user only has

to load the original Dicom stacks of the four relevant MRI

modalities (T1w, contrast-enhanced T1w, T2w, FLAIR). Then,

the images are processed in a fully automatic way, including skull

stripping [28] and subsequent rigid co-registration [29] to ensure

voxel-to-voxel correspondence between the different MRI se-

quences. Based on the registered images, segmentation into

unaffected tissue and tumor tissue, encompassing four different

sub-compartments, is performed based on combined supervised

classification and regularization. The algorithmic core of the

segmentation evolved out of [17] and the basics of the current

approach have been recently described in a conference paper [30].

Briefly, the segmentation problem is formulated as an energy

minimization task in a conditional random-field context. From

each voxel, a high-dimensional feature vector is extracted,

consisting of multi-modal intensities, texture and gradient statistics

from local image patches, multi-scale symmetry features across the

mid-sagittal plane and location features. Based on this high-

dimensional feature vector, each voxel is assigned a tissue label by

a decision forest classifier [31]. Spatial constraints and prior

knowledge are considered by a conditional random field regular-

ization to increase robustness. More details are given in Data S1

and in [30].

Figure 1. Graphical user interface of the BraTumIA software. Data can be loaded from the buttons at the top, the left side offers different
options for processing and visualization and the largest part of the screen depicts the different MRI modalities with optional overlay of the
segmentation results.
doi:10.1371/journal.pone.0096873.g001

Figure 2. Comparison of the difference in 2- dimensional
measurements of two expert raters and the diameters
extracted from the automatic segmentations on the study
population of 25 patients. SPD = sum of products of diameters in
mm2. Wide horizontal bars indicate the mean and the shorter horizontal
bars indicate the SD.
doi:10.1371/journal.pone.0096873.g002
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Figure 3. Box and whisker plots (min -max) of TV+, TV and CETV between manual raters (inter-rater (IR)), automatic segmentation
versus expert rater 1 (AE 1); and automatic segmentation versus expert rater 2 (AE 2) for A: Dice coefficients B: PPV = Positive
predictive values C: Sensitivity for the sub-compartment segmentations.
doi:10.1371/journal.pone.0096873.g003

Figure 4. Scatter plot of the absolute volume measurement for TV+, TV and CETV (from left to right). Volumes measured automatically
are shown on the x-axis, volumes measured manually by the two expert raters are shown on the y-axis.
doi:10.1371/journal.pone.0096873.g004
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The segmentation method requires training on manually

segmented images of brain tumor patients. Training was

performed on 36 separate patients that were not part of the

study. Computation time for the complete automatic processing

was less than 5 minutes. The algorithmic core of the software was

among the best performing methods at the MICCAI Brain Tumor

Segmentation (BRATS) challenge (http://www2.imm.dtu.dk/

projects/BRATS2012/). A screenshot of the user interface of the

integrated software is shown in figure 1.

Statistical methods
We evaluated the results primarily using the Dice coefficient

[32]. The Dice coefficient measures the overlap of two regions (i.e.

region 1 given by a manual segmentation, region 2 given by the

automatic segmentation). It can range from 0 to 1, with 0

indicating no overlap and 1 indicating complete overlap.

Additionally, we also report the positive predictive value (PPV)

[33], sensitivity [34] and volume error between manual and

automatic segmentations. The Wilcoxon signed rank test [35] was

used for the statistical analysis of the difference between manual

and automated volumetric segmentation in terms of the metrics

mentioned above. For inter-observer comparisons and automatic

versus manual comparisons, we also used Spearman’s rank

correlation coefficients [36]. For the comparison of 2-dimensional

measures and investigation of the impact of localization, non-

parametric analysis of variance [37,38] was performed. Statistical

analysis was done using Graphpad Prism version 5.

Results

Study population
The mean patient age at pre-operative MR imaging (+/2

standard deviation (SD)) was 67.75 years +/26.191 (range 53–79

years), mean pre-operative Karnofsky performance status (+/2

SD) was 84.38% +/26.292 (range 70–90%), and mean pre-

operative NIHSS (+/2SD) was 0.25+/21.12 (range 0–3). Of the

25 patients, 10 were female and 15 male. Five patients underwent

stereotactic biopsy, 11 subtotal extirpations and nine complete

resections of enhancing tumor (CRET). All diagnoses were

confirmed by histopathology.

Comparison of automated versus manual segmentation
Two-Dimensional measurements. Comparison between

automated and manual 2-dimensional measurements by two

expert raters was done using the product of maximal cross-

sectional enhancing diameters (SPD in mm2+/2SD). The mean

absolute difference in SPD of automatic diameter versus expert

rater 1 was 570 mm2 (+/2569), (95% CI [335, 805]); the mean

absolute difference in SPD of automatic diameter versus expert

rater 2 was 495 mm2 (+/2438), (95% CI [314, 676]). The mean

absolute difference in SPD of expert rater 1 versus expert rater

(+/2SD) was 355 mm2 (+/2380), (95% CI [198, 511]). There

was no significant difference between the three different measure-

ments (Friedman test; p = 0.29). The results are depicted in

figure 2.

Volumetric Segmentation. To evaluate the different tumor

compartments, we separately investigated the complete tumor

volume (TV) encompassing the enhancing part of the tumor, the

non-enhancing part of the tumor plus the necrotic core, the TV+
(TV plus edema) and the contrast enhancing tumor volume

(CETV) of the GBM. We quantified the overlap between manual

and automated segmentation by calculation of the Dice coeffi-

cients, the positive predictive values (PPV), sensitivity, relative

volume error and absolute volume error. The results are

summarized graphically with boxplots in figure 3. Average Dice

Table 1. Statistics of Dice coefficients from the MICCAI BraTS 2012 testing dataset compared to the Dice coefficients on our clinical
study dataset (CS).

Dice TV+ TV CETV

BraTS median 0. 69 0. 55 0. 58

BraTS mean 0. 71 0. 55 0. 54

BraTS SD 0. 15 0. 19 0. 24

CS median 0.84 0.70 0.66

CS mean 0.80 0.66 0.63

CS SD 0.12 0.14 0.12

p-value 0.06 0.06 0.01

doi:10.1371/journal.pone.0096873.t001

Table 2. Spearman’s rank correlation coefficients (r) of TV+, TV and CETV.

AE1 versus AE2 AE1 versus IR AE2 versus IR

Dice coefficient r p-value r p r p

TV+ 0.85 0.00 0.74 0.00 0.79 0.00

TV 0.90 0.00 0.68 0.00 0.75 0.00

CETV 0.42 0.03 0.51 0.00 0.84 0.00

doi:10.1371/journal.pone.0096873.t002
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coefficients for the automatic segmentation were 0.8 for TV+, 0.66

for TV and 0.63 for CETV (compared to expert 1 who defined the

ground truth, see table 1). The average absolute volume error of

the automatic segmentation was 20.4 ml for TV+, 14.5 ml for TV

and 7.2 ml for CETV (compared to expert 1 who defined the

ground truth). The relationship between automatically and

manually calculated volumes of individual tumor sub-compart-

ments is shown with scatterplots in figure 4. Details can be found

in Data S1.

Using the Wilcoxon signed ranks test, we observed significant

differences for TV+ and TV (p,0.05) but no significant

differences for CETV (p.0.05) with regard to the Dice

coefficients. Spearman’s rank correlation coefficients (r) of the

Dice coefficient for TV+, TV and CETV showed highly

significant correlations (p-value) between automatic and manual

segmentations (see Table 2).

Figure 5 illustrates results for a patient where manual and

automatic segmentation match well, whereas figure 6 depicts a

patient where only moderate agreement between manual and

automatic segmentation could be achieved, mostly due to a

mismatch of the CETV compartment.

Tumor localization and impact on accuracy of

segmentation. Of the 25 analyzed data sets, 8 tumors were

in the frontal lobes, 8 temporal, 8 parietal and one occipital (the

latter was excluded from group analyses). In order to identify a

potential impact of the tumor localization in different lobes of the

brain on the accuracy of automated segmentation, we analyzed

the influence of the tumor localization (frontal, temporal, parietal)

on the Dice overlaps. A Kruskal-Wallis test revealed no differences

related to the localization or the sub-compartments (see Table 3).

Segmentation results on non-standardized imaging

protocols. Comparison of the Dice coefficients for automatic

segmentation between the non-standardized MICCAI BraTS

2012 test data and the standardized high resolution datasets in our

study patients revealed improved Dice coefficients for the

standardized protocol in all sub-compartments (see Table 1).

However the improvement was not statistically significant in all

compartments (p = 0.06) due to the small number of patients in the

BraTS dataset (11 patients).

Discussion

In this prospective study we validated an automatic multimodal

segmentation software (BraTumIA) in clinical practice. We

delineated different tumor compartments, i.e. TV, TV+ and

CETV in de novo GBM. Our goal was to evaluate how

BraTumIA performed in our clinical setting in comparison to

manual ratings. We focused on two metrics for clinical evaluation:

the SPD according to the WHO classification [24,39], and the

volumes and overlaps of TV, TV+ and CETV. It was shown that

automatic volumetry offers significant time gains compared to

manual volumetry.

Two points stand out among the study results: i) computation of

cross sectional SPD using automated 2-dimensional tumor

extensions is comparable to manual tumor delineation; ii)

estimation of TV, TV+ and CETV by the automatic method

reaches a sensitivity, which is comparable to the inter-observer

Figure 5. The figures show the original images and the segmentations as overlays on the post-contrast T1-weighted images for a
patient with a good overlap of manual and automatic segmentation. Upper row: an axial slice of the original images (T1w, T1wGd, T2, FLAIR
from left to right). Bottom row left column: manual segmentation, right column: automatic segmentation. Color code for segmentations: red =
necrosis, yellow = enhancing tumor, blue = non-enhancing tumor, green = edema. TV+ corresponds to a combination of all colors, TV corresponds
to red+yellow+blue compartments, CETV corresponds to the yellow compartment.
doi:10.1371/journal.pone.0096873.g005
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variability between two experts performing manual segmentation.

For CETV, BraTumIA had a better overlap with the ground-truth

than Dice overlap between manual inter-rater segmentations.

Furthermore, we observed that classification of automated

segmentation is insensitive to tumor localization and individual

compositions of the sub-segments of GBM. Comparison of the

quality of the automatic segmentations on our new prospective

patient dataset of standardized images with the quality obtained

on the non-standardized BraTS 2012 images, showed an average

improvement of more than 10% (table 1). This indicates that a

standardized high-resolution isotropic imaging protocol such as

the one used in this study has the potential to optimize the quality

of automatic segmentations.

A previous study demonstrated that an extent of resection

(EOR) of the TV $ 78% impacts patient outcome, and that the

positive relationship between EOR and patient outcome can be

observed even at the highest levels of resection [8]. For the pre-

operative baseline assessment, we observed good concordance of

linear SPD assessment between manual raters and the automated

approach, and a higher sensitivity for automated volumetry of the

CETV compared to two manual raters (72% vs. 53%, figure 3).

Although the linear SPD measures provided a good concordance

between automatic and manual measurements, these measures are

problematic in cases of non-solid GBMs [40]. GBMs usually

appear with a complex morphology, thus necessitating volumetric

analyses. However, diameter-based SPD measures only consider

one tumor compartment (necrosis+enhancing tumor), usually in

low resolution datasets.

Most segmentation techniques focus on reporting of Dice

similarity coefficients of the gross tumor volume instead of

individual tumor sub-compartments. A semi-automatic approach

using Slicer recently reported an average Dice similarity coefficient

of 0.80 [41]. Semi-automatic segmentations tend to produce better

accuracies compared to fully automatic methods but previous

studies suggest that semi-automatic methods are less objective

[42]. While previous approaches aimed to assess only one tumor

Figure 6. The figures show the original images and the segmentations as overlays on the post-contrast T1-weighted images for a
patient with a moderate overlap of manual and automatic segmentation (CETV does not match well). Upper row: an axial slice of the
original images (T1w, T1wGd, T2w, FLAIR from left to right). Bottom row left column: manual segmentation, right column: automatic segmentation.
Color code for segmentations: red = necrosis, yellow = enhancing tumor, blue = non-enhancing tumor, green = edema. TV+ corresponds to a
combination of all colors, TV corresponds to red+yellow+blue compartments, CETV corresponds to the yellow compartment.
doi:10.1371/journal.pone.0096873.g006

Table 3. Regional Differences in Dice overlap according to localization.

Dice Frontal Temporal Parietal p-Values

TV+ mean 0. 84 0. 81 0. 85 0. 62

TV mean 0. 65 0. 64 0. 74 0. 13

CETV mean 0. 57 0. 65 0. 68 0. 2

doi:10.1371/journal.pone.0096873.t003
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compartment, we analyzed different metrics for TV+, TV and

CETV individually. BraTumIA extends our understanding of

complex morphology because it includes the edematous and

necrotic parts of the tumor. The analysis is more challenging if

several tumor regions are considered separately, but this differen-

tiation offers a window for improved integration of other

modalities such as diffusion or perfusion parameters [43]. In

addition to pre-operative assessment, knowledge about volume

changes beyond the CETV is important for the management of

tumor recurrence and response to chemo- and anti-angiogenic

therapy, since CETV are prone to errors due to pseudo-response

and pseudo-progression [44]. Objective estimates of CETV after

gross resection of the TV may improve risk assessment of tumor

recurrence if the pre-treatment TV and CETV are precisely

determined. This sub-compartmental approach may also provide

a basis for the integration of further prognostic markers to

differentiate pseudo-response or pseudo-progression and may

therefore be of crucial significance for clinical use.

Accurate segmentation of the TV region is particularly

challenging, even for expert raters, because it is difficult to

distinguish edema from non-enhancing tumor. This can also be

seen from the large spread for the TV region in figure 4. Observer

independent sub-compartmental volumetry may identify new

research areas where structural and dynamic texture parameters

can be defined for the different tumor sub-compartments and may

lead to new theories of tumor spread or therapy response by

integrating histopathological features within the TV+ regions

[45,46].

Limitations of this study include the fact that our analysis is

restricted to pre-surgical tumor volumetry. Future work should

address the accuracy of longitudinal volumetric measures and

evaluate whether complementary ADC and perfusion imaging

may improve the clinical yield of ‘‘tailored’’ multi-parameter

analysis.

Conclusions

In summary, we demonstrated that BraTumIA supports

radiologists and clinicians with accurate measures of cross

sectional 2-dimensional tumor extensions that are equivalent to

manual tumor delineation, and provides CETV tumor volumes

that have lower variability than manual ratings.
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S6. Method S1: Details of the segmentation algorithm. Table S1:

Automated versus manual segmentation of expert 1. Table S2:
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Inter-observer agreement of manual segmentations of expert 1 and

expert 2. Table S4: Statistical analysis (Wilcoxon signed rank test)

of agreement between automatic and manual segmentations.

Table S5: Spearman rank correlation coefficients of automatic and

manual segmentations. Table S6: Kappa coefficient of mutual

agreement between different automatic and manual segmentations

in all tumor sub-compartments.
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