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Regulatory T cells (Tregs) play a critical role in maintaining self-tolerance and in

containing allo-immune responses in the context of transplantation. Recent

advances yielded the approval of the first pharmaceutical costimulation

blockers (abatacept and belatacept), with more of them in the pipeline.

These costimulation blockers inhibit effector cells with high clinical efficacy

to control disease activity, but might inadvertently also affect Tregs. Treg

homeostasis is controlled by a complex network of costimulatory and

coinhibitory signals, including CD28, the main target of abatacept/belatacept,

and CTLA4, PD-1 and ICOS. This review shall give an overview on what effects

the therapeutic manipulation of costimulation has on Treg function

in transplantation.
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Introduction

Tregs

Natural, thymus-derived regulatory T cells express CD4 and are characterized by the

surface expression of the high affinity chain (alpha-unit) of the IL-2 receptor (CD25) and

a diminished expression of the alpha-unit of the IL-7 receptor (CD127). They are further

defined by the expression of the X-chromosome encoded transcription factor forkhead

box P3 (FoxP3), which controls Treg development, plasticity and stability (1). Of note,

FoxP3 is not absolutely required for a suppressive T cell phenotype. There are defined

subsets of T cells which do not express FoxP3- but have suppressive function (2, 3).

Tr1cells are a prominent example of FoxP3- regulatory cells, with critical roles in

suppression of inflammation (4) and with therapeutic potential (5). There are two main

types of FoxP3+ Tregs that can be distinguished with overlapping features but also
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distinct properties. The main proportion of Tregs consists of

thymic-derived Tregs (tTregs, formerly classified as natural

Tregs (nTregs)). tTregs develop in the thymus and are

typically characterized by the expression of helios (6) and

neuropilin 1 (nrp1) (7, 8). In contrast to that, peripheral Tregs

(pTregs) develop from CD4+ FoxP3– cells upon antigen

stimulation in the presence of distinct anti-inflammatory

cytokines. pTregs develop primarily in the intestinal system

(9) and the placenta (10). Whereas tTregs are supposed to be

essential to control systemic and tissue specific autoimmunity,

pTregs control commensal microbiota composition and Th2

responses (11).

Tregs are crucial to maintain self-tolerance and control an

overall immune response (12). It has been shown, that absence

or mutation of FoxP3 leads to severe autoimmune disease in

mice (scurfy phenotype) (13, 14) and humans respectively (IPEX

immune dysregulation, polyendocrinopathy, enteropathy, X-

linked syndrome) (3, 15). In humans, approximately 1-3% of

all CD4+ T cells are regulatory T cells (16, 17), however, the

numbers may vary substantially between individuals, and further

show a distinct distribution in various tissues in the human

body. The pleiotropic mechanisms of action of Treg mediated

immune modulation include the production of anti-

inflammatory cytokines (IL-10, TGFb, IL-35) (18), expression
of co-inhibitory molecules (CTLA4, PD-1, LAG3) (19, 20) and

cytotoxic suppression via granzyme A, B and perforin (18, 21).

Additionally, IL-2 consumption via the high affinity unit of the

IL-2 receptor (CD25) contributes to a down regulation of an

overall immune response. Moreover, Tregs remove peptide-

MHC complexes from the surface of dendritic cells (DC),

thereby leading to antigen-specific regulation (22). Several of

these mechanisms are often contributing to regulation. Notably,

the expression of CTLA4 seems particularly important as Treg-

specific CTLA4 deficiency results in an impaired in vivo and in

vitro suppressive Treg function (20, 23). A main mechanism of

CTLA4 is the removal of B7 molecules from the surface of

antigen presenting cells (mainly migratory dendritic cells) by

CTLA4-mediated trans-endocytosis (19, 24).

Several costimulation blockers have been approved for

clinical use and many more are currently investigated in

preclinical studies. Given the tight interplay between Tregs

and costimulatory signals, knowledge about these interactions

is crucial especially in diseases where Tregs play an important

role (e.g. transplantation, auto-immune disease, cancer…).
Tregs in transplantation

As a pivotal part in regulation of the immune system, Tregs

also play a major role in allogeneic transplantation (25, 26). In

this context, Tregs can intercept at several critical steps during

allo-immune responses: Tregs can prevent priming of indirectly

alloreactive T cells by removing peptide-MHC complexes and
Frontiers in Immunology 02
B7 molecules from the surface of dendritic cells. Furthermore,

Tregs can restrict expansion of allo-antigen specific follicular T

and B-cells and thereby confine humoral allo-immunity (27).

Within the allograft itself, Tregs can create a privileged

environment through consumption of IL-2 and secretion of

immunosuppressive cytokines and metabolites like IL-10 and

Adenosine (28). Through infectious tolerance, new generations

of Tregs can be recruited to and induced within the allograft.

Thereby Treg-mediated intra-graft regulation might be self-

sustaining (29).

Accordingly, operationally tolerant patients with a liver

allograft display significantly higher levels of Tregs than

matched control patients (30, 31). Tregs were also shown to be

indispensable for deliberate induction and maintenance of

donor-specific transplantation tolerance in several models (32).

Given the important role in immune regulation, the

exploitation of Tregs has become an attractive aim in order to

reduce life-long immunosuppression. In preclinical studies the

therapeutic use of Tregs prolongs allograft survival (33–35).

Currently, the potential of adoptive Treg therapy in solid organ

transplantation is explored in several clinical trials (36–39) with

the first preliminary evidence emerging for the efficacy of Treg

therapy (40).
Homeostatic control of Tregs

Several factors contribute to Treg homeostasis to maintain

numbers within a physiological range. One major stimulus is

signaling via the IL-2 receptor and activation of the STAT5

signaling pathway. As Tregs are incapable of self-producing IL-2,

abundance of this cytokine is crucial for Tregs survival especially

in mature FoxP3 positive regulatory T cells (41, 42).

Interestingly, FoxP3 induces a pro-apoptotic protein signature

and a reduced expression of pro survival Bcl-2 molecules,

leading to FoxP3 induced death in most newly arising Tregs.

This lethality can be prevented in presence of (the limited) IL-2

signaling via the common gamma chain (43). As Tregs consume

IL-2, Treg depletion leads to higher levels of IL-2 underlying the

importance of Tregs in controlling the abundance of IL-2 (44).

However, Treg homeostasis and function is tightly regulated

via numerous costimulatory signals in order to keep the fine

balance between immunosuppression (potentially resulting in

infection or malignancy) and avoiding excessive immune

activation and autoimmunity.
The complex crosstalk between
PD1-PDL1 and CD28/CTLA4-B7

On conventional T-cells, PD-1 is upregulated upon T-cell

receptor (TCR) mediated stimulation (45). Interaction with its
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ligands, PD-L1 and PD-L2, restricts further activation and

proliferation of T-cells, thereby providing a central immune

checkpoint to contain excessive immune responses (46, 47). This

co-inhibitory signal is (at least partly) conveyed through

downregulation of the PI3K pathway, providing direct

antagonism to CD28-mediated costimulation (resulting in

PI3K activation). On regulatory T-cells however, PD-1 seems

to take on a distinctive role, which might be at least partly

depending on the activity of CD28.

With an unaltered CD28 pathway, a conditional PD-1

knockout specifically in Tregs has been shown to enhance

their suppressive capacity. In this context, Tregs lacking PD-1

out-proliferated conventional Tregs in vitro, protected NOD

mice from diabetes and mitigated the severity of induced

autoimmune encephalitis (48). In contrast, when the CD28-B7

interaction was disrupted (using CTLA4Ig) in transgenic mice

overexpressing PD-1 on T-cells (including Tregs), PD-1high

Tregs demonstrated greater suppressive function, allowing for

long-term survival of fully mismatched cardiac allografts (49).

Transgenic PD-1high Tregs under costimulation blockade

expressed greater amounts of cytotoxic T-lymphocyte-

associated protein 4 (CTLA4) and inducible T-cell

costimulator (ICOS). Interestingly, active ICOS signaling in

transgenic PD-1high Tregs was required for the survival benefit

in cardiac transplantation in this model. Although some of these

differential results might also be explained by differences in the

models used (auto vs. allo-immunity), these data indicate a

complex interconnection between CD28, PD-1 and ICOS

signaling in regulatory T-cells. In this context, our group has

demonstrated that both PD-1 and CTLA4 are indispensable for

maintaining chimerism and transplantation tolerance in a

murine mixed chimerism model employing Treg-cell therapy

and costimulation blockade with CTLA4Ig (50).

PD-1 upregulation has also been observed upon interleukin-

2 (IL-2) stimulation of regulatory Tregs for in vitro and in vivo

expansion. Asano and colleagues demonstrated an increased

surface expression of PD-1 in Tregs during in vitro expansion in

mice (with recombinant IL-2) and in vivo expansion using low-

dose IL-2 in mice as well as human GvHD patients (51).

Interestingly, when PD-1 signaling in Tregs was intercepted

during expansion (in murine in vitro and in-vivo expansion)

using PD-1 knockout Tregs or anti-PD-1 antibodies, Treg

proliferation initially spiked, but then rapidly diminished due

to FAS-dependent apoptosis induction and reduced BCL-2

expression on Tregs. These data indicate a central role for PD-

1 as modulator of Treg homeostasis in clinically relevant Treg-

expansion protocols.

Similar observations regarding the upregulation of PD-1

during in vivo Treg expansion have been made by our group

using IL-2 complexes (IL-2 cplxs: IL-2 complexed with an anti-

IL-2 antibody to sterically inhibit the binding to CD122 on CD8

T-cells and NK-cells while selectively expanding regulatory T-

cells via CD25) for in vivo Treg expansion in a murine mixed
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chimerism model. In addition to PD-1, Tregs also upregulated

ICOS and CTLA4 upon stimulation with IL-2 complexes (52).

Together with CTLA4Ig these in vivo expanded Tregs facilitated

long-term survival of fully mismatched cardiac allografts in

mice (34).

The group of Robert Negrin has recently engineered an

orthogonal interleukin-2 that selectively binds to an orthogonal

IL-2 receptor (but not the native IL-2 receptor), that was

introduced in regulatory T-cells (53). This model elegantly

allows to provide IL-2 stimulation exclusively to transferred

Tregs expressing the orthogonal IL-2 receptor. Also, in this

context, stimulation with orthogonal IL-2 in vitro and in vivo

was accompanied with an upregulation of ICOS in the

transfected Tregs (PD-1 and CTLA4 were not assessed).

Transferred orthogonal IL-2R Tregs facilitated induction of

long-term mixed chimerism and subsequent donor-specific

tolerance towards cardiac allografts.

These models, while using different strategies to deliver IL-2

selectively to regulatory T-cells, commonly demonstrate that IL-

2 stimulation of Tregs is accompanied by an upregulation of PD-

1, ICOS and CTLA4. In most of these reports and especially

under costimulation blockade with CTLA4Ig, PD-1

upregulation was associated with enhanced suppressive

function of regulatory T-cells. Another possible explanation

for the observed disparity in Treg functionality with or

without intact PD-1 signaling between autoimmunity and

transplantation might be the PD-1 ligand (PD-L1) expression

within the graft itself. PD-L1 is expressed by vascular endothelial

cells and rapidly upregulated upon pro-inflammatory stimuli via

interferon-gamma (IFNg) and tumor necrosis factor alpha

(TNF-a) (54). Reduced PD-L1 expression within cardiac

allografts has been associated with an increased incidence of

acute T-cell mediated rejections (55). Mechanistically,

endothelial PD-L1 has been shown to reduce graft infiltration

of CD8 T-cells expressing a memory phenotype (56, 57). Beyond

this, endothelial PD-L1 might also interact with PD-1 on

regulatory T-cells. A recent report suggests a novel role for

PD-1 expressing Tregs in regulating endothelial trans-migration

of lymphocytes through interaction with endothelial PD-L1 on

lymphatic endothelial cells (58).

In this context, the effect that endothelial PD-L1 within the

allograft itself has on PD-1 expressing regulatory T-cells could be

of great interest and yet needs to be elucidated.

Also, on antigen-presenting cells, the PD-1 and CD28/

CTLA4 pathways are strongly interconnected. Experimental

data have suggested that CD80 (B7.1) and PD-L1 (CD274) can

bind each other (59). The original assumption was that this

interaction involves CD80 and PD-L1 expressed by two different

cells (trans). Recent reports however suggest that CD80 and PD-

L1 rather interact in a cis structure, forming CD80:PD-L1

heterodimers on the same cell (60). In this heterodimerized

form, PD-L1 cannot be accessed by PD-1 on T-cells. This has

been identified as one key mechanism by which PD-1 activity is
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restricted during T-cell activation to yield optimal T-cell

responses (61).

Heterodimerization also impacts the accessibility of CD80 to

its trans-ligands CD28 and CTLA4. While the binding of CD28

to CD80 is preserved, even in the cisCD80:PD-L1 form, CTLA4

cannot engage with heterodimerized CD80 [likely due to its

multivalent zipper-like binding structure (62)]. Consequently,

heterodimerized CD80 has been shown to be protected from

CTLA4-mediated trans-endocytosis (63).

Thereby, upregulation of CD80 and increased CD80:PD-L1

heterodimerization on APC might lead to repression of co-

inhibition by PD-1 (by reducing available PD-L1) and CTLA4

(by restraining trans-endocytosis of CD80) while preserving

CD28 co-stimulation. In turn this might result in increased T-

cell activation. Recent work by the group of Shimon Sakaguchi

has demonstrated how regulatory T-cells can influence the

balance between heterodimerized and “free” PD-L1 on APC

(64): Through trogocytosis, Tregs can deplete (non-

heterodimerized) CD80 from the APC’s surface, resulting in

less cisCD80:PD-L1 heterodimerization and more “free” PD-L1

available to inhibit PD-1 expressing T-cells. These reports

highlight the complex link between CTLA4-and PD1-mediated

suppression of T-cell responses by regulatory T-cells.

Under steady-state conditions, Tregs control the amount of

available CD80 on antigen-presenting cells (APC) via

competitive inhibition and removal through trans-endocytosis.

Both mechanisms rely on CTLA4 binding to CD80. This tight

restriction on free CD80 results in limited formation of CD80:

PD-L1 heterodimers and a high abundance of free PD-L1

(homodimers) providing co-inhibitory signals to engaging T-

cells through PD-1 (Figure 1, left).

Under inflammatory conditions, upregulation of CD80

results in a higher rate of CD80:PD-L1 heterodimerization.
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While CD80 within those heterodimers is not accessible for

CTLA4, it maintains affinity for CD28. Thus, in a

heterodimerized form, CD80 can evade Treg-mediated control.

As heterodimerized PD-L1, on the other side, loses affinity to its

ligand PD-1 (on T-cells), in this setting, co-stimulatory signaling

via CD28 prevails (Figure 1, right).

Cis-heterodimerization to PD-L1 might not only allow

CD80 to evade Treg mediated control (via CTLA4), but

potentially also costimulation blockade with CTLA4Ig.

Experimental data investigating the effect of CTLA4-Ig (or

other pharmacological interventions) on CD80:PDL1

heterodimer formation would therefore be of great interest to

the field.
CD28/CTLA4-B7 pathway and
its blockade

The CD28/CTLA4 pathway is one of the most thoroughly

studied costimulatory pathways. CD28 ligation via B7 molecules

expressed on antigen presenting cells (signal 2) is crucial for T

cell activation in combination with TCR/MHC interaction

(signal 1). As absence of signal 2 in the presence of signal 1

renders T cells anergic (65) the concept of selective blockade of

signal 2 has become attractive in order to therapeutically

modulate immune responses in the clinical setting. Of note,

CD28 engagement by B7 (CD80; CD86) is not only required for

conventional T cells but also for Treg homeostasis (66, 67).

Interestingly, CD86 appears to be the dominant ligand for Treg

proliferation in spite of its approximately 10-times lower affinity

to CD28 than CD80 (68). This can be explained by a constitutive

high surface expression of CTLA4 on Tregs that selectively

impair CD80/CD28 interaction (69).
FIGURE 1

Proposed concept for the complex interconnection between Tregs and CD80:PD-L1 cis-heterodimers on antigen-presenting cells (APC).
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In order to control conventional T cell activation, different

approaches were used to inhibit B7/CD28 binding with the most

promising strategy being the use of the fusion protein CTLA4Ig.

Experimental research led to the development of abatacept,

which now is approved for treating rheumatoid arthritis and

recently also as GvHD prophylaxis by the FDA (70), and

ultimately belatacept. Belatacept is a modified CTLA4Ig with a

higher binding avidity to human B7 molecules (2-fold higher

avidity for B7.1 and 4-fold higher avidity for B7.2 resulting in a

10 fold higher biological potency compared to conventional

CTLA4Ig) (71), which has been approved for treating kidney

transplant recipients. The main benefit of belatacept is probably

the absence of nephrotoxic side effects compared to the

conventionally used Calcineurin inhibitors (CNI) and in

addition the improved patient adherence due to the monthly

i.v. application of the drug. Long-term studies highlight the

excellent allograft (kidney-) function which is preserved over
Frontiers in Immunology 05
time (72). However, in spite of the initial success, enthusiasm

was dampened by higher rates of T-cell mediated rejections,

especially in the early phase after transplantation, observed

under belatacept compared to CNIs (73).

We have shown previously that the immunosuppressive

capacity of CTLA4Ig is Treg-dependent at low but not high doses

(74). However, the relationship between CTLA4Ig and Tregs

remains incompletely understood. On the one hand there is a

well-established negative impact of CTLA4/CD28-targeted

costimulation blockade on Tregs (75, 76). Even though the exact

mechanism of action has not been fully discovered it is likely that

the negative effect on Treg numbers results from less available IL-2

(42) and decreased CD28 signaling which is essential for

intrathymic Treg generation (67) and proper Treg function (77).

This concept is further supported by the observation of a higher

dependency on CD28 than conventional T cells (78). The negative

effect of CTL4Ig on the number of Tregs is dose-independent and
B

C D

A

FIGURE 2

Strategies to compensate for reduced Treg levels under CTLA4Ig. (A) Tregs control the amount of available of CD80 and CD86 (B7) on antigen
presenting cells (APC) through competitive inhibition and trans-endocytosis. (B) CTLA4Ig causes a dose-independent drop in Treg frequencies,
contradicting their restriction on surface B7. Subsequently, more B7 is available for CD28-mediated co-stimulation. Standard doses of CTLA4Ig
(10mg/kg) are not sufficient to bind all available B7. This can be compensated by administering higher doses of CTLA4Ig (50mg/kg) in the
experimental setting (C), or by reconstituting the recipient’s Treg levels (to or beyond naïve levels). Two promising strategies to reconstitute
Tregs under costimulation blockade are depicted in (D) (1). Interleukin-2 complexed with an anti-IL-2 monoclonal antibody (IL-2 complexes)
has been successfully used to selectively expand Tregs under costimulation blockade in vivo. (2) Engineered Tregs expressing a modified
orthogonal IL-2 receptor that exclusively binds a modified (orthogonal) IL-2 have successfully been used for adoptive cell therapy in a mixed
chimerism model. In both models, the re-established control of B7 expression on APCs by reconstituted Tregs has permitted sufficient
immunosuppression with CTLA4Ig in standard dosing.
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the main proportion of Tregs affected are helios+, nrp1+ tTregs (74).

However, despite a reduction in Treg numbers in vivo, CTLA4Ig

might also have a beneficial effect on Treg function and/or

generation depending on the context (79).

For instance, murine iTreg generation and suppressor

function was improved by CTLA4Ig in vitro (80). These

findings are underlined by the observation that the addition of

belatacept might enhance Treg mediated in vitro suppression of

allogeneic immune response without affecting viability,

proliferation or expression of functional Treg markers (81).

In a clinical study of kidney transplantation, there is a

positive impact of costimulation blockade combined with

mTor inhibition on Treg numbers with a sustained anti-donor

suppressive activity compared to patients with a CNI-based

immunosuppressive regimen (82). Similarly, belatacept

treatment had no short or long-term effect on regulatory T-

cell frequencies and in vitro functionality when compared to

CNI in a post hoc analysis of the BENIFIT trials (83).

Interestingly, there is evidence that costimulation blockade

with CTLA4Ig might negatively affect CD44high memory

phenotype Tregs but not CD44low naïve phenotype Tregs (84).

Some of the observed negative effects of CTLA4Ig on

regulatory T-cells and the higher incidence of TCMR episodes

might be attributed to the unintended interception of

physiological CTLA-B7 binding. CTLA4 is upregulated on

activated T-cells and delivers a co-inhibitory signal upon

ligation with B7 (85). This co-inhibitory signaling is prohibited

by CTLA4Ig. Directly targeting CD28 through non-crosslinking

compounds might be a potential strategy to overcome this

problem. Furthermore, CD28 blockade and CTLA4 on Tregs

might synergize in their control over CD28 as they target the

CD28-B7 interaction from two different angles. This has been

shown experimentally by the group of Kathryn Wood in a

humanized mouse model, where they demonstrated that direct

CD28 blockade enhances Treg function and is superior to

CTLA4Ig in prevention of allograft rejection (86). Two agents

for direct CD28 blockade are currently under clinical evaluation

in a phase I trial (NCT05238493) and a phase I/II trial in kidney

transplantation (NCT04837092).

The effect of CTLA4 interaction with B7 molecules on APCs

remains disputed. It has been suggested that CTLA4 might induce

indolamine 2,3 Dioxygenase (IDO) via reverse signaling through B7

expressed on antigen-presenting cells (87). IDO is a tryptophan-

catabolizing enzyme which leads to the production of pro-apoptotic

metabolites (88). However, this concept has been challenged by the

lack of IDO induction of CTLA4Ig in dendritic cells (89). The

CTLA4Ig effect promoting chimerism in a murine model was also

found to be independent of IDO (90). Moreover, the intracellular

domains of CD80 and CD86 are short and due to their amino acid

sequence are unlikely to transmit reverse signals (91). Notably, no

IDO induction was detectable in liver transplant recipients treated

with belatacept (92).
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As Tregs constantly deplete B7 molecules from the surface of

APCs, and CTLA4Ig reduces the numbers of Tregs, B7

expression on APCs is increased in mice under costimulation

therapy compared to untreated animals.

We suggested, that low dose CTLA4Ig might only

insufficiently bind all available B7 receptors (93). Thus, there

are two distinct strategies to overcome the resulting immune

activation: 1) The administration of higher doses of CTLA4Ig (to

bind all available B7 molecules (74); or 2) by increasing Treg

numbers to ultimately decrease the number of B7 molecules

expressed on APCs (34) (Figure 2).

Increasing Treg numbers by adoptive cell transfer of in vitro

activated Tregs was insufficient in a mouse model of heart

transplantation. Even though 3x106 transferred Tregs were

traceable for up to 16 weeks, we observed only a modest

increase in Treg numbers that was absent in mice under

costimulation blockade. We suggested that homeostatic control

via the restricted availability of IL-2 might have limited the effect

of adoptively transferred Tregs on overall Treg numbers.

Next, we aimed at increasing Treg numbers through IL-2

complexes (IL-2 cplxs). Thereby, we could successfully increase

the number of regulatory T cells but also showed a synergistic

effect of IL-2 cplxs and CTLA4Ig in reducing the expression of

B7 molecules on dendritic cells (34).

However, there are further possible interpretations that can

explain the observed beneficial effect of IL-2 cplxs on allograft

survival under costimulation blockade. In a murine model of

FoxP3 deficiency treatment with IL-2 cplxs can – at least partly -

compensate the deleterious effect of the defective Treg

compartment indicating other suppressive cells may be

supported by IL-2 cplxs (3).

The close relationship between Tregs and CTLA4Ig is

further underlined by the observation that in patients with

DEF6 deficiency (an inherited syndrome characterized by

immunodeficiency and systemic autoimmunity cause by an

aberrant CTLA4 homeostasis) CTLA4Ig can improve the

clinical phenotype (94).
CD40-CD154 blockade

The interaction of CD40 on B cells and its ligand, CD154

(CD40L) is crucial for B-T cell crosstalk and activation.

Consequently, great efforts have been taken to target this

pathway therapeutically in transplantation and autoimmunity

(95). In several models, blocking CD154 has shown to be

superior compared to targeting CD40. This might be due to

CD11b acting as alternative receptor for CD154, partially

compensating for CD40 (96).

Blocking CD154 yielded promising pre-clinical results in

several experimental models (97). However, clinical translation

was hampered by thromboembolic complications during phase I
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testing (98). The originally developed monoclonal antibody

targeting CD40L (hu5c8) caused immune complex-mediated

platelet activation via FcgRIIa resulting in thromboembolic

complications (NCT02273960). Recently, novel Fc-silenced

constructs, devoid of any FcgRIIa binding have shown

promising pre-clinical results (99).

Contrary to CTLA4Ig, blocking CD154 has been associated

with an increase in Tregs across several murine (100–102) and non

human primate models (99). Mechanistically, it seems that naïve

CD4 FoxP3- T cells are induced to become pTregs following

transplantation under CD154 blockade (100). This effect might be

one of many explanations for the observed synergy between

CTLA4Ig and anti-CD154 in experimental transplant models (103).
Outlook and future perspectives

Current challenges in transplant medicine including chronic

allograft rejection and adverse side effects caused by

conventional immunosuppressive regimens demand for novel

strategies in order to further improve transplant outcome. Tregs

are a powerful subset of immune cells that provide prompt and

selective fine tuning of immune responses. The close association

between costimulation blockade and Tregs observed in

preclinical and clinical studies indicate a synergistical potential

that merits further efforts in order to delineate the complex

network between immune activation and regulation.

Several strategies are currently investigated in prospective trials

including adoptive Treg transfer or Treg expansion by using IL-2

complexes. Also, new costimulation blockers are tested in

preclinical and clinical studies. However, whether these efforts

ultimately will result in reduced immunosuppression or even in

donor-specific tolerance remains unclear.
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