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Abstract: Nowadays, pet animals are known to be asymptomatic carriers of Clostridioides difficile.
This study was conducted to investigate the burden of toxigenic C. difficile among diarrheic dogs
and cats using direct PCR on fecal samples to reveal better insights about the epidemiology of
such toxigenic strains referring to its public health significance. For this purpose, fecal samples
were obtained from 58 dogs and 42 cats experiencing diarrhea. Following DNA extraction, the
extracted DNA was examined for the occurrence of C. difficile as well as toxigenic strains through the
detection of C. difficile 16S rRNA and toxin encoding genes (tcdA, tcdB, cdtA and cdtB) using PCR.
Moreover, partial DNA sequencing of toxigenic strains retrieved from dog and cat was carried out.
Of 100 examined diarrheic animals, 90 (90%) were C. difficile positive, including 93.1% and 85.7%
of dogs and cats, respectively. In addition, toxigenic strains were detected in 13 animals, giving an
overall prevalence 13% with the following prevalence rates among dogs and cats 12.1% and 14.3%,
respectively. Furthermore, the phylogenetic analysis of the obtained sequence revealed high genetic
relatedness of tcdA sequence obtained from a cat to strains of human diarrheic cases to point out the
public health threat of such sequence. In conclusion, the direct detection of toxigenic C. difficile using
PCR among dogs and cats highlights the potential role of household pets as a source for such strains
to human contacts.

Keywords: toxigenic C. difficile; dogs; cats; public health

1. Introduction

Clostridioides difficile (formerly known as Clostridium difficile) is an emerging enteric
pathogen in human and veterinary medicine [1]. It is a Gram-positive, strictly anaerobic,
spore forming toxin-mediated bacillus [2]. In the last four decades, after admission of
broad-spectrum antibiotics, the role of C. difficile in enteric diseases began to flare up to
become a remarkable cause of nosocomial associated diarrhea and pseudomembranous
colitis among human being [3]. However, nowadays, there is increasing number of C.
difficile infection (CDI) cases outside health care settings referring to community acquired
CDI, which accounts for one quarter of all reported CDI cases [4,5]. Nonetheless, there is
no definitive source of CDI in the community settings [6] and this has urged researchers to
investigate the potential role of animals as a vector for transmission of CDI [4]. Notably, this
pathogen has been implicated in gastrointestinal diseases among diverse animal species,
including food producing animals as well as companion animals [7–11]. Regarding pet
animals, there were a lot of reports investigated C. difficile in dogs with gastrointestinal
disorders [12–15] while in cats, little is known concerning association between C. difficile
and feline enteric diseases [16,17]. The characteristic diarrhea and gastrointestinal tract
inflammation in pet animals and humans are mainly attributed to toxin producing C.
difficile [18,19]. Basically, pathogenic C. difficile strains produce two main toxins: toxin A
and toxin B which encoded by tcdA and tcdB genes, respectively [20] with some strains
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producing a binary toxin C. difficile transferase (CDT) [21]. While toxin A is an enterotoxin
causing severe gut inflammation, toxin B is a potent cytotoxin that is responsible for cellular
death and damage of epithelial tissue [22]. Investigation of C. difficile and its toxins in
diarrheic animals relies on conventional methods such as culture may yield underestimated
results [13,23]. Recently, direct detection of C. difficile in animal fecal samples using PCR
was found to give significantly higher detection rate rather than conventional culture
technique [24] whereas, the direct detection of toxin encoding genes is a reliable tool for
the detection of toxigenic strains [25]. Accordingly, the current study was carried out to
investigate the occurrence of toxigenic C. difficile via direct PCR on feces of pet animals
suffering from diarrhea to give insight about the burden of toxigenic C. difficile strains
among diarrheic pet animals for better understanding the epidemiology of such strains
referring to its public health implication.

2. Materials and Methods
2.1. Ethical Statement

The protocol of this study was approved by ethical committee of Faculty of Veterinary
Medicine, Cairo University, Egypt with an ethical approval code: Vet CU28/04/2021/321.

2.2. Sample Collection

Fecal samples were obtained from 100 diarrheic pet animals (58 dogs and 42 cats)
from private veterinary clinics where animals of different ages were included in this study.
These samples were collected in sterile cups, transported in an icebox to the laboratory and
stored at −20 ◦C for further processing.

2.3. Molecular Investigation of C. difficile and Toxin Encoding Genes
2.3.1. DNA Extraction

DNA was extracted from each fecal sample using FavorPrep™ Stool DNA Isolation
Mini Kit (Favorgen, Taiwan, Cat No. FASTI 001-1) according to the manufacturer protocol.
Then after, the extracted DNA was stored at −20 ◦C till further molecular analysis.

2.3.2. Direct Detection of C. difficile

The extracted DNA was screened for the presence of C. difficile via direct detection of
C. difficile 16S rRNA using the following primers: B (CCGTCAATTCMTTTRAGTTT) and
PG-48 (CTCTTGAAACTGGGAGACTTGA) (Metabion, Steinkirchen, Germany) [26]. The
PCR reaction was carried out in a final volume 25 µL where 3 µL of DNA template, 1 µL of
each primer, 12.5 µL of Cosmo PCR red master mix (Willowfort, Birmingham, UK, Cat No.
WF10203001) and 7.5 µL of nuclease free water were included in each reaction. The thermal
profile of PCR reaction was as follows: Initial denaturation at 95 ◦C for 3 min followed by
40 cycles of denaturation at 95 ◦C for 30 s, annealing at 44 ◦C for 30 s, extension at 72 ◦C
for 30 s then final extension at 72 ◦C for 5 min. Afterwards, amplicons were analyzed with
agarose gel electrophoresis (BioRad, Hercules, USA) and photographed to yield specific
band at 270 bp (Figure 1).
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2.3.3. Direct Detection of C. difficile Toxin Genes
tcdA and tcdB Genes

Investigation of C. difficile tcdA and tcdB genes encoding toxin A and toxin B, respec-
tively was carried out in all animals. Primers designed to amplify regions of tcdA and
tcdB were as follow: tcdA (YT-28 GCATGATAAGGCAACTTCAGTGG and YT-29 GAG-
TAAGTTCCTCCTGCTCCATCAA), tcdB (YT-17 GGTGGAGCTGCTTCATTGGAGAG and
YT-18 GTGTAACCTACTTTCATAACACCA) (Metabion, Steinkirchen, Germany) [27]. The
PCR assay was done at 95 ◦C for 3 min then 40 cycles of denaturation (95 ◦C for 20 s),
annealing (53 ◦C, 49 ◦C for tcdA and tcdB respectively for 25 s), extension (72 ◦C for 1 min)
followed by final extension at 72 ◦C for 7 min. The PCR products were observed under UV
transilluminator (BioRad, Hercules, CA, USA) after electrophoresis step in 1.5% agarose
gel (Sigma-Aldrich, Saint Louis, USA, Cat No. A0576) stained with 0.5 µg/mL of ethidium
bromide (Sigma-Aldrich, Saint Louis, USA, Cat No. E7637) as specific band of tcdA gene
was showed at 602 bp (Figure 2).
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cdtA and cdtB Genes

The multiplex PCR amplification for binary toxin genes (cdtA and cdtB) was carried
out as follows: after 4 min of initial denaturation at 94 ◦C, 30 cycles of 94 ◦C for 45 s, 52 ◦C
for 1 min and 72 ◦C for 80 s were conducted then followed by 72 ◦C for 5 min [28].

2.3.4. Partial DNA Sequencing of C. difficile tcdA and tcdB Genes

One PCR product of toxin A obtained from a cat and another one of toxin B retrieved
from a dog were purified via a QIAquick purification kit (Qiagen, Hilden, Germany, Cat
No. 28104) then they were subjected for sequencing using Big Dye Terminator V3.1 kit
(Thermo Fisher, Waltham, MA, USA, Cat No. 4337455) in ABI 3500 Genetic Analyzer
(Applied Biosystems, Foster City, CA, USA).

2.4. Nucleotide Sequence Accession Numbers

Partial sequences of C. difficile tcdA and tcdB genes were submitted to GenBank and
deposited in GenBank database with the following accession numbers: MW340088 for tcdA
and MW357902 for tcdB.

2.5. Sequence Identity BLAST Analysis

The obtained tcdA and tcdB sequences from cat and dog respectively, were compared
with C. difficile strains available on GenBank using NCBI website via BLAST analysis to
display the identity percentage between our sequences and those of human clinical cases
from different countries to clarify the public health significance of such strains.
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2.6. Phylogenetic Analysis

The recovered tcdA cat strain was aligned against similar C. difficile toxin A sequences
retrieved from animals as well as strains obtained from human clinical cases worldwide to
confer the genetic relatedness between pets and human strains to understand the public
health implications of our findings. Clustal W multiple alignment was conducted using
Bioedit software version 7.0.9 while MEGA 7 software was used to construct phylogenetic
tree via neighbor-joining approach where bootstrap consensus tree was obtained with 500
replicates (Figure 3).
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2.7. Statistical Analysis

The influence of age on prevalence rate of toxigenic C. difficile was analyzed by SPSS
software version 18.0 using chi square (χ2) test. The result was considered statistically
significant when p-value was less than 0.05.

3. Results

Of 100 examined diarrheic animals, 90 (90%) were C. difficile positive, including
93.1% and 85.7% of dogs and cats, respectively. For toxigenic C. difficile, 13 (13%) out of
100 animals had C. difficile toxins comprising 12.1% (7/58) and 14.3% (6/42) of dogs and
cats, respectively. Moreover, according to toxin production type, 4 dogs and 4 cats were
positive for tcdA and negative for tcdB while one dog and two cats carried toxin B and
negative for toxin A as well as both tcdA and tcdB genes had been detected in two dogs. On
the other hand, none of binary toxins (cdtA and cdtB) was found among the examined dogs
and cats as shown in Table 1. Regarding animal age, the prevalence of toxigenic C. difficile
was as follows: 14% (less than 6 months), 14.8% (6–12 months) and 16.7% (greater than 12
months) (Table 2). Statistically, no significant relationship (p value = 0.94) was observed
between toxigenic C. difficile and animal age. The similarity ratios between the obtained
C. difficile tcdA and tcdB sequences in this study and those of public health importance
according to the BLAST analysis were displayed in Table 3.



Vet. Sci. 2021, 8, 88 5 of 8

Table 1. Occurrence of C. difficile 16S rRNA and toxin encoding genes among diarrheic dogs and cats.

Animal
Species

No. of Examined
Animals

No. of Positive
Animals (%)

C. difficile 16S
rRNA

Toxigenic C.
difficile

tcdA+tcdB- tcdA-tcdB+ tcdA+tcdB+ Binary Toxins (CDT) Total

Dogs 58 54 (93.1) 4(6.9) 1 (1.7) 2 (3.4) 0 (0) 7 (12.1)
Cats 42 36 (85.7) 4 (9.5) 2 (4.8) 0 (0) 0 (0) 6 (14.3)
Total 100 90 (90) 8 (8) 3 (3) 2 (2) 0 (0) 13 (13)

Table 2. Occurrence of toxigenic C. difficile among pet animals of different ages.

Age of Animals No. of Examined Animals Positive Animals

No. %

<6 M 43 6 14
6–12 M 27 4 14.8
>12 M 30 5 16.7
Total 100 15 15

Table 3. The identity percentage of obtained C. difficile tcdA and tcdB partial sequences in this study with C. difficile strains
deposited in Genbank of public health significance.

Sequence Genbank ID Isolation Source Country % Identity

MW340088
(tcdA cat sequence) KP182922.1 Diarrheic patient India 100

CP022524.1 Hospitalized pediatric patient with diarrhea USA 99.81

CP010905.2 Patient with severe pseudomembranous colitis Switzerland 99.81

KC292061.1 Diarrheic patient China 99.81

MW357902
(tcdB dog sequence) DQ117266.1 Patient with antibiotic associated diarrhea France 99.72

KC292138.1 Diarrheic patient China 99.48

CP010905.2 Patient with severe pseudomembranous colitis Switzerland 99.48

DQ117268.1 Patient with pseudomembranous colitis France 99.43

4. Discussion

In the last few years, pet dogs and cats were found to be potential reservoirs for
some emerging nosocomial pathogens with great public health concern [29,30]. Such
previous studies have paved the way for more investigations about the role of pet animals
in the epidemiology of other nosocomial pathogens likewise C. difficile and nowadays, the
implication of household pets in community acquired CDI is an ongoing public health
issue [6]. In the current study, C. difficile was detected in 90% of diarrheic pet animals
where 93.1% and 85.7% of dogs and cats were positive, respectively. Our results were
higher than those reported in previous studies 6.7% [15], 25% [31] for dogs and 12.9% [17],
15.7% [31] for cats suffering from diarrhea. Such high unexpected results in the current
study may be owed to the direct detection of C. difficile by PCR using 16S rRNA primers
can detect as little as 10 cells of C. difficile among 1010–1011 total bacterial cells per one gram
of stool [32]. On the contrary, other studies recovered C. difficile via conventional culture
technique which needs at least 1000 cfu/gram of feces on the selective C. difficile culture
media to yield successful cultivation. Therefore, the direct detection of C. difficile by PCR
can elucidate the burden of CDI among diarrheic pet animals and consequently triggers a
growing public health concern.
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Regarding toxigenic C. difficile, 13 out of 100 diarrheic pet animals were positive for
toxin encoding genes, whereas 12.1% (7/58) of investigated dogs carried C. difficile toxins.
Our finding was lower than that reported by Weese et al. [12] who found 21% (18/87) of
examined diarrheic dogs were toxigenic using an ELISA assay. While in cats, the prevalence
of toxigenic C. difficile was 14.3% (6/42). Such result was higher than that reported by
Silva et al. [17] who detected toxigenic C. difficile in 3 (4.3%) out of 70 diarrheic cats by PCR
carried out on recovered C. difficile isolates.

From a public health point of view, C. difficile associated diarrhea in human being is
mainly attributed to toxigenic strains [19]. Importantly, in the current study, there were two
dogs carried both toxin A and toxin B which may refer to presence of A+/B+ toxinotype.
C. difficile A+/B+ is the most predominant toxigenic strain isolated from diarrheic dogs in
studies conducted by Wetterwik et al. [13], Andrés-Lasheras et al. [15], Ghavidel et al. [33]
and Silva et al. [34]. Likewise, it is the most pathogenic C. difficile toxinotype in human being
and is primarily accounted for C. difficile associated disease (CDAD) worldwide [35,36].
Moreover, there were one dog and two cats had tcdB gene but negative for tcdA which
may indicate A−/B+ strain. Such toxinotype has attracted the attention of researchers
in recent years [37] because it has been incriminated in four nosocomial outbreaks of C.
difficile associated diarrhea in Canada [38], Netherlands [39], Japan [40] and Dublin [41] as
well as 4 dogs and 4 cats were found to be toxin A positive and toxin B negative; this strain
also had been detected among diarrheic patients in intensive care unit [42]. On the other
hand, all the examined dogs and cats were negative for binary toxin genes. In agreement
with our result, Andrés-Lasheras et al. [15] and Silva et al. [17] who could not find binary
toxins in C. difficile isolates recovered from diarrheic dogs and cats, respectively. Pet dogs
and cats are in frequent and close contact with their owners and usually share the same
places at home like living room and bedroom. Accordingly, diarrheic pet animals may be
considered as a potential source for dissemination of toxigenic C. difficile strains within
a community. Therefore, our findings indicate that the direct PCR detection of toxigenic
C. difficile in feces of diarrheic dogs and cats can give a better insight to understand the
epidemiology of toxigenic C. difficile infection among pet animals.

On the other hand, the prevalence of toxin producing C. difficile was found to be
increased with age of pet animals as animals of age greater than 12 months had a higher
percentage (16.7%) but there was no significant relationship between age and prevalence
rate of toxigenic C. difficile. Similarly, Álvarez-Pérez et al. [23] and Diniz et al. [43] reported
that shedding of C. difficile and its toxins was increased with pet animals of higher ages.

Interestingly, in this study, we provide C. difficile tcdA and tcdB partial sequences from
a cat and a dog, respectively, where cat and dog strains showed high identity percentage of
99.81%–100% and 99.43%–99.72% respectively to C. difficile isolates retrieved from patients
with diarrhea and pseudomembranous colitis worldwide to highlight the public health
impact of such strains. In the meantime, phylogenetic tree was constructed to encompass
C. difficile toxin A sequences from animals as well as human strains including diarrheic
patients from different countries (Figure 3). It was obvious that tcdA sequence from a
cat was grouped within the same cluster with that reported in sheep in the same country
(Egypt) and those of human diarrheic cases originated from Asian countries (China, India,
and Iran). Thus, the high genetic relatedness of our sequence to those of humans points
out a potential relationship between cats and diarrheal infection in human being rendering
pet animals a potential zoonotic source for toxigenic C. difficile human infection.

5. Conclusions

This study provides more knowledge regarding the epidemiology of toxigenic C.
difficile infection among diarrheic dogs and cats. Remarkably, the direct detection of
toxigenic C. difficile using PCR in animal samples opens a gate for better assessment of
toxigenic CDI burden among household pets which subsequently, reflects on human health.
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