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Jadranin, M.; Korićanac, L.; Žakula, J.;
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Abstract: Quercetin, a well-known flavonoid with significant medicinal potential, was derivatized
at the C8 position with a tetrahydroisoquinoline (THIQ) moiety, and physicochemical and pharma-
cological properties, inhibition potential, antioxidant activity, and cytotoxicity of new compounds
were evaluated. Physicochemical and pharmacological properties, including lipophilicity, membrane
permeability, and P-glycoprotein substrate affinity, were assessed theoretically using the SwissADME
software. The metal-chelating ability of the new compounds was evaluated on metal ions Fe2+, Zn2+,
and Cu2+, whose homeostasis disruption is linked to the development of Alzheimer’s disease. Inhibi-
tion potential was tested on the cholinergic enzymes acetylcholinesterase and butyrylcholinesterase,
as well as Na+, K+-ATPase, an enzyme commonly overexpressed in tumours. Antioxidant potential
was assessed using the DPPH assay. Cytotoxicity studies were conducted on healthy MRC-5 cells and
three cancer cell lines: HeLa, MDA-231, and MDA-468. The results indicated that derivatization of
quercetin with THIQ yielded compounds with lower toxicity, preserved chelating ability, improved
antioxidant potential, increased selectivity toward the cholinergic enzyme butyrylcholinesterase,
and enhanced inhibition potential toward Na+, K+-ATPase and butyrylcholinesterase compared to
quercetin alone. Therefore, the synthesized derivatives represent compounds with an improved
profile and could be promising candidates for further optimization in developing drugs for neurode-
generative and cancer diseases.

Keywords: quercetin; tetrahydroisoquinolines; antioxidative activity; chelating ability; anticancer
effect; Alzheimer’s disease

1. Introduction

Flavonoids are a diverse group of natural compounds known for their wide-ranging
biological effects. Among them, quercetin (Q) stands out as one of the most studied and
widely accessible. It is commonly found in various fruits, vegetables, leaves, and grains.
In medicinal chemistry, quercetin has gained significant attention due to its broad phar-
macological properties, including anti-neuroinflammation effect [1], cardiovascular protec-
tion [2], anticancer [3,4], antiulcer [5], antiallergic [6], antiviral [7], and anti-inflammatory
effects [3]. These benefits are largely attributed to its strong antioxidant activity, which
involves neutralizing free radicals and working in tandem with the body’s enzymes and
natural antioxidants. An important part of this antioxidant action is quercetin’s ability to
chelate transition metals like iron and copper, forming stable complexes that block these
metals from participating in harmful free-radical production. By binding to these metals,
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chelating compounds can also alter their redox properties, rendering them inactive and
reducing oxidative stress [8]. Additionally, quercetin’s versatility in medicinal chemistry
is based on its ability to target multiple biological pathways through various molecular
mechanisms, such as modulating signal transduction pathways and inhibiting specific
enzymes involved in cancer cell survival. These induce apoptosis in cancer cells, inhibit
cancer cell proliferation, and suppress tumour growth, making quercetin a compound
of significant interest for drug design and development across various therapeutic areas.
However, despite the promising therapeutic potential of quercetin, its use is hindered by
several challenges, including low water solubility, limited bioavailability, rapid metabolism,
instability, and difficulty in crossing the blood–brain barrier (BBB) [9,10].

Tetrahydroisoquinolines (THIQs) represent a versatile class of compounds with a
broad spectrum of medical applications. These compounds exhibit anti-inflammatory prop-
erties, can act as ligands for central nervous system (CNS) receptors, and possess antitu-
mour effects [11]. Furthermore, hybrid compounds incorporating a tetrahydroisoquinoline
moiety have demonstrated strong antitumour effects [12], as well as neuroprotective and
anti-Alzheimer properties [13]. Moreover, several drugs containing the THIQ moiety are
already on the market for cancer treatment.

The literature data indicate that derivatives of quercetin [14] as well as its isomers [15,16]
may possess similar or, in some cases, improved antioxidative potential. Therefore, this
study aims to investigate the impact of quercetin derivatization by THIQs on its physico-
chemical and pharmacological profile, its chelating and antioxidative ability, its inhibition
potential toward cholinergic enzymes and the ion pump, Na+, K+-ATPase, and its cyto-
toxicity. Initially, we synthesized new compounds by modifying quercetin at position 8
(the resorcinol ring) with 1,2,3,4-tetrahydroisoquinolines (compounds 1a and 1b, Scheme 1)
following previously published procedure [17]. This was achieved through the Man-
nich reaction, involving quercetin and the iminium ion derived from formaldehyde and
1,2,3,4-tetrahydroisoquinolines, 1a and 1b. Subsequently, we assessed the influence of
derivatization on the physicochemical and pharmacological profile using SwissADME soft-
ware. The antioxidative potential was evaluated by the DPPH assay, while chelating ability
was tested with Fe2+, Cu2+, and Zn2+ ions. The impact on enzyme activity was examined
for enzymes involved in Alzheimer’s disease pathology, acetylcholinesterase (AChE) and
butyrylcholinesterase (BuChE), as well as for the sodium pump, Na+, K+-ATPase, which
is overexpressed in certain tumours and considered a potential target in antitumour drug
development. Additionally, the toxicity profile was evaluated on a healthy cell line, MRC-5,
while antitumour activity was assessed on three cancer cell lines: HeLa, MDA-MB-231, and
MDA-MB-468.
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2. Results and Discussion
2.1. Chemistry

Synthesis of C8-aminomethylated quercetin–1,2,3,4-tetrahydroisoquinoline derivatives
was performed via the Mannich reaction of quercetin with iminium ions formed in situ from
1-phenyl-(or H)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline and formaldehyde, as shown
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in Scheme 1. Two monosubstituted quercetin derivatives 2a and 2b were synthesized in
good yields.

2.2. Assessment of Drug-like Properties and Pharmacological Profiles of the Synthesized
Quercetin–Tetrahydroisoquinoline Hybrids

As above mentioned, despite quercetin promising pharmacological properties, it faces
several limitations in medicinal chemistry that impact its clinical applicability. One of the
main challenges is its low bioavailability, meaning that only a small amount of ingested
quercetin is absorbed and reaches systemic circulation. Additionally, low lipophilicity of
the compound, expressed as a negative log p value, is the reason for its failure to penetrate
the BBB, which has placed it among numerous other rejected compounds for AD treatment.
In order to assess the effect of introducing tetrahydroisoquinoline motifs into the structure
of quercetin on its physicochemical properties, the SwissADME software was used for
theoretical predictions. The drug-likeness and pharmacokinetic profiles were predicted
based on physicochemical properties of compounds, ability to cross the BBB, and whether
they act as P-glycoprotein (P-gp) substrates. According to Lipinski’s rule, poor absorption
and permeation are expected when a compound has a molecular weight greater than
500 Da, a lipophilicity (LogP) and hydrogen bond donors greater than 5, and hydrogen
bond acceptors greater than 10. Additionally, logP values of synthesized derivates and
their constituents were experimentally determined using the “shake flask” method.

According to the SwissADME prediction and the results obtained by the “shake flask”
method, derivatization of quercetin with more lipophilic 1,2,3,4-tetrahydroisoquinolines or
6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolines results in new compounds with significantly
increased lipophilicity (Table 1). Furthermore, the new quercetin–tetrahydroisoquinoline
hybrids satisfy Lipinski’s rule of five and do not act as P-gp substrates. However, despite
improved lipophilicity and lack of interaction with P-gp, the main efflux transporter of the
BBB, according to SwissADME predictions, these hybrids are still unable to cross the BBB.
Experimentally determined log p values are presented in Table 1.

Table 1. Predicted drug-likeness parameters (ADME test) for synthesized quercetin tetrahydroiso-
quinoline hybrids obtained using SwissADME.

Compound Structure

SwissADME Experimentally
Obtained Results

M, Da H-Bond
Donor

H-Bond
Acceptor logP P-gp

Substrate BBB Lipinski logP

1a
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It is probable that future modifications of our compounds with more hydrophobic
groups (such as fluorine or alkyl chains) could lead to higher lipophilicity and consequently
facilitate easier crossing of the membrane [18]. However, a balance is necessary, as exces-
sively lipophilic compounds may not be bioavailable or could have off-target effects. In our
previously published paper [13], we demonstrated that certain C-1 derivatized THIQs were
capable of crossing an artificial BBB. Based on these findings, we believe that combining
them with quercetin could further enhance quercetin’s BBB-crossing potential.

2.3. Antioxidant Activity In Vitro

Oxidative stress is considered one of the key factors contributing to the progression of
various diseases, including cardiovascular diseases, diabetes, neurodegenerative disorders,
and cancer [19,20]. Quercetin is well known for its strong antioxidative potential, which
highlights its value in medical applications [21]. To evaluate the antioxidative potential
of the new tetrahydroisoquinoline-based derivatives of quercetin, a DPPH assay was
conducted with ascorbic acid as a positive control (Figure 1). 1,2,3,4-tetrahydroisoquinolines
and 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolines, 1a and 1b, did not show antioxidative
ability, while the experimentally obtained IC50 values for quercetin and ascorbic acid were
19.3 µM and 0.62 µM, respectively (Table 2).
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Figure 1. Antioxidative activity (%) of quercetin, Q; its tetrahydroisoquinoline derivates, 2a and 2b;
ascorbic acid; 1,2,3,4-tetrahydroisoquinoline, 1a; and 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline,
1b, toward DPPH radical at 0.01, 0.1, and 1mM concentration after 30 min of incubation.

Based on the obtained results, introduction of the tetrahydroisoquinoline moiety into
quercetin structure improves its antioxidative potential. Enhanced antioxidative activity of
synthesized derivates could be associated with the presence of the tertiary amino group
in new compounds. Namely, delocalization of the nitrogen’s electron pair at the tertiary
amino group combined with strong electron-donating phenolic OH groups at the catechol
B-ring of quercetin [22] further boosts the antioxidant properties of our new derivates of
quercetin [23]. On the other hand, the literature data show that the presence of multiple
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methoxy groups on the A-ring of flavones (especially those in the ortho position) can
diminish the positive effects typically associated with a catechol group on the B-ring of
quercetin [24]. Therefore, the approximately ten times better antioxidative activity of
compound 2a can likely be attributed to the absence of 6,7-dimethoxy groups on the
tetrahydroisoquinoline motif.

Table 2. Experimentally determined IC50 values for evaluated antioxidant DPPH assay of quercetin,
Q; two new synthesized derivates, 2a and 2b; ascorbic acid; 1,2,3,4-tetrahydroisoquinoline, 1a; and
6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline, 1b.

Compound DPPH,
IC50, µM

Quercetin 19.3
1a n.a.
1b n.a.
2a 1.59
2b 10.2

Ascorbic acid 0.62

2.4. Metal-Chelating Properties of Synthesized Quercetin Derivates

It is well known that quercetin is able to chelate bio-metal ions such as Fe2+, Zn2+, and
Cu2+. Disruption of the homeostasis of these metal ions, particularly Cu2+, is associated
with the development and progression of AD by promoting the aggregation of Aβ (amyloid-
β), which contributes to neurotoxicity in individuals with AD [25]. With this in mind, along
with the neuroprotective ability of quercetin [26], the chelating ability of the new hybrid
compounds (2a and 2b) was also tested and compared to that of quercetin. The chelation
ability was evaluated by comparing changes in the absorption spectra of quercetin and its
derivatives, compounds 2a and 2b, following the addition of the aforementioned metal
ions. The UV/Vis spectra of quercetin in ethanol show absorption maxima at 255 nm (I
band) and 370 nm (II band) [27] (Figure 2a); as for its derivatives, compound 2a exhibits
absorption maxima at 260 nm (I band) and 378 nm (II band) (Figure 2b), and compound
2b at 258 nm (I band) and 379 nm (II band) (Figure 2c). After the addition of the tested
metal ions to quercetin–ethanol solution, bathochromic shifts (red shift) of both absorption
maxima were observed with the appearance of new peaks. For Fe2+, the new peaks were
observed at 273 nm and 438 nm [28], for Cu2+ at 293 nm and 436 nm [29,30], while after the
addition of Zn2+, three new maxima were observed at 260, 382, and 438 nm [31]. Similarly,
the red shift of absorption maxima was observed after the addition of metal ions in the
solution of our derivatized compounds indicating the preserved chelating ability of the
new hybrid compounds.

Binding stoichiometry was determined using the molar ratio method, with increasing
concentrations of metal ions (from 0 to 1.5 × 10−4 M) (Figures S1 and S2). Absorption
spectra were collected 30 min after mixing. The change in absorption at the wavelength
of maximum absorbance for the formed complex was plotted against the metal ion (M2+

= Cu2+, Zn2+, and Fe2+) to compound ratio (cM
2+/ccompound) and is presented in Figure 3.

This graph allows the determination of the binding ratio between the newly synthesized
compounds and metal ions. Analysis of the intersection of the curves at specific ratios
suggests that the binding stoichiometry for both Cu2+ and Zn2+ is 2, indicating that one
Cu2+ or Zn2+ ion coordinates with two 2a or 2b molecules. In contrast, the results for Fe2+

indicate that only one Fe2+ ion can bind to both compounds.
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2.5. Influence of the New Quercetin Derivates on the Enzyme Activity
2.5.1. The Influence on the Cholinergic Enzymes

In our previous papers, it was shown that tetrahydroisoquinoline derivatives possess
inhibitory potential toward the cholinergic enzymes acetylcholine and butyrylcholine
esterase [13]. Additionally, the literature data indicate that quercetin can inhibit both
enzymes, with IC50 values in the micromolar range [32–34]. In order to evaluate how
derivatization of quercetin by tetrahydroisoquinoline influences quercetin’s inhibitory
potency toward cholinergic enzymes, the inhibitory potency of synthesized quercetin–
tetrahydroisoquinoline hybrids (2a and 2b) and their constituents (Q, 1a and 1b) was
assessed by screening their activity at a concentration of 1 × 10−4 M (Table 3). The
screening results indicated that derivatization of quercetin enhanced selectivity toward
BuChE for both hybrids (2a and 2b), with a twofold improvement in the inhibitory potency
of compound 2a. In contrast, the inhibitory potency toward AChE was significantly
reduced, with compound 2b showing only 15% inhibition at 1 × 10−4 M (Table 3). On the
other hand, the tetrahydroisoquinoline constituents 1a and 1b did not exhibit significant
activity in the screening test compared to quercetin. Further, IC50 values for quercetin
and the quercetin–tetrahydroisoquinoline hybrids were determined and are presented in
Table 3 and Figure S3. It is evident from the obtained results that derivatization of quercetin
with tetrahydroisoquinoline leads to higher selectivity toward BuChE, offering a new class
of selective BuChE inhibitors that may be important for the treatment of late-stage AD.

Table 3. The inhibition properties of investigated compounds toward eeAChE, eqBuChE, and Na+,
K+-ATPase from pork cerebral cortex. The preincubation and incubation time were 6 min, the
temperature was 37 ◦C.

Compound Structure

Percentage Inhibition at
1 × 10−4 M IC50, µM

AChE BuChE Na+, K+-ATPase AChE BChE Na+, K+-ATPase

1a
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2.5.2. The Influence on the Ion Pump—Na+, K+-ATPase

As mentioned in the literature, Na+, K+-ATPase is an enzyme crucial not only for main-
taining Na+ and K+ ion gradients across cell membranes but also for regulating functions
in cellular signalling pathways, contributing to cancer cell survival, proliferation, and apop-
tosis [37,38]. Cancer cells often express different isoforms of Na+, K+-ATPase compared to
normal cells, making it a target of interest in cancer therapy. Moreover, Na+, K+-ATPase
activity affects the epithelial–mesenchymal transition (EMT), a process that allows cancer
cells to gain migratory and invasive properties, critical for metastasis. By modulating Na+,
K+-ATPase, it is possible to influence the EMT process and thus impact cancer progres-
sion. This aspect is particularly promising in targeting aggressive cancers that exhibit high
metastatic potential [37,38]. Therefore, the inhibitory activity of the synthesized derivates,
2a and 2b, was also tested against this enzyme. The obtained results indicated that the
derivatization of quercetin by 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline, compound
2b, enhanced quercetin’s activity toward Na+, K+-ATPase, resulting in a 50-fold decrease
in IC50 values compared to bare quercetin (Table 3, Figure S4). On the other hand, the
derivatization of quercetin with 1,2,3,4-tetrahydroisoquinoline, 1a, led to a suppression
of inhibitor activity of compound 2a. This suggests that the two methoxy substituents
on the THIQ motif are involved in the interaction with Na+, K+-ATPase, contributing to
enzyme inhibition. The low micromolar activity of compound 2b toward Na+, K+-ATPase
highlights potential anticancer activity of this compound.

2.6. Cytotoxicity

Quercetin has shown promise in anticancer therapy, as it can induce apoptosis in
cancer cells, inhibit cancer cell proliferation, and suppress tumour growth. As discussed
above, derivatization of quercetin with a tetrahydroisoquinoline motif altered its biological
activity toward cholinergic enzymes and the Na+, K+-ATPase ion pump. To evaluate how
this derivatization affects toxicity and cytotoxicity, the effects of the synthesized derivatives
were studied in healthy MRC-5 cells and three tumour cell lines: HeLa, MDA-MB-231, and
MDA-MB-468.

In vitro studies on healthy MRC-5 cells indicated that the synthesized derivatives have
lower toxicity compared to quercetin, as demonstrated by their higher IC50 values than
that of quercetin (Table 4). On the other hand, the tested cytotoxicity toward cancer cells
revealed that the synthesized compounds exhibited time-, dose-, and cell-specific effects
(Figure 4 and Figures S5–S7). An excellent inhibitory effect was observed in HeLa cells 48
and 72 h after treatment. At these time points, the compounds reduced cell viability to 43%
(p < 0.001) and 37% (p < 0.001) after 48 h, and 35% (p < 0.001) and 29% (p < 0.001) after 72 h
for compound 2a (Figure 4). Compound 2b generally showed a better inhibitory effect than
compound 2a in HeLa cells. Even the lowest concentration inhibited growth at all time
points. Viability ranged from 53% to 78% (p < 0.05 for 1 × 10−6 M, p < 0.01 for 1 × 10−4 M)
after 24 h, 32% to 45% (p < 0.001 for all concentrations) after 48 h, and 21% to 34% (p < 0.001
for all concentrations) after 72 h, compared to the corresponding control (Figure 4).

Table 4. In vitro cytotoxic activity given as IC50 in µM, calculated 72 h after treatment, for Q and its
derivates 2a and 2b.

IC50, µM

MRC HeLa MDA-231 MDA-468

2a 55.67 ± 2.78 53.50 ± 2.67 146 ± 7 >200
2b 16.60 ± 0.83 19.50 ± 0.97 106 ± 5 109 ± 5
Q 10.40 ± 0.52 15.10 ± 2.67 76.6 ± 3.8 65.9 ± 3.3
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Figure 4. Viability of HeLa cells obtained by SRB assay 24, 48, and 72 h after treatment with quercetin
(a), compound 2a (b), and compound 2b (c). Applied concentrations were 1 × 10−6, 1 × 10−5,
and 1 × 10−4 M. Data obtained from four experiments are presented as mean ± S.D. Asterisks
indicate statistical significance compared to the untreated control: * 0.01 < p < 0.05; ** 0.001 < p < 0.01;
*** p < 0.001.

On the other hand, the decrease in the number of treated MDA-231 cells after 24
and 48 h was statistically insignificant. However, after 72 h, the viability of MDA-231
cells recovered to the control level or even increased for compound 2a (Figure S6). No
inhibition of MDA-468 cells by this compound was observed under the tested conditions
(IC50 > 2 × 10−4 M) (Figure S7). In contrast to compound 2a, compound 2b significantly
inhibited the growth of MDA-231 cells at the highest concentration, reducing their viability
to 68–53% (p < 0.05 for 24 and 48 h, p < 0.01 for 72 h) (Figure S6). Additionally, compound
2b showed a slightly better effect on MDA-468 cells than compound 2a (Table 4), with
the highest inhibition observed after treatment with the highest concentration for 72 h
(56.56%, p < 0.001) (Figure S7). However, both synthesized compounds as well as quercetin
did not selectively affect cancer versus healthy cells, as the selectivity index (SI) for all
analysed cell lines was around or lower than 1. The selectivity could be increased by
introducing more hydrophobic THIQs at the C8 position of Q, such as those previously
developed in our group [13]. Lipophilic drugs can exhibit higher intracellular accumulation
in cancer cells due to their altered membrane properties, leading to increased cytotoxicity
specific to cancer cells while sparing normal cells [39]. Additionally, modification of these
compounds with cancer-specific targets, such as HER2, EGFR, or folate receptors, can lead
to preferential drug binding and entry into cancer cells [40].

Based on the cytotoxicity studies, it can be concluded that the synthesized compounds
exhibit similar or lower toxicity in MRC-5 cells compared to quercetin, with similar cytotoxic
effects in HeLa cells. On the other hand, improved cytotoxic effects were not observed in
the MDA cell lines.

3. Materials and Methods
3.1. Chemistry

All reactions were monitored by thin-layer chromatography using Merck 60 F254
precoated silica gel plates (0.25 mm thickness). Preparative thin-layer chromatography
was performed using Merck 60 F254 silica gel purchased from Merck KGA, Darmstadt,
Germany.1H-NMR and 13C-NMR spectra were measured on a Bruker Ultrashield Advance
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III spectrometer (1H at 500 MHz, 13C at 125 MHz) and Varian 400 using DMSO-d6 as the
solvent. Chemical shifts (δ) are given in parts per million (ppm) and coupling constants are
given in hertz (Hz). The proton spectra are reported as follows δ/ppm (multiplicity, number
of protons, and coupling constant, J/Hz). High-resolution mass spectrometry (HRMS)
spectra were recorded only for new compounds using an Orbitrap Exploris 240 mass
spectrometer (Thermo Fisher Scientific, Waltham, MA, USA), with heated electrospray
ionization (HESI) as an ion source.

3.2. Chemicals and Reagents

Quercetin, MgCl2, ZnCl2, CuCl2 × 2H2O, FeSO4, NaCl, KCl, SnCl2, (NH4)6Mo7O24 ×
4 H2O, tris(hydroxymethyl)aminomethane (TRIS), dimethyl sulfoxide (DMSO), ethanol,
methanol, glycerol, sulfuric acid, acetylcholinesterase from electric eel (AChE), butyryl-
cholinesterase from equine serum (BuChE), Na/K-ATPase from the porcine cerebral cortex,
adenosine triphosphate (ATP), acetylthiocholine iodide (AChI), butyrylthiocholine iodide
(BuChI), 5,5′-Dithiobis (2-nitrobenzoic acid) (DTNB), sodium dodecyl sulfate (SDS), and
2,2-diphenyl-1-picrylhydrazyl (DPPH) were obtained from Sigma-Aldrich, Steinheim,
Germany. Tetrahydroisoquinoline-modified quercetin compounds (2a and 2b) were synthe-
sized according to a previously published procedure [17].

3.3. ADME Prediction

The freely available software SwissADME (http://www.swissadme.ch, accessed on
1 October 2024) was used for in silico prediction of pharmacokinetic data and physical–
chemical properties such as lipophilicity and the possibility of the compound passing
through the BBB [41].

3.4. The Lipophilicity

To measure the lipophilicity (expressed as the partition coefficient) of the synthesized
compounds and their constituents, using a “shake-flask” method, a two-phase system
composed of n-octanol and deionized water was used. The stock solutions of the com-
pounds were diluted with water to the concentration of 1 × 10−4 M, and this solution
was used for further investigation. Next, 3 mL of this diluted stock solution was mixed
with 3 mL of n-octanol and shaken using a mechanical shaker at 25 ± 1 ◦C (Orbital Shaker
Incubator ES-20, Grant-bio) for 30 min at 250 rpm, centrifuged (Centrifuge 5702, Eppendorf,
Hamburg, Germany) at 3000 rpm for 20 min to afford complete phase separation, and
the n-octanol phase was removed. The absorbance of the aqueous phase was measured
spectrophotometrically at 260 nm for Q and compounds 1a, 1b, 2a, and 2b. The concentra-
tion of the compounds was calculated from their extinction coefficient at 260 nm that was
previously determined.

3.5. 2,2-Diphenyl-1-Picrylhydrazyl Radical Scavenging Assay

DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay was used to assess
free-radical scavenging activity of synthesized compounds. Initially, 1 × 10−4 M working
solution of DPPH was prepared, and 350 µL was added to 350 µL of the solution of each
compound. The final concentrations of the compounds (Q, 2a, and 2b) in the samples
were 1 × 10−3 M, 1 × 10−4 M, and 1 × 10−5 M. The control included ethanol only and
DPPH–ethanol solution without compounds. The mixtures were incubated at 25 ◦C in the
dark for 30 min. After incubation, the absorbance of the samples at 517 nm was measured in
duplicate by using a UV/Vis spectrophotometer (Lambda 35, Perkin Elmer, Waltham, MA,
USA). The DPPH radical scavenging ability was calculated using the following equation:

Antioxidative activity(%) =

(Acontrol−Asample

Acontrol

)
× 100% (1)

where Asample and Acontrol represent the absorbance at 517 nm of the sample and control,
respectively. All samples were analysed in duplicate.

http://www.swissadme.ch
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3.6. Metal-Chelating Assay

The metal-chelating ability of synthesized compounds in ethanol was assessed using
UV/Vis spectrophotometer (Lambda 35, Perkin Elmer) recording spectra over a wavelength
range of 230–600 nm in a 1 cm quartz cell. The mixture of compound at 5 × 10−5 M of final
concentration and metal ions at 1 × 10−4 M of final concentration was incubated for 30 min
at room temperature. The tested temperature was 25 ◦C. Each sample was performed
in triplicate.

The binding stoichiometry was assessed by adding increasing concentrations of metal
ions (0–1.5 × 10−4 M) to a fixed concentration of compound (5 × 10−5 M) and incubating
the mixture for 30 min at room temperature. The spectra were then measured as described
above, and the ligand-to-metal chelation ratio in the complex was calculated.

3.7. AChE/BuChE Assay

The abilities of compounds to inhibit AChE and BuChE activity were determined
following Ellman’s procedure, with AChI and BuChI as the enzyme substrate, respectively,
and DTNB as a chromogenic reagent [42]. AChE’s and BuChE’s working solutions were
prepared at 20 mM TRIS and deionized water, respectively. AChI and BuChI solutions
were prepared in deionized water. A 0.01 M DTNB solution was prepared with 0.1 M
phosphate buffer (pH 7) containing 0.15% (w/v) sodium bicarbonate. Stock solutions
(10 mM) of investigated compounds were prepared daily by dissolving solid compounds in
DMSO. The reaction mixture containing phosphate buffer, DTNB, enzyme, and compound
was preincubated 30 min at 37 ◦C. After the preincubation time, the enzyme reaction was
initiated by adding appropriate substrate and left to incubate for 6 min. After incubation,
0.1 M SDS was added to stop the reaction. Absorbance measurements were performed
using a UV/Vis spectrophotometer (Lambda 35, Perkin Elmer), measuring absorbance
at 412 nm. A blank assay, containing all components except the enzyme, was used to
account for non-enzyme reactions. The control solution contained all components except
the inhibitor. All experiments were conducted in triplicate, and the results are expressed
as the mean percentage enzyme activity compared to the control value. IC50 values were
determined graphically using Origin 9 Microsoft Windows.

3.8. Na+, K+-ATPase Assay

Na+, K+-ATPase activity was assessed using a modified version of the method by
Seals et al. [43], based on measuring the change in orthophosphate concentration released
during ATP hydrolysis. The incubation mixture was prepared at 50 mM TRIS-HCl (pH 7.4),
containing 5 mM MgCl2, 100 mM NaCl, 20 mM KCl, 25 µL of 5mg/mL commercial enzyme
solution, and 20 µL of an inhibitor solution at a certain concentration. After preincubating
the mixture for 10 min at 37 ◦C, the reaction was initiated by adding 20 µL of 20 mM
ATP. The reaction proceeded for 10 min at 37 ◦C before being terminated by adding 22
µL of 3 M cold perchloric acid, with the tube then placed on ice. In the blank sample, the
incubation mixture contained only TRIS buffer (pH 7.4) without MgCl2, NaCl, or KCl. The
reaction volume was adjusted to a final volume of 200 µL, after which 4.5 mL of water
was added. Released orthophosphate was quantified using a colorimetric reaction with
200 µL of 0.2 M ammonium molybdate in 30% sulfuric acid and one drop of 2.5% SnCl2 in
glycerol. Total ATPase activity was determined by measuring the absorbance of solution
at 690 nm. Enzyme activity was expressed as relative enzyme activity (REA), defined as
the percentage of Na+, K+-ATPase activity remaining in comparison to samples without
inhibitor (control activity).

3.9. Cell Culture

Two human breast cancer cell lines, MDA-MB-231 (HTB-26) and MDA-MB-468 (HTB-
132), human cervical cancer cell line HeLa (CCL-2), and MRC-5 (CCL-171) fibroblasts were
purchased from the American Type Culture Collection (ATCC, Manassas, VA, USA). All
cell lines were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) with 4500 mg/L
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glucose and L-glutamine (Capricorn Scientific, Ebsdorfergrund, Germany), supplemented
with 10% foetal bovine serum (PAN-Biotech, Aidenbach, Germany), 10,000 U/mL penicillin,
and 10 mg/mL streptomycin solution (Capricorn Scientific) under standard conditions at
37 ◦C in a humidified 5% CO2 atmosphere (ESCO, Lifesciences Group, Singapore).

3.10. SRB Assay

Cells were seeded on a 96-well plate (Thermo Fisher Scientific, Waltham, MA, USA)
at 2 × 103 cells per well in DMEM medium. For the analysis of the concentration- and
time-dependent effect of the analysed compounds, cell monolayers were treated 24 h
after seeding with concentrations 1 × 10−6, 1 × 10−5, and 1 × 10−4 M for 24, 48, or 72 h.
Cell viability was detected using sulforhodamine B (SRB) assay, based on the staining
of cellular proteins. The assay was performed according to the procedure described by
Skehan et al. [44]. The cells were fixed with 10% trichloroacetic acid (TCA, CARLO ERBA
Reagents GmbH, Emmendingen, Germany) for 1 h at 4 ◦C, washed with water, and stained
for 15 min with 0.4% SRB (Sigma-Aldrich Chemie GmbH, Steinheim, Germany) in 1%
acetic acid. The unbound SRB dye was rinsed with 1% acetic acid, while the protein-bound
dye was extracted with a 10 mM Tris base (Sigma-Aldrich). The absorbance was measured
at 550 nm with a reference wavelength of 690 nm in a microplate reader (Wallac, VICTOR2
1420 Multilabel counter, PerkinElmer, Turku, Finland). The results were expressed as
a percentage of the control, where the cell growth of the control is set to 100%. IC50,
defined as the concentration that caused a 50% loss of cell growth, was calculated by
non-linear regression analysis with the ED50plus v1.0 software. The selectivity index (SI)
was determined according to the following formula:

SI =
IC50 for fibroblast cell line
IC50 for tumour cell line

(2)

3.11. Statistical Analysis

The assay was performed two times in 4 replicates for every experimental group. The
statistical significance of differences between treated and untreated cells was estimated by
the independent Student’s t-test, with the level of significance set at p < 0.05.

4. Conclusions

In conclusion, derivatization of quercetin at the C8 position (A ring) with a THIQ
moiety can enhance its lipophilicity and chelating ability toward metal ions implicated
in the pathogenesis of AD. Regarding inhibitory potential, it was observed that THIQ
derivatization improves inhibition of Na+, K+-ATPase and BuChE and increases selectivity
toward BuChE. Additionally, antioxidant testing indicated an increase in the antioxidative
potential of the new compounds compared to quercetin alone. In terms of toxicity, the new
compounds demonstrated lower toxicity in healthy MRC-5 cells and showed a similar cyto-
toxicity profile on HeLa cells. Therefore, the synthesized derivatives represent compounds
with an improved profile and could be valuable candidates for further optimization in
developing drugs for neurodegenerative and cancer diseases.
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quercetin and Au(III) in acidic media: Mechanism and identification of reaction products. New J. Chem. 2013, 37, 901–908.
[CrossRef]

28. Raza, A.; Xu, X.; Xia, L.; Xia, C.; Tang, J.; Ouyang, Z. Quercetin-Iron Complex: Synthesis, Characterization, Antioxidant, DNA
Binding, DNA Cleavage, and Antibacterial Activity Studies. J. Fluoresc. 2016, 26, 2023–2031. [CrossRef]
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