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Abstract

Motivation: Crucial to the correctness of a genome assembly is the accuracy of the underlying scaffolds that specify
the orders and orientations of contigs together with the gap distances between contigs. The current methods con-
struct scaffolds based on the alignments of ‘linking’ reads against contigs. We found that some ‘optimal’ alignments
are mistaken due to factors such as the contig boundary effect, particularly in the presence of repeats. Occasionally,
the incorrect alignments can even overwhelm the correct ones. The detection of the incorrect linking information is
challenging in any existing methods.

Results: In this study, we present a novel scaffolding method RegScaf. It first examines the distribution of distances
between contigs from read alignment by the kernel density. When multiple modes are shown in a density,
orientation-supported links are grouped into clusters, each of which defines a linking distance corresponding to a
mode. The linear model parameterizes contigs by their positions on the genome; then each linking distance between
a pair of contigs is taken as an observation on the difference of their positions. The parameters are estimated by min-
imizing a global loss function, which is a version of trimmed sum of squares. The least trimmed squares estimate
has such a high breakdown value that it can automatically remove the mistaken linking distances. The results on
both synthetic and real datasets demonstrate that RegScaf outperforms some popular scaffolders, especially in the
accuracy of gap estimates by substantially reducing extremely abnormal errors. Its strength in resolving repeat
regions is exemplified by a real case. Its adaptability to large genomes and TGS long reads is validated as well.

Availability and implementation: RegScaf is publicly available at https://github.com/lemontealala/RegScaf.git.

Contact: lilei@amss.ac.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Along with the development of high-throughput sequencing technol-
ogy, various assembling methods have been developed to pursue
complete, continuous and accurate genome assemblies. Whether a
method is based on the de Bruijn graph or the overlap graph,
de novo assembly usually requires three steps: (i) generating short
continuous sequences called contigs; (ii) incorporating contigs into
longer scaffolds; (iii) filling the gaps. The scaffolding step aims to
group contigs and to infer their orientations as well as orders within
each scaffold. In addition, the scaffolding procedure should give an
estimate of the gap distance between adjacent contigs, together with
a fair assessment of reliability, which, in our view, should be taken
part in the genome quality.

Second-Generation Sequencing (SGS) paired reads are typically
used to order and orientate contigs. For instance, Illumina supports
two types of paired-read libraries: short-insert paired-end (PE) and
long-insert mate-pairs (MP). If two paired reads are mapped to two
different contigs, this read pair establishes a link between its two
mapped contigs, which includes their linking distance as well as

their relative orientations. The linking distance is a linear combin-
ation of the insert-size and the mapping positions of the paired reads
on contigs; the relative orientation takes value þ1 or -1 depending
on whether the directions of the two contigs are consistent or not.
Similarly, a long read from Third-Generation Sequencing (TGS)
platform whose two different segments are mapped to two contigs
also establishes a link between them. Many scaffolding methods are
developed based on graphs which represent the above links between
contigs. One popular method is to extract paths containing as fewer
conflicts as possible from the graph, and each path corresponds to a
scaffold.

The path-finding method formalizes the scaffolding problem as
an optimization problem that maximizes the sum of weights of
happy mate-edges (Huson et al., 2002), which are defined to be
consistent with the relative orientations and be compatible with the
theoretical distance between linked contigs. Because of its non-
polynomial time complexity, certain simplifications are necessary.
Some scaffolders, such as SSPACE (Boetzer et al., 2011) and the
built-in scaffolding procedure in SOAP2 (Luo et al., 2012), take
heuristic strategies by adding the most reliable contig one by one.
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Some other scaffolders approximate the optimal solution by math-
ematical techniques such as the graph method (Huson et al., 2002)
and the dynamic programming method in Opera-LG (Gao et al.,
2011, 2016).

The major difficulty in scaffolding is the presence of incompat-
ible linking distances and conflicting orientations within one contig
subset. Although non-unique mapping reads are filtered out during
preprocessing, the missing duplicate regions on preliminary contigs,
either completely or partially, could lead to mistaken alignment of
paired reads. Supplementary Figure S3 illustrates such a typical scen-
ario, in which one read is mapped to the correct genomic position
whereas the other is mapped to an incorrect position. The latter is
usually a homologous duplicate of the real source. Links from such
alignment generate misleading linking distances and wrong relative
orientations between contigs. Sometimes correct links are over-
whelmed by the incorrect ones. The detection of such incorrect links
is challenging in any existing methods.

In this report, we present a novel scaffolding approach, referred
to as RegScaf, in which pairwise contig distances, allowing multiple
values, are integrated by an iterative robust regression. RegScaf first
examines the distribution of linking distances between pairwise con-
tigs by its kernel density. When multiple modes are found in a dens-
ity, values corresponding to these modes, instead of a single average,
are input into a linear regression model. The linear model parame-
terizes contigs by their positions on the genome; then each linking
distance between a pair of contigs is taken as an observation on the
difference of their position parameters. Consequently, scaffolding
becomes a parameter estimating problem, taking the portion of in-
correct linking distances as outlier observations. To ensure the esti-
mates of the contig positions would not break down by the outliers,
we adopt a robust method that minimizes a sum of trimmed
squares.

The evaluation of RegScaf is carried out using several datasets.
First, we test RegScaf on both synthetic datasets and GAGE
(Salzberg et al., 2012) benchmark datasets, and the results show
that RegScaf outperforms many popular scaffolders, especially in
the accuracy of gap estimates by substantially reducing extremely
abnormal errors. Second, we exemplify its strength in resolving re-
peat regions by a real instance. Third, we demonstrate its robustness
to contaminated libraries by a simulation. Fourth, we show RegScaf
outperforms SSPACE in the sequencing project of the Ochotona cur-
zoniae genome, whose size is about 2.5 Gb. Last, we prove its adapt-
ability to TGS long reads by producing a hybrid assembly based on
two Pacbio datasets.

2 Materials and methods

2.1 Overview
The workflow of RegScaf is given in Figure 1. The input of RegScaf
contains a preliminary contig assembly and sequencing reads. An
initial step is the mapping of sequencing reads, either paired reads or
TGS long reads, against preliminary contigs, followed by a prepro-
cessing step. The major scaffolding module consists of three steps
shown in the gray box. Step 1, construct scaffolding graph based on
links and split the graph into maximal connected subgraphs, each of
which provides a candidate subset of the preliminary contigs for
scaffolding. Step 2, orientate contigs within each subgraph by a
Boltzmann networks search. Step 3, order and position contigs with-
in each subgraph by a robust regression method. Step 3 may break a
connected component by detecting and removing unreliable links;
then the divided smaller subgraphs will go through the step 2 again.
The regression result will then be untangled into super-contigs, each
of which is a linear placement of orientated contigs separated by
gaps whose lengths are robustly estimated. With super-contigs in
place of initial contigs, the scaffolding pipeline is iterated to generate
longer and more reliable scaffolds. After k (a user-specified param-
eter) iterations, the super-contigs are polished by merging overlap-
ping contigs before final scaffolds are output. We describe the
details of each step in Sections 2.2–2.6.

2.2 Reads mapping and preprocessing
RegScaf integrates SEME (Chen et al., 2013), a fast and accurate
mapping tool, to map SGS paired reads to contigs. For TGS long
reads, RegScaf integrates BLASR (Chaisson and Tesler, 2012)—the
most popular mapping tool for TGS data. When preprocessing the
mapping results, RegScaf first removes ambiguous reads that
are mapped to multiple areas or high-coverage areas (see how to
mark high-coverage area in Supplementary Note S1). RegScaf then
re-estimates the insert-size lb and its variance r2

b for each library b
based on the read pairs that are mapped to the same long contig
(length >10kbp), and removes those read pairs which map too far
from the contig edge, namely, beyond lb þ 3rb. Some preprocessing
scripts are inherited from BAUM (Wang et al., 2018).

2.3 Constructing the scaffolding graph
We take a graph structure to group contigs into connected compo-
nents, each of which serves as a candidate scaffold set. Similar to the
contig connectivity graph in SOPRA (Dayarian et al., 2010) or Opera-
LG, the scaffolding graph is constructed by setting contigs as vertexes.
To reduce noises in links, we draw an edge between two contigs only
if the number of links between them exceeds a preset threshold,
which is a user-specified parameter in RegScaf. Considering that
noises are mainly from chimeric reads and repeat regions in a genome,
we suggest users set the threshold between 0:25� Coverage and
0:5� Coverage. We also provide a default option which takes the
10% quantile of the non-zero link count distribution in RegScaf.

Then we apply a depth-first-search (DFS) algorithm to obtain all
connected subgraphs of the scaffolding graph. Each subgraph corre-
sponds to a potential subset of contigs that form a scaffold. We im-
plement this algorithm by a recursion whose pseudo-code is shown
in Supplementary Note S10. The following scaffolding procedure
will be applied to all subgraphs in parallel.

Fig. 1. The workflow of RegScaf

2676 M.Li and L.M.Li

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac174#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac174#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac174#supplementary-data


Before we proceed, we set up some notations. Denote one of the
connected contig subgraphs as G, with its contig vertex set
VG ¼ f1; 2; . . . ;mg. We first set notations for links between contig
vertexes of G, where a link is a SGS paired read or a TGS long read
which maps to two distinct contigs, see different kinds of links in
Figure 2a. Assume a read r maps to contigs i and j, respectively, where
i ¼ iðrÞ and j ¼ jðrÞ depend on r but we omit them for the sake of sim-
plicity. If the read r indicates contigs i and j have the same orientation,
we set their relative orientation dr

ij ¼ 1; otherwise dr
ij ¼ �1.

To represent the DNA sequence which the contigs are from, con-
sider a directed straight axis L orientating in the direction from 50 to
30 end of contig 1. Under this setting, the goal of scaffolding is to get
an orientation assignment D ¼ ð1;D2; . . . ;DmÞ and an estimate of the
vector of the contig start coordinates b ¼ ðb1; b2; . . . ; bmÞ, where Di

takes the value þ1 if the orientation of the contig i is forward in L
and takes -1 otherwise, and bi denotes the start coordinate of contig i
in L. To achieve this goal, we decompose the scaffolding problem into
two parts: (i) the global orientating problem; (ii) the position estima-
tion problem. The former will be solved by an optimization model in
Section 2.4, while the latter will be formalized as a parameter estima-
tion problem in a regression model in Section 2.5.

2.4 Orientating contigs by a Boltzmann networks search
In the orientating problem, each paired read r imposes a constraint
on the relative orientation between two contigs: DiDj ¼ dr

ij.

However, contradictions may appear when we pool all pairwise
constraints together. We propose to represent such binary state vec-
tors (Di ¼ 61) along with their pairwise orientation constraints by
a Boltzmann networks (Ackley et al., 1985). Consequently, orientat-
ing contigs becomes a search problem in the Boltzmann networks.
Specifically, we take the optimal solution that minimizes the follow-
ing Hamilton energy function:

HðDÞ ¼ �
X

i 6¼j;i;j2VG

JijDiDj; (1)

where Jij ¼ ðaij � bijÞ=2; aij ¼ #fr : dr
ij ¼ 1g; bij ¼ #fr : dr

ij ¼ �1g; #
denotes the number of elements in the set. Notably, despite the simi-
larity in form, this energy function is different from that in SOPRA
where Jij¢½signðaij � bijÞ�ðaij þ bijÞ. In fact, we have proved that the
solution to minimizing (1) is equivalent to the maximum likelihood
solution when assuming each link has an equal error probability in
Supplementary Note S2.

As this combinatorial optimization problem has been proved to
be NP-complete (Garey and Johnson, 1979), RegScaf adopts a heur-
istic algorithm, which first initializes the orientation assignment by a
weight-decreasing depth-first search and then iteratively optimizes
H node by node. Detailed algorithm can be found in Supplementary
Note S3.

Once the contigs’ orientations have been determined on the cur-
rent subgraph: D̂ ¼ ð1; D̂2; . . . ; D̂mÞ, we adjust all contigs into the

Fig. 2. An illustration of the regression model in RegScaf. (a) Clustering of mapping reads according to their linking distance. At the top lies the axis L corresponding to the

scaffold containing four orientated contigs, with each long box representing a contig and each black point indicating its start coordinate bi in the axis. Input reads can be any

combination of the three types: PE lib (paired-end library, inward paired arrows), MP lib (mate-pair library, outward paired arrows) and TGS lib (long arrows). The sequenc-

ing reads that are mapped to two different contigs are taken as links, each of which suggests a distance calculated from the read alignment. But sometimes links suggest quite

different distances for the same contig pair; then links are partitioned into several clusters according to the distance density distribution. As the example in the dotted box

shows, PE links between contigs 1 and 2 are partitioned into two clusters for the distance density shows two peaks. (b) Each cluster represents an independent observation in

the regression model. For each cluster, we take the median of all linking distances as the value of Yk
ij , which represents the observed difference between the two contig start

coordinates, and build the linear regression model bj � bi þ �k ¼ Yk
ij where �k indicates the error term. Seven clusters provide seven distinct observations, and we integrate

them into the matrix form as shown. Notice that we add the first row: b1 ¼ 0, to ensure the model recognizable. For some contig pairs, such as contigs 1 and 2, multiple obser-

vations indicating different mapping modes are simultaneously retained in this model
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same orientation by reversing contigs assigned with negative D̂i.
Next, we compute relative linking distance between contigs, in prep-
aration for the following step that estimates contig exact positions.
For each contig pair (i, j), we only consider orientation-supported
links: Rij ¼ fr : dr

ij ¼ D̂iD̂jg. Then we compute the linking distance
Fr

ij, which indicates the difference between the contig start coordin-
ate observed by the paired read r. Denote sr

i and sr
j be the mapping

coordinates on the contig i and j, respectively; the mapping coordin-
ate records the distance between the contig start and the outer end
of the mapped read (see Fig. 2a). Therefore, the observed linking
distance between the start coordinates of contig i and j from read r
can be expressed as: Fr

ij ¼ lb þ sr
i � sr

j if contig i is upstream of con-
tig j; otherwise Fr

ij ¼ �ðlb � sr
i þ sr

j Þ (Supplementary Note S4 and
Supplementary Fig. S1). Computations for TGS long reads are a lit-
tle different, where the linking distance can be expressed as:
Fr

ij ¼ qsr
j � qsr

i þ csr
i � csr

j , where qsr
i denotes the alignment start on

long read r and csr
i denotes the alignment start on contig i

(Supplementary Note S5 and Supplementary Fig. S2).

2.5 Positioning contigs by a robust regression
Since we have parameterized contigs by their starts on the genome:
b ¼ ðb1; b2; . . . ; bmÞ, each linking distance Fr

ij is represented as an
observation on the difference of the two parameters:
Fr

ij ¼ �biðrÞ þ bjðrÞ. Indeed, we can integrate thousands of observa-
tions on the connected subgraph into a global model, which fits the
relationship between the observed linking distance (the dependent
variable Y) and the corresponding contig indices (the explanatory
variable X ¼ ðX1; . . . ;XmÞ;Xi 2 f0;1;�1g) by a linear regression:

Y ¼ b1X1 þ b2X2 þ � � � þ bmXm þ �:

The error item � represents the random error which is mainly
from the variation of library insert-sizes.

A straightforward estimate of b can be obtained using all pair-
wise links, each corresponding to an observation but this is compu-
tationally intensive when one subgraph contains millions of links.
Alternatively, all links between each contig pair can be compressed
into one single observation, by either the median or the mean of the
distances. Indeed, several current scaffolders (Dayarian et al., 2010;
Gao et al., 2016) adopt this strategy. Nevertheless, such brute force
compression strategy could cause a loss of information that leads to
misassemblies eventually on some occasions. One such example will
be explained in Section 3.2. To trade off computational efficiency
and accuracy, we adopt a multi-mode strategy. That is, we first
examine the distribution of the linking distances for each contig
pair: if multiple modes are shown, we group links into several clus-
ters, each corresponding to a mode. Each cluster of links is repre-
sented by one observation weighted by the cluster size and variance.
Thus the strategy, compared with existing methods, could retain
multiple observations for a contig pair, and the correct one will be
selected later by a robust regression procedure. Moreover, consider-
ing that insert-size distribution varies across libraries, we carried out
the clustering for each library separately.

A such instance is shown in Figure 2, which includes four steps
for compressing links between the contig pair (i, j) from the library
b. First, we calculate the kernel density of their linking distance
fFr

ij : r 2 Rij; r in Library bg where the bandwidth is set to be rb=2.
Second, we mark those peaks which are well separated in the ker-
nel density and denote the number of peaks as Kij. Third, we group
links into clusters by assigning each link to its nearest peak.
Fourth, for each cluster Rk

i;j, we take the median as the compressed
observation on the difference of two contig position parameters:
Yk

ij¢medianðfFr
ij : r 2 Rk

ijgÞ and fit the regression model:

Yk
ij ¼ �bi þ bj þ �k: (2)

According to the central limit theorem of median (Shao, 1999,

Theorem 5.10), we have �k � N 0;
pr2

b

2nk
ij

� �
, where nk

ij is the number of

links in the cluster Rk
ij. In other word, the k-th observation is

assigned a weight wk
ij ¼

nk
i;j

r2
b

. In practice, we replace r2
b by the sample

variance of the current cluster when the cluster size is larger than 6.
Finally, we pool together all compressed observations from dif-

ferent libraries and different contig pairs in the current subgraph
into the matrix form (see the example in Fig. 2b), where we set b1 ¼
0 for the sake of identifiability:

Y ¼ Xbþ �; (3)

where X is the design matrix in which the kðk > 1Þ-th row
Xk ¼ ð. . . ;�1; . . . ;1; . . .Þ: the i(k) position is –1 and the j(k) position
is 1. Y is the column vector of contig distance observations, and � is
the column vector of errors. In this way, thousands of links are com-
pressed into

P
ði;jÞ Kij observations, without losing any linking mode.

Any parameter estimate of the above regression model gives a so-
lution of the order as well as positions of the contigs within a scaf-
fold. The least square (LS) estimate minimizes the sum of residual
squares, which measures the goodness of a scaffold. Since our com-
pression strategy may retain multiple distances for each contig pair,
a small portion of observations would be mistaken and we need to
eliminate them from the estimate. This requires a robust regression
method with a high breakdown value (Huber, 1996). That is, the
estimates would not break down even in the presence of a fair por-
tion of outlier observations. To achieve the goal, we adopt a revised
least trimmed squares (LTS) estimate (Li, 2005; Rousseeuw and
Leroy, 2003), which tries to minimize the trimmed proportion while
minimizing the sum of trimmed squares:

min
b̂ ;I��I

X
k2I�

wk
i;jðŷi;j � yk

i;jÞ
2 þ jI n I�j

� �
; (4)

where ŷi;j ¼ b̂ j � b̂ i; I ¼ fk : iðkÞ; jðkÞ 2 VGg denotes the sample
space containing all compressed observations on VG, and j � j
denotes the size of the set �. Algorithm 1 gives the pseudo-code of
the Weighted Least trimmed Squares (WLTS) algorithm. The algo-
rithm iteratively selects a size-decreasing subset containing the
smallest residuals under current estimate till all residuals of selected
samples are below the given threshold MaxError, which is also an
adjustable parameter in RegScaf. At the end, the positions estimated
based on the final selected subset will be output. Moreover, the re-
gression procedure gives the confidence intervals of all gaps
(Supplementary Note S6) in the output of RegScaf.

The parameter value of MaxError is selected by the following
consideration. In an ideal case, all outliers have been filtered out
from the final selected subset so that all residuals should satisfy the
normal distribution assumption. Remember that a compressed ob-
servation is defined by the median of a clustered linking distances.
According to the central-limit theorem of median (Shao, 1999), the
standard deviation of a compressed observation should be aboutffiffiffiffiffiffi

p
2nk

ij

q
rb. We consider a typical scenario, where the standard devi-

ation rb of the insert-size takes 500 and the cluster size nk
ij takes 150,

then about 95% residuals would be within two standard deviations,

namely, 2
ffiffiffiffiffiffi
p

2nk
ij

q
rb 	 2�

ffiffiffiffiffiffiffiffiffiffiffi
3:14

2�150

q
� 500 	 102:33. Thus, we set the

default value to be 100. Since the cluster size decreases as the num-
ber of iterations increases, we increase MaxError by 50 in each
iteration.

2.6 Extending scaffolds iteratively and polishing final

scaffolds
Since the linear equations do not require contigs to be non-
overlapping, RegScaf further detects and splits tangled scaffolds in
the regression result into super-contigs by selecting the most linked
neighbor at each branch (Supplemental Note S7). In each super-
contig, contigs are linearly positioned with adjacent overlaps no
more than a given length. To obtain longer scaffolds, RegScaf
repeats the above scaffolding pipeline by replacing initial contigs
with current super-contigs. Super-contigs get longer as the number
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of iterations increases; meanwhile the number of reliable links
decreases and we should stop when links are not sufficient for con-
structing longer scaffolds. We suggest that users set the iteration par-
ameter k¼3 in most situations. If time permits, users can attempt
more iterations till the improvement of the new iteration is
negligible.

In the end, we polish the final scaffolds by merging overlapping
contigs. If the estimated positions of two adjacent contigs overlap
within the tolerable range, we perform a local alignment between
their overlapping sequences and merge the matched ones.

2.7 Data accessibility
The simulation data used for Escherichia coli and Caenorhabditis ele-
gans are available in our github site at https://github.com/lemontealala/
RegScaf.git. GAGE benchmarking data are available at http://gage.
cbcb.umd.edu/data. The raw sequencing data for pika genome are
available in Genome Sequence Archive (GSA) under the accession num-
bers ranging from CRX003869 to CRX003876, or at https://ngdc.
cncb.ac.cn/search/?dbId¼&q¼pika. The PacBio data for E. coli can be
downloaded from https://github.com/PacificBiosciences/DevNet/wiki/
E.-coli-Bacterial-Assembly.

3 Results

3.1 Accurate gap estimates on both synthetic and real

data
We first assessed RegScaf on two synthetic datasets and compared it
with five off-the-shelf scaffolders: SSPACE, BESST (Sahlin et al.,
2012, 2014), SOPRA, Opera-LG and SOAP2. Supplementary Table
S7 shows several key parameters used in the reported experiments of
RegScaf. Scaffolding results were evaluated using QUAST
(Mikheenko, 2018). Besides, we extracted the gap error, which is
equal to the gap distance on reference genome minus the gap distance
on scaffolds, from QUAST results and computed RMSEs (Root Mean
Square Error) to evaluate the accuracy of gap estimates. We also com-
pared the number of extremely abnormal errors in gap estimates,
which are defined as estimates with residuals larger than 1000 bp.

This threshold is used in the metric ‘#scaffold gap ext. mis.’ (scaffold
gap extensive misassemblies) in QUAST Manual at http://quast.sour
ceforge.net/docs/manual.html. We took two genomes of model organ-
isms: Escherichia coli (strain K-12 MG1655) and Caenorhabditis
elegans (WBcel235, Chr I-VI) as references and simulated several
paired-end Illumina libraries using ART (Huang et al., 2012)
(Version 2.5.8). As performances of different scaffolders depend on
preliminary contigs, we conducted our tests using two different ver-
sions of contigs, referred to as A and B. Version A of preliminary con-
tigs was generated by SOAP2 and its extended version B was
obtained by running GapCloser on SOAP2 results.

Supplementary Table S1 shows the scaffolding statistics of the
simulation results. In the case of E. coli, based on contig version A,
only RegScaf completed the single chromosome with no misassem-
bly (Fig. 3a). Based on the version B in which contigs are extended
by GapCloser, three scaffolders reached one complete chromosome:
SSPACE, Opera-LG and RegScaf, while RegScaf achieved the least
misassembly and the longest NA50. NA50 is a measure on corrected
N50 in QUAST: if breakpoints occur when aligning assembled scaf-
folds to a reference genome, QUAST breaks the scaffolds into
aligned blocks and calculates the N50 of these blocks, which is the
so-called NA50. In the case of C. elegans, RegScaf yielded the least
misassembly and the largest NA50 using contig version A, the se-
cond least misassembly and the second largest NA50 using version
B. In terms of scaffold gap extensive misassemblies and RMSEs,
RegScaf reached the least on both versions.

We also assessed RegScaf on three GAGE benchmark datasets:
Staphylococcus aureus, human chr14 and Bombus impatiens. We
selected some relatively high quality contig versions as follows: con-
tigs from Allpaths-LG (Butler et al., 2008) and SOAP2 for S. aureus,
contigs from Allpaths-LG and CABOG for human chr14, but only
one version from SOAPdenovo for B. impatiens. Supplementary
Table S2 displays the QUAST results for the GAGE datasets.
Overall, RegScaf obtained more competitive scaffold length with
fewer scaffold misassemblies in most cases. Moreover, RegScaf
yielded the least scaffold gap extensive misassemblies and the least
RMSEs on most datasets. The violin plot in Figure 3b also shows
RegScaf’s accuracy of gap estimates: only RegScaf and BESST have
no extreme errors while the former is overall less biased.

3.2 Precise reconstruction of tandem repeat regions
One of the greatest challenges in genome assembling is the wide-
spread repeats in genome, among which is a common type tandem
repeat. The main difficulty brought by tandem repeats is that the
read alignments against homologous regions will induce multiple
modes in the position differences between contigs, making it chal-
lenging to detect correct ones for existing scaffolders. RegScaf first
identifies those multiple modes by grouping links and then selects
the more global-supported mode by the robust regression, thus con-
structing more accurate scaffolds.

From the assessment of the scaffolding results in the S. aureus
assembly using the contig version A, we found a tandem repeat
region and then examined the scaffold resulted from different
scaffolders corresponding to this region. SSPACE, Allpaths-LG
and SOPRA all reported an abnormal gap estimate, while BESST
failed in reconstructing this region and Opera-LG reconstructed
this region but dropped out a crucial interior contig. Notably, only
RegScaf reconstructed the correct scaffold with an accurate gap
estimate. We explain how RegScaf resolves tandem repeats in this
instance.

As shown in Figure 4, the reference sequence contains a 4-tan-
dem repeat region. Three contigs are assembled for this region and
their mapped paired reads are grouped into three clusters.

• Cluster ‹: Two reads of the pair are both correctly mapped to

contig 13 and contig 14. Linking distances calculated from this

cluster are substantially correct so the median is close to the true

value;
• Cluster ›: The left read (the dotted sky-blue arrow) which

should map to the junction of contig 12 and 13 is mis-mapped to

Algorithm 1: The WLTS algorithm in RegScaf.

Input: The whole sample space I on subgraph G; MaxError.

Output: The final estimate b̂.

Extract Y, X, W over I ;

set Ið0Þ ¼ I; n ¼ jIj; êð0Þ ¼ ð0; . . . ;0; 10000Þ; t¼0;
while maxðêðtÞÞjIðtÞ > MaxError do

Compute the WLS estimate over the current sample space IðtÞ:

b̂
ðtÞ ¼ ½ðXTWXÞ�1XTWY�jIðtÞ ; and the errors:

êðtÞ ¼ Xb̂
ðtÞ � Y;

extract Iðtþ1Þ � I, where Iðtþ1Þ contains only the ðn� tÞ
samples with the minimum errors in I;

update the edge set of G: E
ðtÞ
G ¼ fðiðkÞ; jðkÞÞ : k 2 Iðtþ1Þg;

if G is not connected on E
ðtÞ
G then

break G into connected components: G ¼ [subG

for each subG in G do

go to the orientating procedure to scaffold contigs in

subG

return;

tþ¼1

b̂ ¼ b̂
ðtÞ

;
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a homologous region (the red arrow) on contig 13. Linking dis-

tances calculated from this cluster are larger than the true value

and the difference is about a repeat length (600 bp);
• Cluster fi: Two reads of the pair are both correctly mapped to

contig 12 and contig 14. Linking distances calculated from this

cluster are also substantially correct so the median is close to the

true value.

The advantage of RegScaf is highlighted in this example. Since
the misleading links between contigs 12 and 13 overwhelm correct
ones, scaffolders using greedy or local strategies, like SSPACE and
SOAP2, are bound to fail in detecting them. Scaffolders which only
retain one observation for one contig pair, like Opera-LG and
SOPRA, will also ignore the weaker signal of linking mode ‹ and
position contigs according to the stronger linking mode ›.
Nevertheless, considering the three linking modes globally, RegScaf
is able to identify and remove the false mode ›, thus positioning
contigs accurately.

We also assessed the performance of RegScaf by the Repeat-
aware Evaluation framework (Mandric et al., 2018), using the
S. aureus dataset from GAGE. The procedure and code of evaluation
follows the guideline at https://github.com/mandricigor/repeat-
aware. Detail can be found in Supplementary Note S9 and
Supplementary Table S5. Compared with SSPACE, BESST, SOPRA
and Opera-LG (with or without repeat contigs), RegScaf performed
better in the number of correct links, sensitivity, PPV and F-scores.

These results demonstrate the advantage of RegScaf in reconstruct-
ing repeat regions.

3.3 Robustness to PE-contaminated libraries
Although the base quality of SGS reads is quite high (over 99.9%),
insert-size errors occasionally occur in library preparation. In this
case, a mate-pair library whose insert-size is designed larger than
2kbp is contaminated by a proportion of short-insert paired-end
reads, resulting in a PE-contaminated library. The insert-size distri-
bution of a PE-contaminated library is usually in a bimodal form:
one peak stands around the designed size and another stands around
a few hundred bps.

As we have mentioned in Section 2, our method adopts the ro-
bust estimate based on clustered linking modes, which is able to
handle a fair proportion of contaminated observations. To verify
this, we simulated two contaminated libraries on C. elegans genome,
each of which composes 40% wrong insert-size reads, and con-
ducted genome assembly. The results in Supplementary Table S3
show RegScaf obtains a comparable scaffold length with high accur-
acy: it yields the second largest and the largest NA50 using the two
contig versions, respectively. As shown in Figure 3c and d, RegScaf
also yielded the least misassemblies and the most accurate gap esti-
mates. Notably, the gap error distributions of other methods have
long tails, which means many gaps estimates are severely biased. In
contrast, such extremely biased gap estimates have been substantial-
ly reduced in RegScaf.

Fig. 3. RegScaf outperforms current scaffolders in accuracy. (a) NAx plot from QUAST output for five scaffolders on the E. coli simulation A. Nx is the length for which

the collection of all scaffolds of that length or longer covers at least x% of the assembly, while NAx is a corrected version of Nx. QUAST breaks the scaffolds into

aligned blocks and calculates the Nx of the blocks, denoted as NAx. The line chart shows NAx values as x varies from 0 to 100%. At x¼0, from top to bottom, the curves cor-

respond to RegScaf, SSPACE, SOAP2, Opera_LG, and BESST. In this simulation, only RegScaf completed the assembly in one scaffold with no misassembly. (b) The violin

plot of gap error distributions for results on the S. aureus assembly A. The gaperror¼EstimateGapSize�RealGapSize, where gap sizes are extracted from QUAST results. Results

from both RegScaf and BESST have no outlier while RegScaf shows a smaller bias from 0. (c) The FRCurve plot from QUAST output for the PE-contaminated simulation B on

C. elegans. The x value (Feature space) is the total maximum number of features (misassemblies) in the scaffolds. The y value (Genome coverage %) is the total number of

aligned bases in the scaffolds, divided by the reference length. At x¼80, from top to bottom, the curves correspond to RegScaf, SSPACE, SOAP2, BESST, and Opera_LG.

RegScaf gets the least misassemblies while SSPACE follows closely. (d) The violin plot of gap error distributions for results on PE-contaminated simulation B on C. elegans.

RegScaf evidently outperforms other scaffolders by substantially reducing extremely abnormal gap errors
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3.4 Outperformance on a large genome
As the sequencing costs drops, the sequencing of many non-model
organisms becomes realistic. Consequently, more insights can be
gained from the comparative genomic studies. For example, to
understand how pika or O. curzoniae, adapts to the environment of
high altitude and low oxygen, our collaborators from Kunming
Institute of Zoology, CAS, initiated a sequencing project of pika, the
complete genome size of which is about 2.5 Gb. The sequencing
data contain 13 Illumina libraries including 7 PE and 6 MP libraries.
All 13 libraries were used in de novo assembly while the scaffolding
step only used 85� sequencing reads including the 6 MP libraries
and the longest PE library.

We generated preliminary contigs by cutting a de novo assembly
from SOAP2. Next, we conducted scaffolding by SSPACE and
RegScaf, respectively, and their results were compared in Table 1.
Both methods reduce the scaffold number to less than one third of

the number of initial contigs. The scaffold N50 value is 0.53 Mb in
SSPACE compared to 2.4 Mb in RegScaf, an increase of more than
4-folds. The BUSCO value (Sim~ao et al., 2015), an index indicating

the biological completeness of an assembly, is increased from 93.5%
to 95.3% by RegScaf. Notably, due to the more accurate gap esti-

mates, Regscaf is able to recognize more overlapping contigs, and
the contig merging doubles the contig N50 from 27.3 to 57.5 kb.

3.5 Adaptability to TGS platforms
We show the adaptability of the regression model to sequencing
data from other platforms by an example of PacBio long

reads (Roberts et al., 2013). Escherichia coli PacBio data and
reference genome were downloaded from https://github.com/

PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly. We also
obtained a corrected version of the PacBio dataset using LoRDEC

Fig. 4. A reference sequence contains a 4-tandem repeat regions (sky-blue consecutive boxes), and three contigs are assembled for this sequence. Mapping reads between con-

tigs are grouped into three clusters, in which links from cluster 2 are false because reads from the edge of contigs (dotted sky-blue arrows) are mis-aligned to its homologous re-

gion (red unfilled arrows). Mis-alignments lead to larger observations on linking distances in cluster 2. (b) The kernel density of the distance observations on contigs 12 and 13

shows two peaks. The density curve with small steps corresponds to the kernel “tophat”, the smoothest curve corresponds to the kernel “gaussian”, and the slightly wiggled

curve corresponds to the kernel “epanechnikov”. The linking distance data are presented in points at the bottom, where the medians are marked by two circles. The lower

peak corresponds to the true cluster ‹; the higher peak corresponds to the false cluster ›, which current scaffolds are more likely to use to estimate the gap between contig 13

and 14. (c) The kernel density of the distance observations from contigs 12 and 13 shows only one peak, which corresponds to the only cluster between contigs 12 and 14. This

observation helps RegScaf identify and remove the false observation › and obtain more accurate scaffold. The three curves correspond to the kernel “tophat”, “gaussian”, and

“epanechnikov” as in (b).

Table 1. Scaffolding statistics on the O. curzoniae genome

Contig N50 (kb) No. of contigs scaffold N50 (kb) No. of scaffolds BUSCO (%)

Original 27.3 162408

RegScaf 57.5 100758 2403.4 41388 95.3

SSPACE 30.8 150970 531.4 50629 93.5

Note: The best N50 indices are marked in bold.
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(Salmela and Rivals, 2014). Three simulated Illumina libraries are
used to generate contigs by SOAP2 and reads mapping were carried
out by BLASR (Chaisson and Tesler, 2012). RegScaf was compared
with two hybrid scaffolders: SSPACE-LongRead (Boetzer and
Pirovano, 2014) and LRScaf (Qin et al., 2019) (see Supplementary
Table S4). Both RegScaf and LRScaf completed the genome assem-
bly in one scaffold using either uncorrected long reads or corrected
long reads, while SSPACE-LongRead ended up with dozens of scaf-
folds. In addition, both RegScaf and LRScaf introduce no misassem-
bly in the final scaffold, except the trivial difference at the
breakpoint of the circular genome.

4 Discussion

In shotgun sequencing, the scaffolding step plays a significant role in
the accuracy and the continuity of final assemblies. Nevertheless,
scaffolding is still a difficult problem regarding the widespread
repeats in genomes. In the presence of incomplete preliminary con-
tigs, reads from unassembled regions may be aligned to homologous
sequences and be mistakenly used to position contigs. Only if we are
able to identify such misalignments leading to incorrect inter-contig
distances, can we resolve such repeat regions accurately in scaffold-
ing. To our best knowledge, RegScaf is the first scaffolder that takes
into account multiple modes of linking distances between contigs,
for the purpose of including the correct ones with a better chance,
and selects the optimal solution according to a global measure of
consistency.

In measurement problems, robust regression methods are gener-
ally accredited for their high breakdown value as well as accuracy,
which are exactly what we need in genome assembly. Our method
takes full advantage of the statistical method by formalizing scaf-
folding as a genomic position estimate problem in a regression
model. In principle, this regression model can apply to any sequenc-
ing platforms, such as TGS, 10� sequencing and even optical map-
ping (Schwartz et al., 1993) data as long as the linking distance can
well be defined. In this article, we applied the regression method to
SGS and TGS data, and the preliminary efforts showed its feasibility
and reliability in contig ordering and gap estimation. We will ex-
pand RegScaf’s adaptability by adding data-processing scripts for
other sequencing platforms in the future.

Although the cost of sequencing decreases over time, the entire
workload of a genome project is still quite intensive. It is of great
value to improve the accuracy and continuity of assemblies using
existing the huge amount of SGS data. As shown by the pika gen-
ome, RegScaf improved the N50 values reliably and substantially.

Moreover, the regression model proposed in this article can be
applied to evaluating existing scaffold assemblies. For any given
scaffold, we can plug its contig position estimates into the regression
model and compute residuals for all linking distance samples.
Samples with abnormally large residuals are then marked as outliers.
If the connectivity of a contig subgraph is broken after excluding
those outliers, it indicates that the broken junction is suspicious
under the current estimate. Indeed, an assessing module based on
the regression model, can be found in the program at https://github.
com/lemontealala/RegScaf.git/pipeline_assess.sh.

Sequencing data from one generation to the next have brought
opportunities as well as challenges to assemblers. In assembling, an
accurate scaffold can be treated as a ‘super-contig’ if all gaps are
positioned with accuracy of high reliability. It is our hope that the
proposed robust regression approach can make assembly, a corner-
stone for downstream genomic analysis, more reliable.
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