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Abstract: Feature selection and dimensionality reduction are important for the performance of wind
turbine condition monitoring models using supervisory control and data acquisition (SCADA) data.
In this paper, an improved random forest algorithm, namely Feature Simplification Random Forest
(FS_RF), is proposed, which is capable of identifying features closely correlated with wind turbine
working conditions. The Euclidian distances are employed to distinguish the weight of the same
feature among different samples, and its importance is measured by means of the random forest
algorithm. The selected features are finally verified by a two-layer gated recurrent unit (GRU) neural
network facilitating condition monitoring. The experimental results demonstrate the capacity and
effectiveness of the proposed method for wind turbine condition monitoring.

Keywords: wind turbines; feature selection; FS_RF algorithm; condition monitoring; gated recurrent
unit; blade breakages

1. Introduction

Compared with traditional energy sources, wind energy is clean and renewable; thus,
wind power has spread worldwide [1–3]. However, wind turbines often suffer from
frequent malfunctions and failures, which might cause long downtime and significant
maintenance costs [4]. For instance, the rotor blades are one of the main components of a
wind turbine, and these often fail as the age of the wind farm grows [5]. To prevent high
financial losses, condition monitoring and fault prognosis for wind turbines attract a great
deal of attention.

In previous studies, condition monitoring methods for wind turbines were mainly
carried out with signals collected by sensors. This motivated the research into data-
driven wind turbine condition monitoring methods that are capable of estimating working
conditions and detecting faults. Nizwan et al. [6] used a Discrete Wavelet Transform (DWT)
to analyze vibrational signals in order to achieve fault detection for bearings, where the
DWT was employed to decompose signals in different frequency ranges. Sun et al. [7]
proposed a method to detect weak features in early faults of rolling bearings in wind
turbines. They combined the multiwavelet denoising technique with the threshold of the
data-driven block and separated features from noises. Zhang et al. [8] successfully localized
the fault planet gear in wind turbine gearboxes using the acoustic emission technique.

Compared with the above monitoring methods, as a comprehensive tool, the super-
visory control and data acquisition (SCADA) system has been configured in each wind
turbine for working condition supervision. It can provide a large number of parameters
that can provide information on the turbine operating condition; therefore, a large number
of SCADA data mining methods have been developed. SCADA data were analyzed to
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construct a model for predicting or detecting the bearing faults of a wind turbine in [9],
and faults were predicted by the model 1.5 h before their occurrence. In [10], the authors
presented a virtual model to predict two parameters using SCADA data in wind turbines,
and the results indicated that the accuracy of the model depended to a large extent on the
selected input parameters. The Intelligent System for Predictive Maintenance was applied
to monitor the gearbox conditions of wind turbines in [11]. However, among the numerous
SCADA parameters, only a few of them are prominent in fault diagnosis and condition
monitoring models [12]. Unfortunately, most of the traditional methods [9–11,13] have
more or less ignored the effects of the interrelation among the SCADA parameters on the
model output, to some extent by choosing input parameters according to field experience.

In recent years, deep learning techniques have provided powerful mathematical tools
for the fault prognosis and condition monitoring of wind turbines. A large amount of works
that have used deep learning techniques were reported in [14]. Jiang et al. [15] employed a
denoising autoencoder (DAE) model with time series information from SCADA data to
achieve the detection of faults in wind turbines. The optimized long short-term memory
(LSTM) neural network, which uses cosine loss, was proposed for the fault diagnosis
of a wind turbine gearbox in [16]. Bangalore et al. [17] employed an artificial neural
network (ANN) as a condition monitoring method using SCADA data, and the final results
proved the effectiveness of the method. All of these approaches [15–17] used SCADA
data, and input features that are almost manually selected or hand-crafted may restrict
the performance of the models. Dimensionality reduction by selecting the most closely
related features is a prerequisite to ensure the accuracy of condition estimation models.
In [18], the authors developed a prediction model and a diagnosis model using SCADA
data for wind turbine generators, where the prediction model was used to predict the
remaining useful life of the wind turbine generators. Besides, in [18], the authors also
proposed a data preprocessing procedure including data cleaning, feature selection, feature
reduction, and data set balancing. In [19], the authors constructed a normal behavior model
using support vector regression with a Gaussian kernel to diagnose the faults of wind
turbine generators, and the dimensionality of features was reduced by using principal
component analysis. Kong et al. [20] introduced a feature selection method with Pearson
correlation coefficients in their fault detection model to diagnose the gearbox failures of
a wind turbine. Ferreira et al. [21] presented an approach which used decision trees for
feature selection and the condition monitoring of tool wear. Wei et al. [22] used a random
forest algorithm to select feature parameters and feed them into a constituted deep neural
network to detect whether the permanent magnets in a wind turbine had fallen off or
not. In [21,22], a method was used that included decision trees to achieve the purpose of
condition monitoring. Feature selection was used for variables that can reflect a special
component condition in [18–20]. However, in this study, the obtained SCADA datasets
have only one fault of blade breakages, and no SCADA variables can directly indicate
the conditions of blades. Due to this fact, we have to perform feature selection for all
SCADA variables.

According to the results of literature studies, better features can simplify the complex-
ity of models and improve the accuracy of condition monitoring models, but the influences
of the quality of the selected features on the model performance still remain unclear to
date. In this paper, an improved random forest algorithm, the Feature Simplification
Random Forest (FS_RF) algorithm, is proposed for the feature selection of SCADA data,
in which features that most significantly show the wind turbine’s state are chosen. The
gated recurrent unit (GRU) method with the selected features is dedicated to achieving the
monitoring of the wind turbine condition. To validate the performance of the proposed
method, a comparison is carried out with some other feature selection algorithms. The
final results indicate the effectiveness of the proposed method.

This paper is organized as follows. Section 2 presents a brief review of existing feature
selection algorithms. The FS_RF algorithm is expounded in Section 3. In Section 4, the
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experiment setup is depicted and the effectiveness of the proposed feature dimensionality
reduction algorithm is evaluated. Finally, the conclusions are given in Section 5.

2. Related Feature Selection Algorithms

Generally, there are mainly three families of feature selection algorithms [23–25]: filters,
wrappers and embedding methods. The differences between these three basic families are
in how the learning algorithm is incorporated to evaluate and select features.

In the filter methods [23,26–30], the selected features are evaluated only by the intrin-
sic properties of the data without running a learning algorithm. These methods neither
rely on any machine learning methods nor require cross-validation. For example, the
Pearson correlation coefficient method, as one of the filter methods, was introduced by
Kong et al. [20] for the feature selection of SCADA data for wind turbine gearbox condition
diagnosis. The Pearson correlation coefficient is used to detect the degree of linear corre-
lation between two continuous variables. This method is suitable for solving regression
problems but is not appropriate for classification problems. Another filter method is the
variance threshold method, which removes only those features whose variance does not
satisfy a certain threshold.

The wrapper methods [24,25] select features by “wrapping” the exploration in a
learning algorithm and then estimate feature subsets according to the property of the
classifier on each candidate feature subset. An obvious drawback of these methods is the
high computational cost of the wrapper methods, since the classifier has to be trained and
tested for each candidate feature subset. In practice, it is found that using the wrapper
methods requires a large amount of computation resources and time when facing high-
dimensional SCADA data. Therefore, these methods are not used in this paper.

The embedded methods [31,32] integrate the feature search and the learning algo-
rithms into a simple optimization formula, employing the advantages of both the wrapper
methods combined with machine learning algorithms and the high computational effi-
ciency of the filter methods. For instance, Wei et al. [22] constructed a deep neural network
in order to detect the falling off of permanent magnets from wind turbines and used the
random forest algorithm as a feature selection method. The random forest algorithm [33] is
an embedded method; it is a combination of tree predictors in which each tree depends on
the values of independently sampled random vectors that are identically distributed trees
in the forest. The final result is obtained by casting a vote for the most popular class using
all the decision trees (DTs). The procedure of the random forest algorithm is summarized
below and shown in Figure 1.

Figure 1. The procedure of the random forest algorithm.
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Step 1: P1, P2, P3...Pn are sampled randomly from the total training dataset D as n
subsets, and the bootstrap sampling method is used in this process;

Step 2: A DT is constructed for each of the n subsets, thus obtaining n classification results;
Step 3: Each DT votes for the most popular class, and this can determine the opti-

mal result.
In the DTs, the minimum Gini value is employed as the splitting criterion of the nodes,

and the corresponding features are considered to be excellent features. The impurity degree
of each node is described by the Gini value [33], calculated using formula (1):

Gini(t) = 1−
n

∑
j=1

[p(j | t)]2 (1)

where p(j | t) denotes the probability of risk class j at node t. Once the value of Gini(t) is 0,
the sample data at node t are recognized as the same risk class. The greater the value of
Gini(t), the less available the gained information.

In addition, the L1-SVM algorithm [31], one of the main embedded methods, is an
embedded sparse method that uses L1 regularization for linear SVM formulas instead of
the standard L2 Margin for selecting features. The L1-SVM algorithm and the random
forest random algorithm are employed in this research for comparison.

As depicted above, all the existing algorithms have their own obvious drawbacks
while working with SCADA data. Nevertheless, the random forest algorithm behaves
better compared with other feature selection methods. However, even in the random forest
algorithm, the classification results of the DTs are heavily influenced by the redundant
features of the sampled SCADA data. Therefore, this paper proposes the FS_RF algorithm
to improve the performance of the random forest algorithm.

3. Proposed Algorithm

In [20], to detect whether the permanent magnets in the wind turbines were dislodged,
the random forest algorithm was employed for feature selection for construct a condition
monitoring model. However, in this paper, in order to diagnose whether the wind turbine
blades are broken or not, the feature selection of all SCADA variables is necessary. When
facing high-dimensional data, the feature simplification (FS) algorithm can reduce the
impact of redundant features on the random forest algorithm.

The FS algorithm removes features that have little impact on the operating state of
the wind turbines. The purpose of this process is to decrease the interference of some
useless features in the calculation of Gini values in the decision trees of the random forest
algorithm. The final results in Section 4.4 indicate that the features that are selected by the
FS_RF algorithm are different from features selected using the random forest algorithm.

The feature simplification (FS) algorithm mainly calculates the correlation of a feature
with the samples from positive and negative classes and assigns corresponding weights
to each of the features, where the positive class denotes the SCADA data of the normal
working conditions and the negative class the fault. Figure 2 shows the flowchart of the FS
algorithm. The detailed algorithm is depicted step by step as follows:

Step 1: Sample R is randomly drawn from the SCADA dataset, sample S of the same
class is adjacent to sample R, and sample D is drawn randomly from a different class;

Step 2: A feature (denoted as Ai) is selected from each of the three samples (R, S and
D) in turn;

Step 3: The Euclidean distances between feature Ai of sample R and that of sample
S are calculated, denoted as d(RAi , SAi ), and those of feature Ai between sample R and
sample D, denoted as d(RAi , DAi );

Step 4: Steps 1 to 3 are repeated, and the weight of each feature Ai is computed. The
weight computation formula is shown as formula (2):

W(Ai) = W(Ai)−
(

d
(

RAi , SAi

)
m

−
d
(

RAi , DAi

)
m

)
(i = 1, 2, 3, . . . , n) (2)
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where W(Ai) is the weight of feature Ai and the initial value of each feature weight is
assigned to 0; m denotes the repetitions; and n is the total number of features in the SCADA
data. In Figure 2, in order to save computation cost, k is assigned to 0.6 × P, where P is the
total numbers of samples in a SCADA dataset.

Figure 2. The flowchart of the feature simplification algorithm.

In step 3, if the two Euclidean distances (i.e., d(RAi , RSi ), d(RAi , DSi )) are significantly
different, this means that the feature Ai has a greater ability to distinguish the positive
or the negative samples among R, S, and D, and then the weight of feature Ai should be
increased. Otherwise, its weight should be decreased.

4. A Case Study

In this section, the proposed method is evaluated with 10 min SCADA data on two
SCADA datasets collected from two Aeolon58 wind turbines, where the two SCADA
datasets contain 418,078 and 404,933 items, respectively. These datasets include normal
operating conditions of the wind turbines and failure conditions after the breakage of a
blade. A GRU model is constructed to estimate the condition of the wind turbines. The
general flow is as follows:

Step 1: The SCADA data are preprocessed by the proposed feature selection method;
Step 2: The SCADA data are divided into training sets and testing sets, and the

splitting ratio is set to 0.6;
Step 3: The GRU model is built;
Step 4: The hyper-parameters are initialized (refer to Section 4.4);
Step 5: The training sets are fed to train the GRU model;
Step 6: The correctness of the feature selection method is evaluated.

4.1. Data Preprocessing

The SCADA data acquired from a real wind farm supervision system frequently have
missing entries, which will lead to discontinuities in the time series. Moreover, a SCADA
system usually involves a manifold of variables, which may affect the accuracy of the wind
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turbine condition estimation model if these missing data are not properly processed [22]. It
is therefore necessary to preprocess the SCADA data.

4.1.1. Missing Value Processing

Considering the need to maintain the temporal order of the SCADA data, the missing
values of the SCADA data should not be neglected directly. In this paper, the local mean
replacement method to pad the missing values is employed, which can be expressed
as follows:

xm =
∑m−1

m−k−1 xi + ∑m+1
m+k+1 xi

2k
(3)

where xm is the value of the missing data, and k represents the number of available data
values near the missing data, which is set to 3 in this study, in order to smooth the data
series curve.

4.1.2. Feature Selection

In the proposed method, the FS algorithm is incorporated into the feature selection pro-
cess of the random forest. Firstly, the features with zero or very low weights in the SCADA
dataset are initially removed using the feature simplification algorithm; secondly, the ran-
dom forest algorithm is employed to calculate the importance of features (i.e., columns in
the SCADA dataset); and finally, feature selection is achieved based on feature importance.

On the basis of the FS_RF algorithm, the importance of the 75 features in the wind
turbine SCADA dataset are computed, and the 28 most important output features are
retained as the input of the GRU model. The selected features using the FS_RF algorithm
are shown in Table 1.

Table 1. Selected SCADA features.

No Feature No Feature

1 Nacelle temperature 2 Hub temperature
3 Reactive power control status 4 Generator active power
5 Converter grid side voltage 6 Blade 1 battery box temperature
7 Blade 2 battery box temperature 8 Blade 3 battery box temperature
9 Blade 1 converter box temperature 10 Blade 2 converter box temperature
11 Blade 3 converter box temperature 12 Blade 1 angle
13 Blade 2 angle 14 Blade 3 angle
15 Main bearing temperature 1 16 Main bearing temperature 2
17 Engine room control cabinet temperature 18 Hub control cabinet temperature
19 Generator stator temperature 1 20 Generator stator temperature 2
21 Generator stator temperature 3 22 Generator stator temperature 4
23 Generator stator temperature 5 24 Generator stator temperature 6
25 Wind measurement tower temperature 26 Converter inlet pressure
27 Converter outlet pressure 28 Absolute wind direction

4.2. Constructing the Gated Recurrent Unit Model for Condition Monitoring

When evaluating the conditions of a wind turbine, the data from the SCADA system
should be continuously fed into the model in the form of a time series. The common
fully-connected neural network is weak in perceiving the change in the conditions of
the wind turbine in real time, while the convolutional neural network can only monitor
the magnitude of the local change. Obviously, these two methods are both insufficiently
sensitive to the input data and cannot reflect the state change of the wind turbine in
real time.

A recurrent neural network (RNN) is a type of artificial neural network with directed
cycles of dependencies between nodes [34]. This construction allows the network to retain
previous state information between successive time steps. The value of every time step is
considered, affecting the temporal result. Generally, given a sequenceX = [x1, x2, . . . , xn],
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xt ∈ Rk is the input of time step t. The process of the RNN preserving states can be defined
by the following state transfer function [35,36]:

ht = f (Wxt + Uht−1 + b) (4)

where U ∈ Rd×d represents the matrix between the adjacent time-step of hidden layers and
itself; W ∈ Rd×k is the matrix, which denotes the ordinary weights between the input layer
and hidden layers; b ∈ Rd is the bias parameter; U, W and b are shared parameters and
can learn during model training; ht ∈ Rd denotes the corresponding hidden state when
the input is xt; and f , which is widely used in RNNs, is the hyperbolic tangent activation
function.

Nonetheless, standard RNNs suffer from gradient disappearance and gradient ex-
plosion during training, which may make it difficult to obtain satisfactory results. More
importantly, standard RNNs are unable to remember long-term data and discard relevant
prior states—a problem known as “fading memory” [37].

The gated recurrent unit (GRU) evolved on the basis of the RNN and has become
popular due to its better information storage and ability to access prior conditions. In
contrast to traditional RNNs, the hidden unit of the GRU is replaced by a gated unit, which
does not require a separate storage unit to regulate the flow of information within the unit.
The structure of this model is shown in Figure 3.

Figure 3. The structure of GRU.

The calculation of the GRU layer can be described as follows [34]:

zt = σg(Wzxt + Uzht−1 + bz) (5)

rt = σg(Wrxt + Urht−1 + br) (6)

h̃t = tanh(Whxt + Ut(rt � ht−1)) (7)

ht = (1− zt)� ht−1 + zt � h̃t (8)

where all W ∈ Rd×k, U ∈ Rd×d and b ∈ Rd, as the included learnable parameters, should
be shared by each step, and they are all able to learn in the period of the GRU model
training;� represents the element-wise product; d and k are hyper-parameters representing
the dimensions of the input and hidden vector; ht is the output vector, which includes
information of the current unit when the input vector is xt; zt and rt are the vectors for
update gate and reset gate; σg is the sigmoid activation function; and tanh is the hyperbolic
tangent activation function.

The GRU model can resolve the drawbacks of the standard RNNs. The update
gate vector and the reset gate vector are employed to decide whether the information
should be remembered or forgotten and to learn adaptive weights of different features.
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Moreover, compared with the long short-term memory (LSTM) network, the GRU has
better performance with fewer parameters to suppress overfitting [38].

4.3. Loss Function and Evaluation Criteria

The evaluation of the feature selection algorithm is performed according to the accu-
racy of the model. We use binary cross-entropy as a loss function, and its mathematical
expression could be expressed as follows:

ln = −(yn ∗ log(ŷn) + (1− yn) ∗ log(1− ŷn)) (9)

loss(z, y) = mean{l0, l1, l2, · · · , lN−1} (10)

where N denotes the total number of samples; ŷn is the probability that the nth sample is a
positive case; and yn the true label of the nth sample.

To measure the influence of the feature selection on the deep learning model, the F1-
Score is used as a criterion. Here, “0” denotes a healthy condition of the wind turbine and
“1” represents an abnormal condition. The basic parameters in the standard performance
metrics are adopted: true positive (TP), false positive (FP), false negative (FN), and true
negative (TN).

As a statistical measurement, the F1-Score combines the precision and recall of the
classification model, with a maximum value of 1 and a minimum value of 0. The F1-Score
can be mathematically expressed as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
(11)

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1− Score =
2TP

2TP + FN + FP
=

2 · Precision · Recall
Precision + Recall

(14)

The aforementioned metrics are specific to each category, and they measure the
capacity of the condition monitoring model to distinguish certain circumstances (i.e., fault)
from normal circumstances (i.e., health). In addition, accuracy is also employed to evaluate
the overall model performance for the positive class and negative class.

4.4. Experiment Results

In this section, a GRU model is constructed and applied to the wind turbine condition
estimation. Two SCADA datasets are employed to evaluate the proposed algorithm, in
which both healthy and failure operating condition data are recorded. In the proposed
method, the selected features, preprocessed using the FS_RF algorithm, are fed into the
GRU model. The detailed setup of the GRU model is shown in Table 2.

Table 2. Structure and hyper-parameter setup of the GRU model.

Structure and Hyper-Parameter Setting Values

Structure

Input size 28
The number of neurons in the GRU layer 50

The number of neurons in the fully connected layer 10
The number of neurons in the output layer 2

Training settings

Batch size 64
Learning rate 0.01

The number of GRU layers 2
Dropout rate in the GRU layers 0.2

The total number of epochs 50
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To further evaluate the performance of the FS_RF algorithm, a comparison is con-
ducted with other feature selection algorithms—i.e., the random forest algorithm, the
variance threshold algorithm, and the L1-SVM algorithm—where the threshold of the
variance threshold method is set to 0.4. The results of different feature selection methods
are described in Tables 3 and 4, respectively.

Table 3. Results on the sample 1.

Method Num of Features Accuracy Precision Recall F1-Score

VarianceThrehold-GPU 57 90.31 91.57 89.31 91.79
L1-SVM-GPU 61 93.18 94.32 92.34 94.17

RandomForest-GRU 22 94.00 94.71 93.37 94.80
FS_RF-GRU(Proposed) 28 94.50 95.13 93.93 95.21

Table 4. Results on the sample 2.

Method Num of Features Accuracy Precision Recall F1-Score

VarianceThrehold-GPU 57 81.65 81.59 81.75 82.44
L1-SVM-GPU 61 89.83 89.81 89.92 90.27

RandomForest-GRU 22 88.64 88.60 88.78 88.94
FS_RF-GRU(Proposed) 28 90.77 90.71 90.83 91.24

The experimental results show that different feature selection methods result in a
variance in the number of selected features. In Table 3, the F1-Score of the GRU condition
estimation model which uses the proposed method reaches 95.21, surpassing the method
in second place by about 0.41. In Table 4, the F1-Score of the best performing model using
the FS_RF algorithm is 91.24, which exceeds the model in second place by approximately
0.97.

As shown in Tables 3 and 4, the FS_RF algorithm performs well on both data samples.
Further, 28 features with a higher impact on the metrics are selected using the FS_RF
algorithm, while the random forest algorithm selects only 22 features. This means that the
final F1-Score of the model using the FS_RF algorithm is higher than that of the random
forest algorithm.

4.5. Discussion

In this study, we propose a FS algorithm to optimize the random forest algorithm for
SCADA data. The FS_RF algorithm behaves more efficiently when choosing the important
features from the data sample than other algorithms. The reason for this may be that
the features selected by the FS algorithm reduce the complexity of the later calculation of
feature importance using the random forest algorithm. In addition, it is worth noting that
none of the condition monitoring models constructed for sample 2 using the four feature
selection methods performed as well as those for sample 1. This may have been caused by
the degree of the failures of the wind turbine; i.e., minor failures could cause insignificant
variations in the parameters of the SCADA data, while severe faults cause remarkable
changes, which in turn affects the diagnosis ability of the GRU models.

5. Conclusions

Feature selection and dimensionality reduction on the SCADA data of wind turbines
remain a perplexing problem. Although prior research has provided hope for a better
result of condition estimation, there still remains room for improvement.

This paper proposes the FS_RF algorithm for feature selection and dimensionality
reduction on SCADA data, and the approach is evaluated using a GRU deep learning
model. The proposed algorithm is able to select features from SCADA datasets that better
denote the operating state of the wind turbines by means of computing the weight of a
feature using Euclidian distances among sample datasets and measuring its importance.
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The results obtained in the experiments demonstrate the applicability of the proposed
method.

In addition, the findings of this research have a number of important implications for
future practice by providing a reference for feature selection and dimensionality reduction
on massive datasets in other fields.
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