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Reprogramming cancer metabolism has become the hallmark of cancer

progression. As the key enzyme catalyzing the conversion of pyruvate to

lactate in aerobic glycolysis of cancer cells, human lactate dehydrogenase

(LDH) has been a promising target in the discovery of anticancer agents. Natural

products are important sources of new drugs. Up to now, some natural

compounds have been reported with the activity to target LDH. To give

more information on the development of LDH inhibitors and application of

natural products, herein, we reviewed the natural compounds with inhibition of

LDH from diverse structures and discussed the future direction of the discovery

of natural LDH inhibitors for cancer therapy.
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Introduction

In recent years, metabolic reprogramming has attracted more attention regarding

cancer progression, as cancer cells have a distinct metabolism compared to normal cells

(Hay, 2016). In normal cells, the glucose is transported into cytosol by glucose

transporters (GLUT) and converted into pyruvate under the catalysis of a series of

enzymes. The latter will enter into the mitochondria and degrade to form acetyl-CoA

catalyzed by pyruvate dehydrogenase complex (PDC) to generate more ATP if there is

enough of an oxygen source, which is called oxidative phosphorylation (OXPHOS).

Under hypoxic conditions, the pyruvate will be converted to lactate under the catalysis of

lactate dehydrogenase (LDH) following the oxidation of NADH to NAD+ as anaerobic

glycolysis (Cairns et al., 2011). However, in cancer cells, the high amounts of glucose are

taken up to produce more ATP and meet the requirements of cellular proliferation.

Meanwhile, most lactate is produced when enough oxygen is available (Figure 1A). This

phenomenon is usually termed as aerobic glycolysis or the Warburg effect (Vander

Heiden et al., 2009).

Of all the enzymes in cancer metabolism, LDH is a key node of aerobic glycolysis since

this pathway affords the conversion of about 85% pyruvate to lactate (Figure 1B) (Zhang

et al., 2015). In many cancer cells, such as gastric cancer (Ping et al., 2018), colorectal cancer

(Wang et al., 2015), lung cancer (Kayser et al., 2010), liver cancer (Faloppi et al., 2016),
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breast cancer (Arundhathi et al., 2021), brain cancer (Valvona

et al., 2016), bladder cancer (Burns et al., 2021) and so on, it was

found that LDH has been expressed excessively. LDH is closely

associated with the diagnosis, treatment, and prognosis of cancer

patients as it is involved in all stages of cancer progression.

Targeting LDH not only inhibits the proliferation,

tumorigenesis, and progression, but also suppresses the

invasion, metastasis, and angiogenesis of cancer (Feng et al.,

2018). Therefore, inhibiting LDH to target cancer metabolism

is a potential therapeutic approach to discover anticancer agents

(Zhang et al., 2018; Stine et al., 2022).

As the NADH-dependent enzyme, lactate dehydrogenase is a

tetramer composed of two major subunits, LDHA (also known as

LDH-M) and LDHB (also known as LDH-H), which are encoded

by LDHA and LDHB genes, respectively (Markert et al., 1975).

Therefore, according to the number of different subunits, there are

five isoforms of LDH, named LDH1-LDH5 (Figure 1C) (Dawson

et al., 1964). The metabolic characteristics of LDH isoforms are

determined by the composition of subunits. LDHA preferentially

reduces pyruvate to lactate while LDHB kinetically favors the

conversion of lactate to pyruvate (Echigoya et al., 2009; Augoff

et al., 2015). Hence, LDHA or LDH5 often attracts medicinal

chemists’ attention as the target to regulate cancer metabolism

(Rani and Kumar, 2017; Zhang et al., 2018). In addition, there

some other isoforms of LDH including LDHC, LDHD, and

LDHBx. LDHC, also known as LDHX, is testes-specific (Blanco

and Zinkham, 1963; Burkhart et al., 1982). Until now, the role of

LDHD has been less understood, and it is reported that LDHD is

responsible for the metabolism of D-lactate in vivo (Monroe et al.,

2019). LDHBx localized in the peroxisome and is generated by

translational readthrough (Schueren et al., 2014).

Crystal structure analysis of LDH has revealed there are

331 amino acid residues in LDHA and two major binding sites to

catalyze the conversion of pyruvate to lactate (Figure 1D) (Read

et al., 2001). One is the mixed α/β substrate binding site including
residues 163–247 and 267–331, which is enclosed by the active

site loop (residues 99–110) away from solvent (Woodford et al.,

2020). The residue Arg105 in the active site loop is essential to

stabilizing the transition state in the hydride-transfer reaction via

a hydrogen bond with carbonyl of pyruvate (Swiderek et al.,

2015). Another is the NADH binding site comprising a central, 6-

stranded parallel β-sheet flanked by three helices on each side,

which contains a Rossmann-type fold formed by residues

20–162 and 248–266. And NADH binds in a groove at the

end of central β-sheet through the residues His 195, Asp168,

Arg171, and Thr246, which contribute to the conversion of

pyruvate to lactate in the substrate binding site (Read et al.,

2001). In addition, the first 20 residues of LDHA at the

N-terminus form an unstructured region to interact with the

C-terminus of another monomer and give the oligomers (Adams

et al., 1970).

In the discovery of new drugs, natural products play a pivotal

role (Newman and Cragg, 2020). To find novel LDH inhibitors,

some natural compounds have been explored (Figure 2) that

showed structural and pharmacological diversity. Herein we

summarize these compounds to give insights into the future

discovery of LDH inhibitors.

Natural compounds as lactate
dehydrogenase inhibitors

Terpenoids

Terpenoids are a class of hydrocarbon compounds derived

from isoprenoids and classified based on the number of

FIGURE 1
The Warburg effect and lactate dehydrogenase. (A) The Warburg effect. (B) Reaction catalyzed by LDH. (C) Isoforms of LDH. (D) Structure of
LDH5 with the binding mode of NADH (PDB code 1I10). Four monomers (LDHA) were rendered with magenta, cyan, green, and yellow, respectively.
Active site loop was highlighted in blue. NADH was shown as sticks.
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FIGURE 2
Natural products with potential inhibition of LDH.
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isoprenoid moieties. In the screening of LDH inhibitors, some

terpenoids showed significant potential. Panepoxone, a

monoterpenoid identified from Lentinus strigellus, reduced

oxygen consumption, lactate production, and ATP synthesis

in breast cancer cells via inhibiting LDHA (Arora et al.,

2015). Ursolic acid is a ursane-type triterpenoid found in

many plants and offers some pharmacological effects.

Recently, it was found that ursolic acid at 500 μM inhibited

LDHA with the inhibition rate of 30.5% ± 6.7% by

electrophoretically mediating microanalysis (Li t al., 2021).

Using the ultrafiltration-high speed countercurrent

chromatography technique, dehydropachymic acid, pachymic

acid, dehydrotrametenolic acid, trametenolic acid, and

eburicoic acid from Poria cocos were identified as LDH

inhibitors as well as lanosterol together with betulin from

Inonotus Obliquus (Li et al., 2017a; Wang et al., 2021), and

most of those are rich in higher fungus such as lanostane-type

triterpenoids.

Alkaloids

Alkaloids are natural compounds containing nitrogen

atoms and the secondary metabolites synthesized from

amino acids. The first alkaloid as an LDHA inhibitor is

berberine. As the major isoquinoline-type alkaloid in Coptis

chinensis, berberine offers the significant inhibitory constant

of 12.6 μM and dissociation constant of 3.1 μM while

interacting with LDHA (Kapp and Whiteley, 1991). Further

investigation has revealed berberine suppressed progression

of pancreatic adenocarcinoma through functionally inhibiting

LDHA (Cheng et al., 2021). Additionally, through the visual

screening from the NCI Diversity Set, the microbial secondary

metabolite lomofungin was selected as an LDHA inhibitor,

and enzyme assay has disclosed lomofungin inhibited LDHA

with the IC100 of 202 μM (Manerba et al., 2012). As an

isoquinoline-type alkaloid, papaverine is also reported for

its inhibition of LDHA with an inhibitory constant of

196.4 μM and dissociation constant of 52 μM (Kapp &

Whiteley, 1991).

Flavonoids

Flavonoids are the derivatives of chromones and contribute

largely to the discovery of natural LDH inhibitors. As the

flavanol analogue, galloflavin was found to inhibit LDHA by

virtual screening and was validated with the IC100 of 201 μM. It

was also observed that galloflavin inhibited ATP production in

hepatocarcinoma PLC/PRF/5 cells as well as cell growth and

respiration (Manerba et al., 2012). Galloflavin can occupy the

NADH binding site of LDHA to prevent its binding to single

stranded DNA and repress the proliferation of human

colorectal cancer SW620 cells (Fiume et al., 2013).

Meanwhile, galloflavin inhibited growth of various breast

cancer cells via suppressing the proliferation and inducing

oxidative stress resulting from blocking ATP production and

glycolysis (Farabegoli et al., 2012). In Burkitt lymphoma cells,

inhibiting LDHA by galloflavin caused MYC down-regulation,

which is the most important survival signal (Vettraino et al.,

2013). Similarly, urolithin M6, the galloflavin mimetic

identified from gut microbiota metabolites, inhibited purified

human LDHA with the IC50 of 77 ± 10 μM as well as lactate

production in Raji cells (IC50 of 36 ± 3 μM) and cell growth

(IC50 of 25 ± 2 μM) (Rupiani et al., 2016). As the major flavanol

in green tea, (-)-epigallocatechin gallate inhibits LDHA in MIA

PaCa-2 pancreatic cancer cells and confers the anti-cancer

activity by disrupting the cellular metabolic network (Lu

et al., 2015). And its precursor, (-)-epigallocatechin, as an

LDHA inhibitor could significantly inhibit breast cancer

growth and induce apoptosis (Wang et al., 2013). In

addition, luteolin-7-O-β-D-glucoside was reported to inhibit

human LDH5 with the IC50 of 139.2 ± 3.1 μM (Bader et al.,

2015). And nortangeretin was found to inhibit LDHA with the

IC100 of 270 μM (Manerba et al., 2012). In the screening of

phytochemicals, many flavonoids have been indicated with the

potential to inhibit LDH such as quercetin, luteolin, tectoridin,

iristectorin A, iridin, tectorigenin, irigenin, irisflorentin,

acetyldaidzin, malonylgenistin, daidzin, glycitin, genistin,

acetylglycitin, daidzein, and tectorigenin-7-O-

xylosylglucoside (Li et al., 2016; Tang et al., 2016; Li et al., 2021).

Polyphenols

In addition to flavonoids, there are other polyphenols with

inhibitory effects on LDH. (R)-(-)-gossypol in cotton processes

potent LDH inhibition. However, due to the high toxicity in the

heart, kidney, and muscle, its application is hampered and it is

hard to further develop it as an anticancer agent (Gomez et al.,

1997). 3,6′-Di-O-sinapoylsucrose is a dimer of phenylpropionic

acid glucosides obtained from Polygala flavescens

ssp. flavescens. It can inhibit human LDH5 with the IC50 of

90.4 ± 4.4 μM through binding to the NADH binding site (De

Leo et al., 2017). In addition to 3,6′-di-O-sinapoylsucrose,

sibiricose A5, glomeratose A, tenuifoliside B, and

tenuifoliside C were also screened as LDH inhibitors from

Polygala tenuifolia (Li et al., 2017b). As the dimer of

vanillin, vanillil inhibited LDHA with the IC100 of 205 μM as

well (Manerba et al., 2012). 1,2,3,4,6-Penta-O-galloylglucose is

a tannin occurring in Galla Chinensis, which could

competitively bind to the NADH binding site of LDHA and

inhibit its activity with IC50 of 27.32 nM. It was also observed in

human breast cancer MDA-231 cells that this compound could

block lactate production (IC50 = 97.81 μM) and cell division

(IC50 = 1.2 μM) (Deiab et al., 2015).
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Fatty acids

4-Hydroxy-2-nonenal is an α,β-unsaturated aldehyde, which

is generated from the oxidation of n-6 linoleic acid and

arachidonic acid. And enzyme activity assay uncovered that it

inhibited LDH via covalent binding and reduced NADH

formation (Ramanathan et al., 2014). Crocetin is a carotenoid

found in medicinal plant saffron; its sodium salt could inhibit

human LDH5 with the IC50 of 54.9 ± 4.7 μM and the

proliferation of glycolytic cancer cell lines including human

lung cancer A549 cells (IC50 = 114.0 ± 8.0 μM) and human

cervical cancer HeLa cells (IC50 = 113.0 ± 11.1 μM) (Granchi

et al., 2017).

Conclusion and perspective

As more attention is paid to metabolism reprogramming of

cancer cells, the importance of the discovery of LDH inhibitors

has been raised again. Natural products provide rich resources to

find new LDH inhibitors. However, the present status is

despondent and some challenges have to be encountered. The

first is the work screening natural LDH inhibitors is poor, though

the number of natural compounds is large, which may be

overcome as more people pursue this avenue and the mature

assay methods are employed. Meanwhile, the crystal structure of

LDH has been established, which could give more insights into

the affinity of natural compounds. The second is weak potency of

natural products with a poor drug-like property, which should be

improved bymedicinal chemists through chemical synthesis. The

last is the pharmacological evaluation and exploration of these

natural compounds are insufficient and cannot provide sound

evidence, especially in vivo, which may result from the small

amounts obtained from nature. These compounds need to be

enriched via both synthesis and isolation. In the future, the

involvement of pharmacologists together with natural product

chemists in the work will enhance those investigations.

Collectively, the discovery of LDH inhibitors from natural

products is still an attractive approach for cancer therapy,

which should integrate multiple disciplines including natural

products chemistry, medicinal chemistry, and pharmacology.
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