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Abstract

The membrane associated guanylate kinase (MAGUK) family member, human Discs Large 1 (hDlg1) uses a PDZ domain array
to interact with the polarity determinant, the Adenomatous Polyposis Coli (APC) microtubule plus end binding protein. The
hDLG1-APC complex mediates a dynamic attachment between microtubule plus ends and polarized cortical determinants
in epithelial cells, stem cells, and neuronal synapses. Using its multi-domain architecture, hDlg1 both scaffolds and regulates
the polarity factors it engages. Molecular details underlying the hDlg1-APC interaction and insight into how the hDlg1 PDZ
array may cluster and regulate its binding factors remain to be determined. Here, I present the crystal structure of the hDlg1
PDZ2-APC complex and the molecular determinants that mediate APC binding. The hDlg1 PDZ2-APC complex also provides
insight into potential modes of ligand-dependent PDZ domain clustering that may parallel Dlg scaffold regulatory
mechanisms. The hDlg1 PDZ2-APC complex presented here represents a core biological complex that bridges polarized
cortical determinants with the dynamic microtubule cytoskeleton.
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Introduction

Cell polarity is a core, biological process requisite for cell

division, chemotaxis and multi-cellular development. Polarity

factors integrate cellular cues and translate these signals into

directed cytoskeletal change. This requires an interplay between

polarity determinants and the cytoskeleton, an association that is

inherently complicated by membrane and cytoskeletal dynamics.

To stably link cortical determinants with the dynamic cytoskele-

ton, a bridge must be established that retains membrane

association while sustaining a static or processive cytoskeletal

attachment. One example of a molecular bridge between the

membrane and the microtubule cytoskeleton is the complex

formed between Dlg1 and APC, a protein that binds polymerizing

microtubule plus ends in an EB1-dependent manner [1,2,3,4,5,6].

Dlg1 is a MAGUK protein family member localized to

polarized structures including epithelial junctions, stem cell

cortical regions, and neuronal synapses [7,8,9,10]. MAGUK

proteins adhere to a common domain architecture comprising one

to three PDZ domains that bind target proteins, an SH3 domain,

a variable HOOK sequence, and an enzymatically inactive

guanylate kinase domain (Figure 1A) [11,12,13]. Collectively,

MAGUK protein domains operate as scaffolding that actively

cluster and regulate the components they bind. Canonical PDZ-

protein interactions involve PDZ domain binding to a target

protein’s C-terminal region [14]. PDZ domains are classified

based on the target sequences they bind. Common PDZ targets

are classified as type I: -S/T-X-Q, type II: -Q-X-Q, or type III: -D/

E-X-Q motifs where Q is a valine or leucine. Dlg1 contains three

PDZ domains, classified as G-H PDZ domains with specificity for

type I PDZ-binding motifs [15]. PDZ1 and PDZ2 directly abut

each other while a 49 amino acid linker bridges PDZ2 and PDZ3.

Intra-molecular PDZ domain interactions have been observed in

ligand-free PDZ domain-containing proteins including PSD-95,

GRIP, and syntenin [16,17,18,19,20,21]. Additional studies have

demonstrated ligand-dependent changes in intra-molecular PDZ

domain interactions, specifically, the release of PDZ interactions

upon ligand binding [22]. But how PDZ domain arrays promote

target clustering remains an outstanding question. PDZ-mediated

clustering enables the MAGUK proteins to coordinate and

modulate signaling and cytoskeletal components in space and

time. Mapping the diverse modes PDZ domains use to bind target

proteins and interact with neighboring PDZ domains is funda-

mental to understanding how MAGUK proteins operate. Factors

found to bind the Dlg1 PDZ domains include the Ca2+pump 4b,

p56lck tyrosine kinase, human papillomavirus E6 protein, and the

polarity determinant APC [1,23,24,25]. Dlg1 is competent to bind

the APC C-terminus using either PDZ1 or PDZ2. The APC C-

terminus is a type I PDZ binding motif that binds Dlg1 PDZ1 and

PDZ2 with 18 mM and 1 mM affinity, respectively [26].
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APC is a conserved, multi-domain, multi-motif scaffolding

protein involved in b-catenin destruction, cell adhesion, microtu-

bule dynamics, and cytoskeletal signaling [27,28,29,30,31,32,33].

Mutations in APC have pleotropic effects including aberrant wnt

signaling, defects in cell adhesion and adherens junction structure,

developmental defects, and colorectal cancer [34,35]. Underlying

its multifunctional cellular role is its diverse domain architecture

that spans 2843 amino acids. Central motifs, designated 15 and 20

amino acid repeats and SAMP motifs are determinants that bind

wnt signaling components and orchestrate b-catenin destruction

[36,37]. Delineated cytoskeletal binding determinants flank the

central motifs involved in wnt-signaling. An N-terminal armadillo

repeat domain binds to cytoskeletal and signaling components

including the kinesin KAP3, the guanine nucleotide exchange

factor ASEF, and the GTPase-activating protein IQGAP

[33,38,39]. The APC C-terminus contains a basic region that

binds microtubules as well as a SxIP-motif that binds the

microtubule plus end tracking protein EB1, localizing APC to

the polymerizing microtubule plus end [40,41,42]. The APC SxIP

motif is 30 amino acids N-terminal to the Dlg1 PDZ-binding motif

(Figure 1B).

The microtubule cytoskeletal array is polarized, with minus

ends predominantly focused at a microtubule organizing center.

Microtubule plus ends fan out towards the cell periphery and are

the focal points of microtubule dynamic instability [43]. Accord-

ingly, a host of factors associate with the microtubule plus end to

regulate its dynamics. A prime factor associated with the

polymerizing microtubule plus end is EB1 [4]. The EB1 N-

terminal calponin homology domain recognizes the GTP state of

the polymerizing microtubule, thereby binding microtubule lattice

determinants specific to the polymerizing tip [44,45]. The

conserved EB1 C-terminal dimerization domain recruits numer-

ous proteins to the microtubule lattice by binding a short amino

acid motif termed a SxIP motif [42]. SxIP motif-containing

proteins are functionally diverse, and include polarity determi-

nants, cytoskeletal crosslinkers, signaling molecules and regulators

of microtubule dynamics. The adenomatous polyposis coli (APC)

tumor suppressor has a C-terminal SxIP motif that affords EB1-

dependent APC microtubule plus end tracking activity. Serendip-

itously, EB1 was first identified in a yeast two-hybrid screen for

APC binding proteins, and was named EB1 to reflect its ability to

bind the end of APC; subsequently it was identified as

a microtubule plus end binding protein [3,4].

Collectively, the Dlg1-APC-EB1 complex mediates a dynamic

link between polarized membrane regions and the microtubule

cytoskeleton [2,6]. APC can use its basic region to bind

microtubules directly, or its SxIP motif to bind EB1, which

localizes it to the polymerizing microtubule plus end. The high-

affinity Dlg1-APC link is mediated by PDZ2. While high-

resolution structural information is available for the Dlg1 PDZ1-

APC interaction, only a partially occupied Dlg1 PDZ2-APC

structure has been determined that showed a splayed APC

peptide, engaging PDZ2 using only its ultimate four residues [26].

When compared to the Dlg1 PDZ1-APC structure that binds the

ultimate five APC residues, the PDZ2-APC structure raised

questions as to why the PDZ2-APC interaction was an order of

magnitude greater than the PDZ1-APC interaction. Here I report

the crystal structure of the Dlg1 PDZ2-APC complex determined

to a resolution of 2.0 Å. This structure shows an extensive

interaction between PDZ2 and APC that spans the ultimate six

APC residues and highlights additional binding determinants that

likely promote the PDZ2-APC interaction. This structure provides

molecular details on the Dlg1-APC polarity complex as well as

determinants that may underlie MAGUK protein dynamic

scaffolding and target clustering.

Materials and Methods

Cloning and Purification
DNA encoding human Dlg1 PDZ2, residues 310–407, was

generated by PCR sewing using oligonucleotide templates with

optimal E. coli codon usage. The Dlg1 PDZ2 fragment was

inserted into pGEX-2T (GE Healthcare) forming a thrombin-

cleavable, N-terminal GST fusion construct. BL21 DE3 pLysS E.

coli were transformed with pGEX-2T-Dlg1 PDZ2, grown in LB

media under 50 mg/L ampicillin selection at 37uC to an optical

density at 600 nm of 1.0 at which point protein expression was

induced by the addition of 0.1 mM isopropyl-1-thio-b-D-galacto-

pyranoside (final concentration), the temperature was lowered to

20uC, and induction proceeded for 16 hours. Cells were harvested

by centrifugation at 21006g for 10 minutes and resuspended in

200 mL buffer A: 25 mM Tris pH 8.0, 300 mM NaCl, 0.1% b-

mercaptoethanol, and lysed by iterative rounds of sonication at

4uC followed by sample cooling. 0.2 mM phenylmethylsulfonyl

fluoride (final concentration) was added during sonication and the

lysate clarified by centrifugation at 23,0006g for 45 min. The

supernatant was loaded onto a 10 ml Glutathione Sepharose Fast

Flow affinity column (GE Healthcare). GST-Dlg1 PDZ2 was

eluted from the glutathione column with 50 ml of 25 mM

glutathione pH 8.0 in buffer A. 1 mM CaCl2 was added to the

eluate, as was 25 mL of a 1 mg/mL thrombin stock (Heamatologic

Technologies) to cleave GST from Dlg1 PDZ2, leaving an N-

terminal gly-ser cloning artifact on the PDZ2 domain. Proteolysis

proceeded for 12 hours at 4uC. Thrombin was removed from the

sample by filtering the sample over 0.5 mL Benzamidine

Sepharose (GE Healthcare). The sample was exchanged into

100 mL buffer B (25 mM HEPES, pH 6.8 and 0.1% b-

mercaptoethanol) using an Amicon Ultra 3 kDa spin concentrator

(Millipore) and loaded onto a 10 mL SP Sepharose Fast Flow

column (GE Healthcare) and eluted using a linear 0–1 M NaCl

gradient in buffer B. Dlg1 PDZ2 peak fractions were pooled and

exchanged into 100 mM NaCl, 25 mM Tris pH 7.0, and 0.1% b-

mercaptoethanol using an Amicon Ultra 3 kDa spin concentrator

(Millipore), concentrated to 25 mg/mL, snap frozen in liquid

Figure 1. Overall structure of the Dlg1 PDZ2-APC complex. A) Domain arrangement of H.s. Dlg1. Shown is the L27 domain (grey), PEST motif
(red), PDZ domains 1–3 (green), SH3 (dark blue), and guanylate kinase domain (orange). B) Domain arrangement of H.s. APC. Shown is the
oligomerization domain, the armadillo repeat domain, 15 and 20 aa repeat sequences used in b-catenin binding, SAMP motifs used for axin binding,
a basic region with microtubule binding activity, and C-terminal EB1 and Dlg1 binding sites. The C-terminal region is boxed and corresponding
sequence shown below. Highlighted in red is the SxIP motif and flanking residues that bind the microtubule plus end tracking protein EB1. The C-
terminal six residues that bind Dlg1 PDZ2 are highlighted in purple. The APC peptide synthesized in this study is indicated by an underline. C) Zoom
view of the APC peptide bound to hDlg PDZ2. Final, refined 2Fo-Fc electron density around the APC peptide is displayed and contoured at 1.0 s. D)
2u structure topology of Dlg1 PDZ2 complexed with the C-terminal APC b-strand (grey), which runs anti-parallel to Dlg1 PDZ2 bB and parallel to aB. E)
Ribbon diagram of Dlg1 PDZ2 complexed with the APC C-terminal six residues shown in stick format. F) Structure shown in E, rotated 45u about the
y-axis. The Dlg b-strands are colored in a yellow to dark green continuum, loop regions are colored orange, helices aA and aB are colored slate and
purple respectively, and the APC peptide is colored grey (C–F).
doi:10.1371/journal.pone.0050097.g001
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nitrogen and stored at 280uC. All purification procedures were

executed at 4uC.

Synthesis of the APC C-terminal Peptide
An APC C-terminal peptide encompassing residues

RHSGSYLVTSV (2833–2843) was synthesized with an N-

terminal tetramethyl rhodamine (TMR) tag by the Yale Keck

Biotechnology Resource Laboratory, purified by HPLC and

verified by mass spectrometry.

Crystallization
1.4 mM Dlg1 PDZ2 was incubated with 1.7 mM APC C-

terminal peptide in 100 mM NaCl, 25 mM Tris, pH 7.0, and

0.1% b-mercaptoethanol for one hour on ice. Crystallization

followed the hanging drop protocol using 2 mL of the Dlg1 PDZ2-

APC mixture and 2 mL of a 1 mL well solution containing

200 mM sodium acetate, 100 mM sodium cacodylate pH 6.25,

28% (w/v) polyethylene glycol 8000. Thin crystal sheets grew at

20uC to dimensions of 2061006600 mm over the course of a week.

Crystals displayed an enhanced red color relative to the

surrounding solution, indicative of TMR-APC peptide incorpora-

tion into the crystals. Crystals were transferred to cryoprotectant

containing well solution supplemented with 30% glycerol and flash

frozen in liquid nitrogen.

Data Collection, Structure Determination, and
Refinement

Dlg1 PDZ2-APC crystals were maintained at 100 K under

a cryo-cooled nitrogen stream and diffraction data collected at the

Advanced Light Source synchrotron beamline 8.3.1. Data were

indexed, integrated and scaled using HKL2000 [46] (Table 1).

The structure was determined using the AutoMR molecular

replacement program (PHENIX crystallographic suite) and

a model of the human apo Dlg3 PDZ2 domain (pdb accession

code 2FE5). One solution was found in the asymmetric unit. The

molecular replacement solution showed clear electron density for

the APC peptide. The model was built using AutoBuild (PHENIX)

[47] and refined iteratively through manual builds in Coot [48]

followed by refinement runs using phenix.refine (PHENIX) against

a maximum likelihood target function. Refinement statistics were

monitored using a Free R, calculated using 10% of the data,

randomly excluded from refinement. The final model includes one

Dlg1 PDZ2 molecule (chain A: residues 310–406, residue R310

modelled as alanine), one APC molecule (chain B: residues 2838–

2843), and 106 water molecules. Structure figures were produced

using PyMOL (http://pymol.sourceforge.net).

Data Deposition
Coordinates for the human Dlg1 PDZ2-APC complex have

been deposited in the Protein Data Bank under accession code:

4G69.

Results

Structure Determination of the Human Dlg1 PDZ2-APC
Complex

To examine the molecular basis for the Human Dlg1 PDZ2–

APC interaction, the Dlg1 PDZ2 domain (residues 310–407) was

purified and complexed with a peptide corresponding to the C-

terminal 11 residues of APC with an N-terminal TMR

fluorophore covalently bound. A 1:1.2 molar ratio of the PDZ

domain:APC peptide was used. Thin crystal plates grew over the

course of a week from a polyethylene glycol condition at pH 6.25.

Crystals were bright red compared to the surrounding solution,

indicative of peptide incorporation into the crystal. Diffraction

data was collected to a resolution of 2.0 Å and processed in the

space group P212121. A peptide-free human Dlg3 PDZ2 model

(SAP97, PDB code 2FE5) was used to find one molecule in the

asymmetric unit. Strong electron density was evident in the PDZ

peptide-binding site and the final six C-terminal residues of the

APC peptide could be assigned and built into the electron density.

The structure was built and refined to final R and Rfree factors of

17.1% and 18.3%, respectively. No electron density was evident

for the TMR fluorophore or the N-terminal five amino acids of the

APC peptide (Figure 1C). The full PDZ domain was modelled,

including residues 310–406.

Overall Architecture of the Dlg1 PDZ2-APC Complex
Dlg1 PDZ2 is a canonical PDZ domain fold (Figure 1C–F) [49].

A twisted, anti-parallel b-sheet establishes the core of the domain

and progresses through five b-strands: bA-bE-bD-bC-bB. The bB-

bC segment is connected to bD by a short, single turn helix, aA

that packs against bA, covering the hydrophobic core. A second

helix, aB, with its flanking loop regions, connects bD and bE. The

loop bridging bD and aB is packed between these structural

elements and runs anti-parallel to them. Collectively, the domain

forms a compact structure with an exposed, hydrophobic groove

framed by bB and aB as well as the extended bA-bB and bB-bC

loops. Nestled in the hydrophobic groove is the APC peptide in

a b-strand conformation, running anti-parallel to the adjacent bB

Table 1. Data Collection and Refinement Statistics.

Data Collection

Wavelength (Å) 1.127

Space group P212121

Cell dimensions: a,b,c (Å) 27.1, 51.2, 71.8

Resolution (Å) 70–2.00 (2.07–2.00)

Reflections: Measured/Unique 32635/6846

Completeness (%) 97.8 (82.9)

Mean redundancy 4 (3)

,I/sI. 20.7 (4.8)

Rsym
a 0.07 (0.22)

Refinement

Resolution (Å) 29.4–2.00 (2.15–2.00)

Rb/Rfree (%)c 17.1 (16.4)/18.3 (18.7)

Reflections: R/Rfree 6158/688

Total atoms: Protein/Water 769/106

Stereochemical ideality (rmsd): Bonds/
Angles (Å/u)

0.007/0.980

Mean B-factors (Å2): Protein/Water 15.9/25.3

Ramachandran analysis: Favored/
Allowed (%)

97.0/3.0

Parentheses list statistics for the high resolution shell

aRsym =g|Ii2,l.|/gI where Ii is the integrated intensity of the i-th observation
and,I.is the mean intensity of the reflections over Friedel and symmetry
equivalents.
bR value =g(|Fobs|2k|Fcalc|)/g|Fobs|.
cRfree is calculated using a 10% subset of the data that are removed randomly
from the original data and excluded from refinement.
doi:10.1371/journal.pone.0050097.t001
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strand and parallel to the aB helix. The APC C-terminal

carboxylate group is positioned proximal to the bA-bB loops.

Distal to this peptide-binding groove, the PDZ domain’s N- and

C-termini are positioned next to one another.

Species- and Dlg Isoform-specific Conserved Rims Frame
the APC Binding Site

To investigate specificity in the Dlg1 PDZ2-APC interaction, I

aligned Dlg1 PDZ2 domains from diverse species with human

Dlg1 PDZ1-3 and Dlg2-4 PDZ2. Invariance was mapped with

three criteria: those residues invariant across all PDZ domains

aligned, those residues invariant across Dlg1 PDZ2 domains

aligned, and those residues invariant across Dlg1 PDZ2 domains

aligned but different in Drosophila Dlg1 PDZ2 (Figure 2A).

Drosophila was set as a point of divergence given that Drosophila

APC does not contain a C-terminal PDZ-binding motif. An

alignment of APC C-terminal sequences from the same set of

species used in the Dlg alignment is presented in Figure 2B. In

contrast to Drosophila APC, all other species aligned ranging from

human to pufferfish (Tetraodon nigroviridis) are invariant across seven

of the ultimate eight APC residues, conforming to a type I PDZ

binding motif (Figure 2B). When the three contours of Dlg PDZ

invariance are mapped on the Dlg1 PDZ2-APC complex, a core

set of residues, invariant across all PDZ domains aligned, is

positioned in the peptide binding groove to mediate canonical

PDZ-type I peptide interactions (Figure 2C, green) [49]. A

signature, invariant PDZ motif: GLGF, underlies this site and

forms contacts with the ultimate three APC residues, including the

carboxylate group. Surrounding the groove are residues positioned

at the peptide’s N- and C-termini that are invariant across all Dlg1

PDZ2 species aligned, including Drosophila (Figure 2C, yellow).

However, flanking either side of the APC b-strand are residues

invariant across the Dlg1 PDZ2 members aligned, except

Drosophila (Figure 2C, orange). A number of these residues are

also present in other human Dlg PDZ domains, including the Dlg1

PDZ1 domain that also exhibits APC C-terminus binding activity

in vitro. Many of these invariant residues reside on the aB helix and

are APC peptide binding determinants while others flank the

peptide binding site, but are not directly involved in peptide

binding. Overall, a collective, invariant site is defined by Dlg PDZ

domains from species that contain the C-terminal APC sequence

GSYQVTSV, where Q is a hydrophobic residue. While some of

these residues are APC-binding determinants, flanking peripheral

residues, along with the bound APC molecule, may define

a composite Dlg1 PDZ2-APC binding site for other factors

involved in Dlg1 scaffolding.

The Dlg1 PDZ2-APC Binding Determinants
The APC C-terminal peptide lies in the PDZ type I-specific

furrow defined by bB and aB. The APC peptide forms a b-strand

that makes a canonical hydrogen bond network with the anti-

parallel bB strand (Figure 3A–C). The ultimate three APC

residues: TSV, conform to the type I PDZ peptide motif: S/T-X-

Q, and make standard contacts in the furrow. Specifically, the APC

V2843 carboxylate group makes hydrogen bonds with the

backbone amides of L329, G330, and F331 (Figure 3A,B). The

APC V2843 side chain packs in the hydrophobic core of the

furrow, making van der Waals contacts with L329, F331, and

L391. The APC T2841 side chain hydroxyl makes a hydrogen

bond to the H384 ring Ne while the T2841 Cb and Cc atoms

make van der Waals contacts with I333 and V388 respectively

(Figure 3C). While the ultimate APC residues conform to standard

type-I PDZ interactions, the penultimate three APC residues:

YLV, also engage the Dlg1 PDZ2 peptide binding furrow and

make specific contacts with Dlg1. V2840 contributes to the anti-

parallel b-strand interaction while the backbone spanning APC

Y2838 and L2839 is stabilized by a hydrogen bonding network

with the Dlg1 N339 carboxamide group (Figure 3C). APC L2839

and V2840 also make van der Waals contacts with Dlg1 residues

H384 and A334 respectively. Collectively, Dlg1 PDZ2 and the

APC peptide bury 744 Å2 of solvent accessible surface area.

PDZ Domain Plasticity and Conformational Change
To investigate conformational change that occurs upon APC

peptide binding, the Dlg1-PDZ2-APC structure was superimposed

on the apo structure of human Dlg1 PDZ2 (Figure 3D) [50].

Distinct structural differences are noted in the peptide-binding

cleft. In the apo structure, aB is closer to the bB strand than in the

APC-bound structure, indicative that the peptide-binding cleft

splays to allow APC access and binding. Structural changes in the

APC-bound structure are also evident in the loop regions that

flank the peptide binding site, these include the aB-bE loop, the

bA-bB loop, as well as distal structural elements including the bC-

aA loop which is shifted away from the peptide binding site,

potentially through movement in the adjacent bA-bB loop.

Comparative B-factor analysis for the apo and APC-bound

PDZ2 structures show relatively high B-factors in regions that

correlate with structural changes between the two states

(Figure 3D–F). Normalizing the B-factor range for the two

structures, the bB strand and the aB helix displayed very low B-

factors in the Dlg1 PDZ2-APC structure in contrast to the Dlg1

PDZ2 apo structure where the highest B-factors mapped to the aB

helix and the flanking loops. This indicates that the aB helix is

moderately mobile and becomes stabilized once the APC peptide

engages the furrow.

High-occupancy Conformation of the APC C-terminal
Region

Recent work by Zhang et al. analyzing the structure and

binding mode of Dlg1 with APC determined a significantly

different structural engagement between Dlg1 PDZ2 and APC

[26]. This crystal structure, determined in space group P21,

contained five Dlg1 PDZ2 molecules in the asymmetric unit, of

which only one PDZ molecule showed electron density into which

an APC peptide could be modelled. In contrast, the structure

presented here, determined in space group P212121, contains

a single Dlg1 PDZ2 molecule in the asymmetric unit, with a fully-

bound, APC C-terminal peptide (Figure 4A). When the Dlg1

PDZ2-APC complex by Zhang et al. is compared to the structure

presented here as well as the Dlg1 PDZ2 apo structure, the

orientation of the APC peptide and the PDZ peptide binding

furrow adopt highly different conformations (Figure 4B, orange

arrows). First, the APC peptide in the current structure docks

along the entire PDZ peptide-binding furrow, forming an

extensive hydrogen bonding network with Dlg1 PDZ2, extending

the PDZ b-sheet through anti-parallel strand extension and

burying 372 Å2 of the peptide’s solvent accessible surface area.

In contrast, the APC C-terminal peptide in the Zhang et al.

structure only engages the PDZ furrow using its C-terminal four

residues. Between the two structures, the ultimate C-terminal

residue, V2843, is positioned in the furrow equivalently. However,

every preceding APC residue in the Zhang et al. structure adopts

a significantly different spatial conformation in regard to both the

backbone position as well as side chain rotamer conformation. In

the Zhang et al. structure, the APC peptide N-terminal region is

displaced from the PDZ domain, splayed nearly 45u from the PDZ

domain leaving only the ultimate four APC residues to bind Dlg1

PDZ2 (Figure 4A–C). This contrasts with the ultimate six APC

Structure of the Human Dlg1 PDZ2-APC Complex
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residues that engage Dlg1 PDZ2 in the structure reported here.

The two structures also differ with regard to the conformation of

the PDZ domain’s peptide-binding furrow. In the Zhang et al.

structure, the Dlg1 PDZ peptide-binding furrow is structurally

more akin to the peptide-free Dlg1 PDZ2 apo structure, where aB

is positioned closer to bB, clamping the peptide furrow (Figure 4B)

[50]. In the Dlg1 PDZ2-APC structure presented here, aB is

displaced, opening the PDZ peptide-binding furrow, enabling

APC to bind the length of the furrow. Collectively, the differential

binding states observed in the two Dlg1 PDZ2-APC structures

likely reflect steps along a binding pathway: initial binding via

canonical interactions between the ultimate C-terminal valine and

the PDZ domain as observed in the Zhang et al. structure,

followed by docking of the N-terminal residues into the furrow and

displacement of the aB helix as observed in the structure reported

here.

Zhang et al. predicted that APC interacted with the PDZ2 bB-

bC loop, though an interaction was not observed in their structure

[26]. This prediction was based on isothermal titration calorimetry

experiments in which comparative binding affinities between the

APC peptide and Dlg1 PDZ1 and PDZ2 were measured. The

APC-PDZ1 Kd was measured to be 18.2+/27.6 mM, while the

APC-PDZ2 Kd was measured to be 1.05+/20.22 mM. Zhang

et al. hypothesized that the different affinities between APC and

the two PDZ domains could be due to sequence differences in the

respective bB-bC loops (Figure 2A). A glutamine resides at

position 340 in PDZ2, while the equivalent residue in PDZ1 is

a proline. When Zhang et al. made the PDZ2 Q340P mutation,

Figure 2. The Dlg1 PDZ2 peptide-binding cleft is highly conserved. A) Alignment of PDZ domains from human Dlg1 as well as PDZ2 from
human Dlg2-4 and Dlg1 from Sus scrofa (Ss), Rattus norvegicus (Rn), Mus musculus (Mm), Xenopus tropicalis (Xt), Anolis carolinensis (Ac), Danio rerio
(Dr), Tetraodon nigroviridis (Tn), and Drosophila melanogaster (Dm). Only a partial sequence was available for Tn, thus residue numbers are not listed.
The alignment was generated manually through analysis of conserved residues. Solvent accessible surface area for each residue in the Dlg1 PDZ2-
APC complex is indicated above the alignment as is secondary structure. Residues numbers above the alignment are for human Dlg1 PDZ2. Red
asterisks indicate the two sites commonly used to classify PDZ domains. Dlg1 PDZ2 residues that contact APC are indicated. Residues invariant across
all PDZ domains are colored green. Residues invariant across all Dlg1 PDZ domains are colored yellow. Residues invariant across all Dlg1 PDZ2
domains except Drosophila are colored orange. B) Alignment of APC C-terminal 21 amino acids for species aligned in A. The alignment was generated
manually through analysis of conserved residues. Residues invariant across all species except Drosophila are colored purple. Solvent accessible
surface area, secondary structure, and residues that contact Dlg1 PDZ2 are indicated. C) Structure of the Dlg1 PDZ2-APC complex with Dlg1 PDZ2
shown in spherical format and the APC peptide shown in stick format. Invariance is colored according to the alignments in A and B. The ribbon model
shown in inset is in the same orientation as the adjacent spherical model. The two spherical models are related by a 180u rotation about the y-axis.
doi:10.1371/journal.pone.0050097.g002
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the affinity for the APC peptide decreased, with a Kd equal to

9.80+/21.11 mM, implicating a role for the bB-bC loop in the

PDZ2-APC interaction. In the structure reported here, Q340

stabilizes the bB-bC loop, using its side chain to form hydrogen

bonds with the G344 backbone amide and the N346 side chain

(Figure 4D). The order Q340 confers to the bB-bC loop orients

the N339 side chain towards the APC peptide, promoting its

hydrogen bonding to the APC V2840 backbone amide and

carbonyl. Additionally, the Q340 and N339 backbone carbonyls

are oriented to interact with the APC Y2838 backbone. A proline

substitution at residue 340 would prohibit these backbone

interactions and restrict the ability of N339 to engage the APC

peptide, thereby resulting in decreased affinity for APC. Dlg1

PDZ1 has a lower affinity for APC than Dlg1 PDZ2, and

differences in the bB-bC loop may underlie this differential. The

conformation of the APC peptide bound to Dlg1 PDZ1, also

reported by Zhang et al., is similar to the APC peptide

conformation observed in the structure reported here, bound to

Dlg1 PDZ2 (Figure 4E) [26]. Differences in the orientation of the

L2839 side chain are evident, as is a shift in the ultimate residue,

V2843, emphasized by a positional change in the carboxylate

group. The APC carboxylate group is closer to the bA-bB loop

GLGF binding motif in the PDZ2 structure reported here than in

the Dlg1 PDZ1-APC structure. A residue that may underlie this

structural difference is the lysine residue K324 in the PDZ2 bA-bB

loop, which is an arginine, R229, in PDZ1. The arginine

guanidinium group alters the peptide-binding pocket in the

vicinity of the APC carboxylate group, effectively drawing the

APC peptide away from the PDZ1 GLGF motif. These conserved

Figure 3. The Dlg1 PDZ2 domain binds core, conserved determinants in the APC C-terminus. A) Interaction matrix between Dlg1 PDZ2
(y-axis) and the APC C-terminal peptide (x-axis). Residue number and the corresponding secondary structure are indicated along the axes.
Interactions (hydrogen bonds, salt bridges, and van der Waals) are contoured at a 4.5 Å cut-off. B, C) Stick model of the Dlg1 PDZ2-APC binding site.
Dlg1 PDZ2 and APC are colored as in Fig. 1C. Hydrogen bonds involved in the Dlg1 PDZ2-APC interaction are indicated with dashed lines. D)
Alignment of the Dlg1 PDZ2-APC structure (colored as in Fig. 1C) and the apo hDlg1 PDZ2 structure (grey, 98% sequence identity, includes I342W and
C378A mutations outside the peptide binding region, engineered for measuring protein folding, PDB code 2X7Z [50]), highlighting outward
movement in the aB helix. Orange arrows highlight structural differences. E, F) Comparative B-factor analysis of the apo Dlg1 PDZ2 structure and the
Dlg1 PDZ2-APC structure aligned in D. Ca B-factor ranges are color-coded according to the key below each molecule.
doi:10.1371/journal.pone.0050097.g003
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differences between Dlg1 PDZ1 and PDZ2, likely explain the

domains’ differential affinities for APC.
Ligand-dependent PDZ Clustering

PDZ domain-containing proteins, including the MAGUK

family, often have PDZ domain arrays. In Dlg1, PDZ1 and

Figure 4. Differential APC peptide binding correlates with PDZ domain conformation change. A) The Dlg1 PDZ2-APC structure
determined in this study with the PDZ2 domain shown in surface representation and colored green, APC peptide shown in stick format and colored
grey. Superimposed is the structure of the APC peptide bound to Dlg1 PDZ2 as determined by Zhang et al. (PDB code 3RL8 [26]). The 3RL8 APC
peptide is shown in stick format and colored cyan; the PDZ2 domain is not shown for simplicity. B) Ribbon diagram of the Dlg1 PDZ2-APC complex
determined in this study (Dlg1 PDZ2 in green, APC in grey), with the structure of the Dlg1 PDZ2-APC complex determined by Zhang et al. (Dlg1 PDZ2
in slate, APC peptide in cyan, PDB code 3RL8) and the apo Dlg1 PDZ2 structure (grey, PDB code 2X7Z [50]) superimposed. The conformation of the
Dlg1 PDZ2 domain bound to APC determined by Zhang et al. is more homologous to the Dlg1 PDZ2 apo structure than to the Dlg1 PDZ2-APC
structure determined in this study, specifically in the positioning of aB and the bC-aA loop that move outward from the peptide binding cleft upon
APC binding. Conformational differences between the PDZ domains and the APC peptides are highlighted by orange arrows. C) Comparison of the
APC peptide bound to Dlg1 PDZ2 from Zhang et al. versus this study, oriented as shown in A. The structure of the APC peptide determined in this
study use all residues shown to bind the Dlg1 PDZ2 structure. Significant repositioning occurs over residues L2839-T2841 as well as the side chain
rotamer positioning of S2842. D) Zoom view of the APC peptide N-terminal region and its interaction with the bB-bC loop. APC and Dlg1 PDZ2 are
shown in stick format, colored as in Figure 1C. The backbone region of APC V2840 is stabilized by hydrogen bonds with the N339 side chain. Specific
hydrogen bonds are shown as dashed lines. E) Orientation of the APC peptide bound to Dlg1 PDZ2 determined in this study (shown in grey, stick
format) versus the APC peptide structure bound to Dlg1 PDZ1, chain J, determined by Zhang et al. (PDB code 3RL7 [26]), colored purple and shown
in stick format. APC peptides are shown alone, positioned after structurally aligning the respective PDZ domains they are bound to (not shown).
doi:10.1371/journal.pone.0050097.g004
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PDZ2 are immediately adjoined in sequence, while PDZ3 is

separated from PDZ2 by a 49 amino acid linker. Studies

investigating the spatial arrangement of PDZ domains have

observed distinct structural states between tandem PDZ domains,

with changes inherent upon peptide binding

[16,17,18,19,20,21,22]. To investigate potential higher order

PDZ-PDZ interactions, I examined the symmetry mate interac-

tions in the P212121 crystal lattice. Dlg1 PDZ2-APC forms an

extensive interaction with a symmetry-related complex utilizing

the APC peptide in one complex as a prime binding-determinant.

The N-terminal PDZ2 bA strand from a symmetry mate binds

along the length of the neighbouring APC peptide (Figure 5). This

interaction between symmetry mates may mimic ligand-dependent

PDZ clustering interactions in MAGUK proteins. Because PDZ1

and PDZ2 are immediately adjoined in sequence, the observed

symmetry mate interaction would not be possible between PDZ1

and PDZ2 given the location of their respective C- and N-termini.

However, the linker that spans PDZ2 and PDZ3 would enable

these PDZ domains to potentially cluster via a ligand-dependent

interaction as observed here.

Discussion

Dlg1 PDZ2 conforms to a common G–H class PDZ domain

(G335, H384) with class I peptide-binding activity [15]. The APC

C-terminal sequence YLVTSV is a type I sequence (S/T-x-Q) that

engages the bB - aB furrow, forming standard hydrogen bonds

between the APC C-terminal carboxylate group and the backbone

amides of the bA-bB loop while the ultimate APC side chain packs

against hydrophobic residues in the PDZ furrow: L329, F331 and

L391. Comparison of the Dlg1 PDZ2-APC complexes determined

here and by Zhang et al. provide insight into binding plasticity and

potential pathways involved in binding [26]. In the Zhang et al.

structure, the APC peptide engages PDZ with its ultimate four

residues while the preceding two residues are splayed away from

the PDZ domain in a bent conformation (Figure 4C). When

compared to the structure presented here which is more akin to

a straight peptide conformation, only the ultimate APC valine

residues align. All other residues are positioned in different

rotamer conformations and the backbone of the two APC peptides

are angled 45u relative to one another (Figure 4C). The structure

of the APC peptide bound to PDZ2 reported here, conforms more

to the peptide arrangement observed in the Dlg1 PDZ1-APC

structure determined by Zhang et al. (Figure 4E) [26]. The

difference between the two Dlg1 PDZ2-APC structures may reflect

sequential binding steps. The Zhang et al. structure may represent

an initial binding mode delineated by an interaction between the

ultimate APC valine residue and the PDZ domain. This initial

interaction may then transit to a higher-order engagement as

additional conserved APC residues bind the PDZ2 bB-aB furrow

and the bB-bC loop. These dual structural states support the

previous observation of a sequential binding mechanism for the

Dlg PDZ2 domain [51]. The straight APC conformation reported

here and the additional PDZ2 contacts observed in that

conformation may reflect a higher-affinity bound state. In support,

the conformation affirms a prediction posed by Zhang et al. that

the APC peptide would make additional contacts with the bB-bC

loop based on the reduced affinity a PDZ2 bB-bC loop mutant

had for APC peptide binding [26]. In addition, the straight APC

peptide conformation observed in our structure is highly similar to

the straight conformation observed in the Dlg1 PDZ1-APC

structure, also determined by Zhang et al. [26]. Finally, the

conformation of the PDZ-binding furrow in the Zhang et al. Dlg1-

PDZ2-APC structure is more homologous to the closed state

observed in the peptide-free Dlg1 PDZ2 apo structure, while the

PDZ2 peptide furrow in the complex reported here is opened and

engages additional determinants on the APC peptide.

How PDZ arrays regulate protein-protein interactions by

sensing and clustering the proteins they interact with has remained

Figure 5. The Dlg1 PDZ2-APC complex mediates ligand-dependent interactions with a Dlg PDZ2 symmetry mate. Ribbon diagram of
the Dlg1 PDZ2-APC complex with one complex colored as in Fig. 1C and a crystal symmetry mate colored with Dlg1 PDZ2 b-strands in cyan, helices
aA and aB in teal and purple, and loops in dark blue. The Dlg1 PDZ2 symmetry mate uses its N-terminal loop and bA strand to interact with the APC
peptide from the symmetry mate, potentially reflecting a ligand-dependent PDZ clustering mechanism.
doi:10.1371/journal.pone.0050097.g005
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an outstanding question. To investigate how PDZ domains might

promote interactions between bound targets, I investigated

whether residues that line the PDZ binding furrow are conserved

with the hypothesis that a peptide-bound PDZ domain could form

a composite binding site for protein-protein interactions. Across

Dlg PDZ domains, core residues that line the peptide-binding

furrow, involved in peptide binding, are conserved. Surrounding

this region is a rim of conserved residues specific to Dlg1-PDZ2,

flanked by conserved regions specific to species whose APC

protein conforms to the invariant ultimate sequence GSYQVTSV.

These concentric, conserved sub-regions are unique to the peptide

binding face of the PDZ domain and are not maintained on the

non-peptide binding face. These residues may support the

architecture of the binding furrow, and/or they may act with

the bound peptide to form a composite binding site. PDZ intra-

molecular interactions have been observed to change, dependent

on the presence or absence of bound peptide. Whether APC-

bound PDZ2 forms a composite binding site for other PDZ

domains and/or their binding partners warrants further in-

vestigation. Potential insight into peptide-dependent PDZ cluster-

ing comes from observed crystal packing interactions between

symmetry mates in which the bA strand in a neighboring PDZ2

domain interacts with the APC peptide in an anti-parallel

orientation.

The interaction observed between Dlg1 PDZ2 and APC

facilitates a link between a cortical polarity determinant and the

APC signaling scaffold. APC can interact directly with the

microtubule cytoskeleton through a C-terminal basic region, or

indirectly through its C-terminal EB1 SxIP binding motif that

confers EB1-dependent APC microtubule plus end tracking

activity [40,41,42]. It is of note that the EB1 binding site and

the PDZ binding site are proximal to one another, separated by 30

amino acids. Whether there is structural communication between

these two sites remains to be determined. Collectively, the

structure presented here highlights the molecular determinants

that mediate the Dlg1 PDZ2-APC interaction and facilitate stable,

polarized microtubule attachment to a cortical polarity determi-

nant and contribute to the molecular bases that underlie directed

cell migration [6,52].
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