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Abstract

The knowledge of interactions among functional proteins helps researchers understand disease 

mechanisms and design potential strategies for treatment. As a general approach, the fluorescent 

and affinity tags were employed for exploring this field by labeling the Protein of Interest 

(POI). However, the autofluorescence and weak binding strength significantly reduce the accuracy 

and specificity of these tags. Conversely, HaloTag, a novel self-labeling enzyme (SLE) tag, 

could quickly form a covalent bond with its ligand, enabling fast and specific labeling of 

POI. These desirable features greatly increase the accuracy and specificity, making the HaloTag 

a valuable system for various applications ranging from imaging to immobilization of POI. 

Notably, the HaloTag technique has already been successfully employed in a series of studies 

with excellent efficiency. In this review, we summarize the development of HaloTag and 

recent advanced investigations associated with HaloTag, including in vitro imaging (e.g., POI 

imaging, cellular condition monitoring, microorganism imaging, system development), in vivo 
imaging, biomolecule immobilization (e.g., POI collection, protein/nuclear acid interaction and 

protein structure analysis), targeted degradation (e.g., L-AdPROM), and more. We also present a 

systematic discussion regarding the future direction and challenges of the HaloTag technique.
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Introduction

A series of biological processes (e.g., development of diseases) are kept happening in 

the body, which was triggered by complex interactions between biomacromolecule (e.g., 

protein-protein or protein-nucleic acid). Therefore, a comprehensive understanding of these 

interactions would reveal the mechanisms of certain diseases and advance the strategies 

for early diagnoses and therapies. Given that cellular proteins are highly dynamic, genetic 

modification is the best approach for investigating a protein of interest (POI) at active 

status. Generally, the labeling of POI via affinity tag (e.g., His-Tag) or fluorescent protein 

(e.g., GFP) allows an intracellular tracking or immobilization of POI. However, several 

drawbacks cannot be avoided entirely. For instance, the impurity of harvested proteins 

could be caused by unspecific binding (e.g., His-Tag) or a decrease in the brightness of 

fluorescence, etc. These disadvantages potentially restrain their applications in studies that 

require high accuracy (e.g., miRNA-protein interaction or POI tracking studies).

In the last two decades, a series of self-labeling enzymes, also called self-labeling enzymes 

(SLEs), had been successfully developed. Three prominent examples are the CLIP-tag/

SNAP-tag (19.4 kDa), ACPtag (9 kDa) and HaloTag (33 kDa) (Table 1). These SLEs share 

several features, including relatively small size, high stability, and fast-reacting kinetics, 

allowing fused POI to be labeled by tag-specific substrates with extremely high specificity 

and efficiency. More importantly, the functionalization of interactive substrates allows 

fusion proteins to be immobilized on a solid phase, monitored via molecular imaging 

(e.g., fluorescence, luminescence or radioactive isotope, etc.) or gifted capacities (e.g., 

redox-response or ion-activated imaging). As such, the POI or the interacting biomolecules 

on the POI could be specifically studied via the functional substrates that covalently bind 

to POI for various purposes, even high-resolution imaging of cellular ion influx. In the 

current review, we summarize the developments of HaloTag technology, in particular, recent 

applications of HaloTag for POI tracking (e.g., in vitro and in vivo imaging), immobilization 

(e.g., protein-reacting mRNA analysis and protein structure study), targeted degradation 

(e.g., chloroalkane-containing proteolysis targeting chimeric (HaloPROTACs)) and other 

applications (e.g., differentiation of stem cell), is highlighted (Scheme 1). In addition, the 

prospects and challenges for future developments of HaloTag are systemically discussed.

A Brief History of HaloTag Technology

HaloTag (33 kDa) is modified from the bacterial enzyme haloalkane dehalogenase, with 

its Phe272 residue mutated to His272. The mutation of this residue results in a loss of 

its ability to perform hydrolysis. As a result, an alkyl-enzyme intermediate can be formed 

between the HaloTag and its ligand without further hydrolysis, leading to the formation of 

a covalent bond. Although HaloTag is an exogenous protein, it does not interfere with an 

organism’s normal physiological metabolism (Naested et al., 1999). By recruiting different 

designs of ligands, HaloTag is applicable in various directions of research and investigation. 

For example, the folding of HaloTag can be directly monitored via the change of fluorescent 

intensity from a conjugated ligand, which may serve as a desirable platform to study the POI 

folding procedures during translation or other high-complexity conditions (Samelson et al., 

2018).
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Since Promega Corporation developed HaloTag in 2005 (Los et al., 2005), this technique has 

received growing attention from scientists worldwide. Within one year, the high efficiency of 

HaloTag system was investigated and verified by several research groups (Lang et al., 2006; 

Zhang et al., 2006). For instance, the Rao group successfully used HaloTag technology to 

induce a site-specific modification of bioluminescent protein on quantum dots (QDs) (Zhang 

et al., 2006). As-prepared QDs were labeled with HaloTag-fused renilla luciferase fusion 

protein via surface conjugation of HaloTag ligand (HTL), which could be lightened up by 

bioluminescence resonance energy transfer (BRET) after the attendance of the substrate, 

coelenterazine. Although HaloTag was only designed for applications in mammalian cells 

initially, researchers ingeniously employed this platform in a series of different research 

fields. In the following decade, HaloTag technique was comprehensively studied and applied 

in studies including protein interactions (Löchte et al., 2014), localization of POI within 

cells (Lee et al., 2010; Strauch et al., 2011; Liu et al., 2012), and functional HaloTag 

ligand (HTL) developments (Raina et al., 2014; Neklesa et al., 2011). In particular, advanced 

HTL such as HyT36 and HyT13 generated from the Crews group has paved new ways 

of observing certain mechanisms (e.g., endoplasmic reticulum (ER) regulation) inside cells 

(Raina et al., 2014; Neklesa et al., 2011). More specifically, these HTL could induce the 

destabilization of HaloTag-fused POI on ER and cause a resolvable ER stress, revealing the 

relation between unfolded protein response (UPR) and estrogen-mediated ER stress. With 

these fundamental research bases, HaloTag gradually became a powerful tool that has been 

widely applied in various basic and applied researches (Schlichthaerle et al., 2019; Li et al., 

2020). In the following sections, we will summarize these latest and novel investigations 

associated with HaloTag strategy (Table 2).

Recent Biomedical Applications of HaloTag Technology

In vitro imaging

Imaging POI in living or fixed cells could offer vital information for understanding their 

biochemical functions inside protein networks (Ohno et al., 2014). In support of HaloTag 

system, POI fused with HaloTag could be effectively labeled by HTL. As such, a series 

of approaches for tracking POI in cell or micro-organs, monitoring cellular conditions 

and developing advanced platforms for therapy or imaging could be achieved via different 

conjugations of functional groups on HTL, such as dyes (e.g., rhodamines, carbopyronines, 

Si-rhodamine, Alexa Fluor) (Takahashi et al., 2019; Frei et al., 2019; López-Andarias et al., 

2020; Thevathasan et al., 2019).

POI imaging

As the general approach for POI imaging, HaloTag is directly fused with POI (e.g., G 

Protein-coupled receptors and receptor tyrosine kinases, etc.), enabling site-specific labeling 

via HTL and imaging groups conjugated (e.g., fluorophores) (Berki et al., 2019; Butkevich 

et al., 2016; Lesiak et al., 2020; Peach et al., 2021). For instance, a HaloTag fused serum 

response factor (SRF) was designed by Hipp et al. (2019) to investigate the interaction 

between SRF and chromatin in fibroblast and primary neuron cells. Significantly, the fusion 

of HaloTag did not induce any interference on SRF’s location and functions. With the 

assistance of HTL-fluorophore (TMR and silicone rhodamine), chromatin residence times 
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of SRF could be accurately detected (up to 1 min) and defined as three regimes via single-

molecule living imaging. Similarly, Frei et al. (2019) successfully visualized HaloTag-fused 

POI (TOMM20) on the outer mitochondrial membrane via single-molecule localization 

microscopy (SMLM) (Fig. 1A). Specifically, novel photoactivatable silicon rhodamine (PA-

SiR) with super spectroscopic properties was developed and conjugated on HTL. Under 

UV irradiation (Fig. 1B), PA-SiR bound to TOMM20 could be protonated and visualized 

via SMLM for over 65 s in living cells (Figs. 1C-1E). In addition, Huet-Calderwood et 

al. (2017) reported a complex platform for imaging integrin in vitro by integrating various 

fluorescent tags (e.g., GFP, pHluorin, or HaloTag) with β1 integrin (ecto-β1 via HaloTag 

technique. In particular, the highly specifical ecto-Halo β1 was able to track and analyze β1 

integrin with detailed spatiotemporal dissection for up to 1 h, showing the high accuracy of 

HaloTag strategy.

Unlike most studies recruiting conventional fluorophores, a light-independent/luminescent 

imaging strategy was developed by Chang et al. (2019) (Figs. 2A and 2B). In this system, 

HaloTag was fused with nanoluc that could behave as a bioluminescence resonance energy 

transfer (BRET) donor. Once the furimazine was presented, nanoluc will be lighted up and 

excite HTL-DEAC450 (coumarin-based dye), with fast kinetics (t1/2 < 120 s) (Fig. 2A). 

More importantly, after photolysis, the uncaging ibrutinib from HTL-DEAC450 induced 

efficient therapy on HeLa and SKBR3 cells (Fig. 2B).

However, the imaging of single POI only provides limited information, which is insufficient 

for studying interactions between biomacromolecules or high-accuracy researches. Thus, 

innovative dual-tracking approaches have been developed for identifying the interactions 

between POI & POI or POI & RNA (Sato et al., 2017; Yoon et al., 2016). For example, the 

Singer group introduced a modular design for tracking a POI and its mRNA simultaneously 

in neurons from genetic-modified mice. The β-actin mRNA was encoded with 24 tandem 

MS2 aptamers at 3’-UTR, while HaloTag was fused to tag β-actin. With the attendance 

of endogenous-expressed stdMCP-stdGFP (MS2 capsid protein (MCP) and GFP fusion 

protein) and fluorescent HTL (i.e., JF549/JF646), β-actin mRNA and β-actin could be 

visualized simultaneously with high resolution.

Instead of dual-labeling, incorporating multiple HTL (with different physiochemical 

features) and HaloTag-fused POI could also help some investigations on biological progress. 

As one representative application, Takahashi et al. (2018, 2019) tactfully utilized HaloTag-

fused microtubule-associated protein one light chain 3 (HT-LC3) and different HTL 

(cell-penetrated/unpenetrated) to visualize the procedure of autophagosome formation. In 

addition, Takahashi et al. also recruited HaloTag system for investigating endosomal sorting 

complexes that were required in the formation of transport-III (ESCRT-III) component 

(CHMP2A) and ESCRT-I subunit (VPS37A). The genome screen on CRISPR library and 

HT-LCs platform successfully identify these complexes as critical factors for phagophore 

completion.

Monitoring cellular status

Physiochemical conditions are of vital importance for maintaining cellular functions and 

responses. Using HaloTag, investigators have developed a series of site-specific sensors 

CHEN et al. Page 4

Biocell. Author manuscript; available in PMC 2022 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for detecting the alteration of ion level (e.g., Mg2+, Na+, Zn2+, Ca2+) (Deo et al., 2019; 

Gruskos et al., 2016; Matsui et al., 2017; Taguchi et al., 2018; Zastrow et al., 2020), redox 

change (Jiang et al., 2019; Parvez et al., 2016), action potential (Jiang et al., 2019; Parvez 

et al., 2016) and cell membrane tension (Strakova et al., 2020). In consideration that sodium 

and calcium ions are two crucial secondary messengers associated with most biochemical 

activities, Deo et al. (2019) synthesized novel Ca2+ indicators that were conjugated with 

HTLs. Among a series of HTL-indicators, the 12AM synthesized could generate a site-

specific and bright signal that was approximately 7.8 times that produced by jRGECO1a 

(verified Ca+ indicator) in hippocampal neurons. More importantly, the Ca2+ influx of 

an entire organelle (primary cilium, HaloTag-fused 5HT6) was clearly visualized by the 

HTL-indicator (13AM) after stimulation of o-nitrophenyl-EGTAAM.

Although action potential is strongly related to calcium ion influx, the kinetics of voltage 

gating is too fast to be monitored by general Ca2+ indicators. Inspired by photo-induced 

electron transfer (PeT), Dear et al. (2020) reported voltage-sensitive rhodamine (RhoVR-

Halos) that was conjugated to HTL with polyethyleneglycol (PEG) as the linker (Figs. 3A 

and 3B). RhoVR-Halos effectively bound to HaloTag-fused membrane (Fig. 3A), showing 

high sensitivities in HEK cells (34% ± 2% ΔF/F per 100 mV), cultured rat neurons (6.7% 

± 0.2% ΔF/F per spike) and neurons in slice (4.3% ± 0.3% per spike). Furthermore, a 

dual-functional indicator consisting of RhoVR-Halos and GCaMP (Ca2+ indicator) was 

successfully developed to monitor Vm and Ca2+ influx simultaneously (Fig. 3B).

Given the crucial role of redox in cellular homeostasis, several sensors have been 

investigated for surveying redox status (Jiang et al., 2019; Parvez et al., 2016). Parvez et 

al. (2016) creatively established a redox-monitoring technique named Targetable Reactive 

Electrophiles and Oxidants (T-REX) by recruiting a lipid-derived signaling electrophiles 

endogenous carrier (4-hydroxynonenal (HNE)) and HaloTag platform. This universal 

platform was capable of monitoring dynamic redox change around HaloTag-labeled POI 

by photo-mediated uncaging (t1/2 < 1–2 min) (HTL-PreHNE), exhibiting potential as a 

powerful tool for screening redox-related targets. At the same time, Jiang et al. (2019) 

succeeded in synthesizing a smart HTL-RealThiol (HLT-RT) that could achieve a site-

specific GSH detection (nucleus and cytosol). Specifically, HLT-RT was able to detect GSH 

in HeLa cells and primary hepatocytes via ratiometric fluorescence (blue/green channel 

fluorescence). The employment of this advanced reversible probe (HTL-RT) in T-REX may 

efficiently prolong the timespan for organelle or cell imaging, achieving a lifetime survey in 

a real-time manner.

Interestingly, Strakova et al. (2020) developed a sensor to probe membrane tension, which 

is now a commercial product, Flipper-TR. This sensor functions by generating red-shift 

fluorescence and extending its lifetime by changing “twist” form to “planar” structure. 

Once the tagged cell membrane became tense, the signal could be precisely excited and the 

change of lifetime was recorded, with an increase of about 0.37 to 0.27 ns and −0.02 ns for 

rhodamine (control).
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Imaging of microorganisms

Similarly, a comprehensive understanding of microbes would effectively promote the 

development of interrelated diagnosis and therapy as well. In recent years, several 

HaloTag-assisted studies have been reported for investigating microbes, including bacterial 

imaging (Barlag et al., 2016; Lepore et al., 2019; Spencer et al., 2018), evaluation of 

therapeutic agents (Yang and Weisshaar, 2018), and virus tracking (Liu et al., 2016). As 

an illustration, Liu et al. (2016) used HaloTag to label VP26, the smallest capsid protein 

on the pseudorabies virus (PrV). Eventually, they succeeded in visualizing two generations 

(parental and progeny) of PrV inside cells with HTLs (TMR and R110), which offers 

valuable information for understanding the whole lifespan of PrV inside cells. Additionally, 

Yang and Weisshaar (2018) created genetically engineered E. coli expressing HaloTag in 

outer and cytoplasmic membranes (OM/CM). This model was subsequently used to evaluate 

therapeutic effects of anti-bacterial agents (MM63:CHx37, AMP LL-37, and AMP CM15) 

according to the permeabilization of HTL-JF646 in treated E. coli.

Imaging/delivery system development

The desirable specificity of HaloTag efficiently ensures its accuracy and stability, potentially 

extending its application for developing novel imaging/delivery systems, such as enabling 

specific POI as the high-fidelity control for advanced microscope development. Similar 

to the previously described technique for anti-bacterial evaluation, several assessment 

platforms based on HaloTag technique were reported too. For example, the chloroalkane 

penetration assay (CAPA) was designed as a high-throughput assessment for evaluating 

the cell penetration of therapeutic agents under various conditions (e.g., variations in 

temperature, time and serum), assisted by HTL and an organelle-specific organelle-specific 

HaloTag (Peraro et al., 2018).

It is notable that a creative streptavidin-based platform and a series of small molecules 

have been synthesized for multiple applications (López-Andarias et al., 2020). This chemical 

group, cell-penetrating streptavidin (CPS), consists of 4 binding sites for loading or releasing 

cargos via desthiobiotin/biotin interaction or desthiobiotin-biotin exchange (Fig. 4A). With 

the support of chloroalkane penetration assay (CAPA) and HaloTag system, López-Andarias 

et al. (2020) were able to screen the best combination (CPS carrying four benzopolysulfanes, 

BPS4) for cytosolic delivery from numerous CPS-loaded drug candidates, potentially 

indicating the high efficiency of HaloTag technology (Fig. 4B).

Meanwhile, HaloTag has been involved in the microscope system or related dye 

developments as well. The method for single-molecule localization microscopy (SLSM, also 

named photoactivated localization microscopy, PALM) calibration is remarkably restrained 

due to the insufficient control data. To remedy this, Thevathasan et al. (2019) used 

genetic modification to produce various Nup96 proteins, the major component in nucleic 

pore complex (NPC) fused with a series of tags (e.g., HaloTag). With high-resolution 

imaging quality and super-fidelity supported by HaloTag, these engineering cells were 

successfully used as references for SLSM development, including resolution calibration, 

labeling efficiencies quantification, and molecular counting. In the same year, an innovative 

imaging strategy for DNA point accumulation in nanoscale topography (DNA-PAINT) 
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was also developed (Schlichthaerle et al., 2019). Schlichthaerle et al. used dye-labeled 

docking DNA to induce transient labeling on Nup96-Halo-HLT-DNA. These strategies 

resulted in desirable SLSM images with excellent resolution. Such measured distance on 

adjacent Y-complexes of NUP96 proteins even reached 12 nm, which was inconsistent 

with electron microscope (EM) imaging. Additionally, the Xiao group successfully applied 

a rhodamine spirolactam (Rh-Gly) probe for PALM application in support of HaloTag 

(Ye et al., 2019). By incorporating a carboxyl group at a site near the lactam group, 

newly-synthesized Rh-Gly exhibited enhanced brightness, improved signal-to-noise ratio, 

desirable temporal resolution (10 s), and excellent accuracy for localization (about 25 nm). 

Based on the site-specific labeling via HaloTag technique, a super-resolution PALM imaging 

of HaloTag-fused H2B in Hela and MCF-7 cells was successfully achieved. It is reasonable 

to predict that more HaloTag-based techniques will be involved in and effectively promote 

the development of advanced imaging systems.

In vivo imaging

Due to its high specificity, the HaloTag system demonstrates great potential for various 

in vivo imaging technologies, such as PET, which is highly sensitive, quantitative, and 

clinically-wide used (Gan et al., 2020; Jadvar et al., 2007; ten Hove et al., 2021). Notably, 

the Cai group has successfully applied this strategy for various PET-imaging via Cu-64 

labeling HTLs (Hong et al., 2011, 2013). More specifically, a string of NOTA-conjugated 

HTL constructs was synthesized and evaluated for their PET imaging efficiencies (labeled 

Cu-64) in 4T1-HaloTag-ECS cells or mice bearing 4T1-HaloTag-ECS tumors (Figs. 5A 

and 5B). Among all, the ligand 64Cu-NOTA-HTL2G-L demonstrated the best capability 

for targeting 4T1-HaloTag-ECS tumor with 4.0 ± 0.2% ID/g at 6 h post injection (Fig. 

5C), clearly illustrating the feasibility of the HaloTag system for in vivo tracking of a 

POI or targeting cells. Additionally, the Cornelissen lab further demonstrated the viability 

of HaloTag in ImmunoPET imaging, reporting HaloTag-labeled PET tracers for tumor 

pre-targeted ImmunoPET imaging (Knight et al., 2015, 2017).

Furthermore, Knight et al. (2015, 2017) mediated a conjugation of HaloTag to anti-HER2 

(Trastuzumab) and TAG-72 (CC49) antibodies via a Lys-to-Lys reaction. SPECT Imaging 

with 111In-HLT-3 showed that tumor uptakes were about 2.8 ± 1.0% ID/g (Trastuzumab) 

and 3.2 ± 0.3 ID/g (CC49) at 4 h post injection, while internalizations of tracers in the 

control group were about 2.1 ± 0.4% or 2.1 ± 0.3 ID/g. Notably, these pre-targeted PET 

imaging techniques offered relatively lower imaging efficiency, which may be caused by the 

physiochemical features of HTL, especially the limited circulation time.

Given these, Masch et al. (2018) administrated a fluorescent dye conjugated HTL (SiR-

HTL) via intracranial injection on the surface of brain to enhance targeting efficiency. High-

resolution imaging of the PSD95-HaloTag was achieved via STED (stimulated emission 

depletion) nanoscopy, with the smallest measured widths (FWHM) being about 50–60 

nm. This shows that novel designs of HTLs or tracers with HaloTags would increase the 

feasibility of HaloTag for translating from basic research to clinical trials.
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Biomolecule Immobilization via HaloTag

POI purification and collection

Besides, HaloTag system also demonstrates desirable efficiency in the purification and 

harvest of POI, which has been widely evaluated. The fusion of HaloTag allows POIs to 

form a covalent bond and be extracted (from bacterial or cell lysis) by the HTL immobilized 

on solid phase (beads, resin or nano/macroparticles) via a rapid, specifical, and strong 

binding procedure (Döbber et al., 2018; Friedman Ohana et al., 2016; Liu et al., 2020; 

Norris et al., 2020; Peschke et al., 2017; Kilpatrick et al., 2017). Notably, this highly 

efficient HaloTag approach shows a great advantage in enzyme purification instead of 

chromatographic purification (Erkelenz et al., 2011; Döbber et al., 2018). For instance, two 

HaloTag fusion enzymes, HaloTag-PpBFD L476Q and HaloTag-LbADH, were effectively 

harvested via a simple commercial immobilization procedure (HaloLink™ Resin) in a recent 

study (Döbber et al., 2018). These enzymes demonstrated desirable abilities for single or 

cascade biocatalysts, with a high space-time yield of 1850 g/L/d for first-step catalysts 

and 38 g/L/d for secondstep catalysts. Notably, the immobilized HaloTag-LbADH was still 

active even two weeks later.

Meanwhile, an advanced system named Serial Capture Affinity Purification (SCAP) was 

reported by Liu et al. (2020). The interaction between two POI (Spindlin1 and SPINDOC 

incorporated SNAP-tag or HaloTag, respectively) was systemically examined via Förster 

resonance energy transfer (FRET), fluorescence cross-correlation spectroscopy quantitative 

imaging and SCAP cross-linking mass spectrometry (MS). The signal was generated via 

FRET between TMRDirect™ HTL (HaloTag) and 505-Start SNAP ligand (SNAP) during 

the interaction. Then, after the efficient enrichment of the protein complex by serial 

purifications (SNAP and HaloTag capture magnetic beads), this complex was obtained 

with high quality. In combination with MS, the spindlin1 and SPINDOC complex could be 

studied comprehensively, suggesting a structure consisting of a ratio of 2:1.

Most importantly, this specific-purifying technology also fulfills the high demands of 

clinical examinations in terms of specificity and quality. Studies were extended to patients’ 

serum assays for screening autoantibodies, such as p53, GTF2B and Desmoglein 3 

(Garranzo-Asensio et al., 2016, 2020; Yazaki et al., 2020). For instance, Barderas group 

recruited HaloTag fused POI (e.g., p53 and GTF2B) for detecting autoantibodies in serum 

via ELISA (Garranzo-Asensio et al., 2016, 2020). In a different way, Yazaki et al. (2020) 

creatively induced a unique DNA single-strand into a POI-HaloTag complex and applied the 

next-generation sequencing (NGS) as an analytical procedure for serum assays (Fig. 6A). 

The 1:1 conjugated oligonucleotide and NGS ensure the accuracy of the HaloTag system 

and dramatically enhance the sensitivity of detection, showing over 104 times wider dynamic 

range than ELISA (Fig. 6B).

Investigation of protein and nucleic acid interaction

Numerous interactions between proteins and nucleic acids, ranging from transcription 

factors & ORF to RNA-binding proteins (RBPs) & RNA, have been involved in most 

physiological activities (e.g., regulation of gene expression and development). Although 
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these complicated interacting networks are intricate for most technologies, the HaloTag 

system shows desirable potential in exploring such interactions. After the attachment of 

a HaloTag, some studies have shown that POI and interacting molecules (e.g., RNA or 

proteins) could be immobilized for further analysis (Brannan et al., 2016; Li et al., 2020). 

For example, Brannan et al. (2016) developed an RBP classifying strategy termed SONAR, 

and subsequently used it to discover new RBPs attaching to the same RNA as a HaloTag 

fused RBP. With MS and enhanced crosslinking-immunoprecipitation (CLIP), 12 nuclear 

and cytoplasmic RBPs were successfully identified and investigated. Meanwhile, a Halo-

Enhanced Ago2 Pull-Down (HEAP) was designed for identifying micro-RNA (miRNA) 

targets (Li et al., 2020). Specifically, the harvest and purity of miRNAmRNA-Ago2-HaloTag 

were greatly ensured by the HaloTag system in vivo via CLIP. This strategy was further 

evaluated and validated in mouse embryonic stem cells (mESCs), developing embryos, and 

adult tissues. After HaloTagmediated harvest, a strong signal of miR-200bc-3p was observed 

in 3’UTR Zeb2, (EMT regulator) in autochthonous mouse-bearing human brain and lung 

cancers, which was in agreement with previous studies (Si et al., 2017).

Protein structure analysis

Additionally, HaloTag anchoring techniques create an excellent opportunity to understand 

protein structure more intimately. Although the force-clamp atomic force microscope (AFM) 

has demonstrated its ability to assist in studying protein dynamics, the issue of mechanical 

drift strongly limits its sensitivity and measuring duration. To remedy this, the Fernández 

group creatively generated novel magnetic tweezers by combining the HaloTag approach 

and active correction of the focal drift. The As-designed system monitored protein L folding 

dynamics at low force (0–60 pN) for up to two weeks, enabling the long-term study of 

protein folding and misfolding, like chronic traumatic brain damage. Subsequently, Popa et 
al. further generated a mice model carrying a HaloTag-TEV genetic cassette for examining 

protein dynamics (titin) in vivo under various forces (Rivas-Pardo et al., 2020). As expected, 

the POI, HaloTag-TEV-titin could be specifically severed and immobilized via TEV protease 

and HTL. Under force generated by magnetic tweezers, Popa et al. (2016) found the titin 

(I-band region) domains remained in the unfolded state and created 41.5 ZJ of mechanical 

work for refolding when the puling force was less than 10 pN. It can be expected that 

this HaloTag-based strategy would promote the exploration of biomechanical functions 

associated with various proteins.

Targeted Degradation via HaloTag

Affinity-directed protein missile (AdPROM) system is a functional protein complex that 

could trigger the degradation of specific proteins. In combination with PROTACs and 

HaloTag, Buckley et al. (2015) developed a novel AdPROM, named HaloPROTACs. As 

critical factors, the interaction of HTL and fused HaloTag directly induce the ubiquitylation 

on POI via the bridging of E3 ubiquitin ligase (Caine et al., 2020; Schiedel et al., 

2020; Simpson et al., 2020). Based on HaloPROTACs, Simpson et al. (2020) successfully 

synthesized a ligand-inducible AdPROM (L-AdPROM) system by combining two site-

specific binding strategies, HaloTag and von Hippel-Lindau (VHL). The applied ligand 

consisted both of HTL and VHL moiety, which could induce the specific binding between 
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VHL-fused AdPROM and FLAG-aGFP6M (anti-GPF nanobody)-Halo. Subsequently, the 

degradation of FLAG-aGFP6M-Halo and its complexes such as FLAG-aGFP6M-Halo and 

GFP-POI could be induced. More importantly, such an L-AdPROM system could mediate 

an effective degradation (around 50%) of endogenous RAS via FLAG-Halo-aH/KRAS, 

indicating its potential for degrading any intracellular POI. Similarly, a Cas9 CRISPR-

based TRAnscription Factor Targeting Chimeras (TRAFTACs) was recently developed 

from the haloPROTACs platform (Samarasinghe et al., 2021). A chimeric oligo including 

transcription factor of interesting (TOI) binding double-stranded DNA (dsDNA) and 

Cas9 CRISPR-binding RNA (CR-RNA) was prepared first. As a linker, this chimeric 

oligonucleotide could connect TOI and dCas9-HaloTag7 fusion protein (dCas9HT7). With 

the attendance of haloPROTAC and VHL-E3 ligase, TRAFTACs could effectively trigger 

the ubiquitination and proteasomal degradation of oncogenic TOI, such as NF-kB and 

brachyury. The brachyury targeting TRAFTACs was able to affect the formation of tails in 

zebrafish, showing a successful implementation of TRAFTACs for in-vivo application.

Other Applications of HaloTag

Notably, biomolecules on the cellular surface play crucial roles in numerous biochemical 

progress, ranging from immune response to cell differentiation. In addition to cell tracking 

or immunization via the fusion of HaloTag on the cell membrane, this site-specific binding 

domain is potentially accessible to a series of functional chemo/biomolecules. Several kinds 

of research were conducted to study cell development or functional analysis (Pulsipher et al., 

2018; Liu et al., 2019). These assays incorporated a HaloTag protein into a cell membrane 

as surface anchors for further labeling. For example, Liu et al. (2019) labeled HeLa 

cells with a specific glycopolymer carrying acetylglucosamine and N-acetylmannosamine 

units, respectively (pMAG or pMAM) via membrane-merged HaloTag, which was able 

to persist for one week. After incubations with immune cells (e.g., macrophage or 

dendritic cells), it was observed that binding polymers could efficiently promote M1 marker 

expression (CD86 and iNOS), dendritic cell maturation and secretion of cytokines (TNF-

α and IL-12p70), showing an enhanced anticancer effect. Similarly, Ohno et al. (2014) 

established a membrane-binding model via HaloTag fusion to investigate the development 

of stem cell pluripotent embryonic stem cells with attendance of heparan sulfate (HS) 

glycosaminoglycans (GAGs) (Pulsipher et al., 2018).

Conclusion and Future Perspectives

Compared with other strategies (e.g., GFP and His-tag), the HaloTag platform offers several 

advantages for researches requiring high accuracy and specificity. However, there are also 

several challenges related to the HaloTag system, of which researchers should be particularly 

attentive. (a) Although the modification will improve its solubility, the structure of HTL 

(hydrophobic) may still affect its circulation, especially for in vivo applications; in addition 

to innovative designs of HTLs, the pre-loading strategy (e.g., HaloTag-POI labeled with 

HTL in vitro before injection) may act as a potential solution; in contrast, long-term imaging 

could be also achieved via multiple administration of imaging HTL once high solubility 

was achieved. (b) Most HTLs used in studies are self-synthesized according to the purpose 

of their use. In other words, working knowledge and toolset for synthetic chemistry is a 
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basic requirement for using the HaloTag system, which would limit its availability to some 

extent, such as for some biological labs; for this reason, we suspect that interdisciplinary 

cooperation may be a trend for future high- quality studies supported by HaloTag technique; 

(c) As the major feature, HaloTag technique could grant biomolecule with new chemical 

function via specific labeling and allow this a molecule act as temporal and spatial control. 

(d) Novel strategies like split HaloTag would promote efficiency and ensure accuracy for 

monitoring protein and protein interaction (Shao et al., 2021). (e) Given that most studies 

of HaloTag technology depend on genetic engineering on targeting POI, further applications 

in clinical trials (which gene-editing could not be easily achieved) are directly hindered. 

However, the 1:1 ratio labeling capacity greatly ensures the reproduction of complex of 

HaloTag-fused protein and HTLs, such as PET tracer (i.e., HaloTag fused nanobody and 

radioactive isotope-labeled HTLs), well meeting the requirements of clinical application. 

Moreover, such PET tracers could be used for imaging and monitoring the diseases (e.g., 

tumor) or prognosis in real-time. (f) Besides, changeable HTLs may also offer the potential 

for the HaloTag-based tracers development for various applications. For instance, the HTLs-

ICG conjugation to HaloTag-fused SCFV could be used for imaging guidance surgery. (g) 

Although the relatively larger size of HaloTag (33 kDa) may be one drawback compared 

with other more petite tags, like SNAP-tag (19.4 kDa), it may turn into an advantage when 

it is applied in the integration with SCFV (small-sized protein with short circulation), which 

may show a better enhancement in the circulation. In this case, extended monitoring could 

be successfully achieved. Therefore, we believe that the interdisciplinary cooperation and 

novel HTLs design would greatly promote the future development of HaloTag system, 

ensuring its efficiency in supporting high accuracy studies (e.g., PET-imaging tracer design).
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FIGURE 1. 
(A) Chemical structure of PA-SiR-Halo. (B) Living cell imaging on U-2 OS cells expressing 

H2B-Halo (nucleus) stained with PA-SiR-Halo before and after UV irradiation via SMLM; 

Scale bar, 40 μm. (C) Super-resolved SMLM image of outer mitochondrial membrane 

(TOMM20-Halo) after PA-SiR-Halo staining. (D) Summed stack image for mimicking 

diffraction-limited image. (E) Series of images at different time points. Arrowheads indicate 

hollow mitochondria (due to the TOMM20 localized to the outer membrane) (red), thin 

tubules formed by highly dynamic mitochondria neighboring mitochondria (blue) and 

disconnect (fission) in other areas (yellow); Scale bar, 1 μm. Reproduced with permission 

from Frei et al. (2019).
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FIGURE 2. 
(A) Scheme of BRET-induced photolysis to release small molecule, bioluminolysis. Briefly, 

the BRET will happen between nanoluc (fused with HaloTag) and DEAC450 (conjugated 

with HTLs) when furimazine encounters with nanoluc. (B) The release of ibrutinib mediated 

by coumarin BRET photo-uncaging in live SKBR3 cell. Scale bar = 20 mm. Reproduced 

with permission from Chang et al. (2019).
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FIGURE 3. 
(A) The characterization of voltage sensor RhoVR. (a) Normalized spectra of absorption 

and emission at the concentrate of 500 nM; (b) Blight field and (c) fluorescence imaging 

of HEK293T cells with staining of RhoVR. (d) Plot of fractional change in terms of 

fluorescence (ΔF/F) vs. time; (B) Imaging of brain slice isolated from a mouse expressing 

pDisplay-HaloTag via two-photon microscopy after staining of RhoVR-Halos. (a) RhoVR 

fluorescence imaging of brain slide and (b) & (c) enlarged images; Scale bar is 10 μm. (d) 

Widefield fluorescence image of RhoVR-Halos fluorescence in a cortical neuron expressing 

HaloTag-pDisplay; Scale bar is 20 μm. (e) Plot of voltage vs. time for the neuron during 

current injection to evoke action potentials. (f) Plot of ΔF/F vs. time for the same neuron. 

Arrows indicate evoked spike. Reproduced with permission from Deal et al. (2020).
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FIGURE 4. 
(A) Scheme of cell-penetrating streptavidin (CPS) system. The CPS is able to load 

different functional groups via streptavidin and biotin interaction, which could be integrated 

with HaloTag technique for site-specific drug delivery or imaging. (B) (a) Schematic 

representation of CAPA. (b) HC-CAPA dose–response curves for different CPS loading 

cargos, 23 (Circle), 25 (Triangle), and 28 (Square). (c) The CP50 values of various CPS 

loading cargos 21–26 and 28. Reproduced with permission from López-Andarias et al. 

(2020).
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FIGURE 5. 
(A) Chemical structures of NOTA-HTL2G-S and NOTA-HTL2G-L. (B) HPLC of 64Cu-

NOTA-HTL2G-S and size exclusion column chromatography of 64Cu-NOTA-HTL2G-L. (C) 

Serial PET images of mice bearing both 4T1 (left) and 4T1-HaloTag-ECS (right) tumors 

at different time points post-injection of 64Cu-NOTA-HTL2G-S, 64Cu-NOTA-HTL2G-L, or 
64Cu-NOTA-HTL2G-L with blockage (N = 4). Reproduced with permission from Hong et 

al. (2013).
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FIGURE 6. 
(A) Schematic diagram of the barcoding assay via HaloTag protein. The HTL is linked with 

specific amino-modified oligonucleotides as DNA barcodes. (B) Autoimmune antibody in 

patient serum detected via (a,c) barcoding assay or (b,d) conventional ELISA. Reproduced 

with permission from Yazaki et al. (2020).

CHEN et al. Page 22

Biocell. Author manuscript; available in PMC 2022 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SCHEME 1. 
Scheme of HaloTag system, as well as the recent designs and investigations. NPs: 

nanoparticles; MPs: micro-sized particles; NGS: Next-Generation Sequencing; POI: Protein 

of Interest; CPS: Cell-penetrating streptavidin.
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