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Simple Summary: In this study, the author sought to identify the wavelength of light that activates
light-dependent magnetoreception. Pogona vitticeps lizards were randomly divided into two groups.
In both groups, small round light-absorbing filters were fixed to the back of each lizard’s head, to block
light of wavelengths lower than 580 nm. The electromagnetic field group received 12 h of systemic
exposure per day to an electromagnetic field at an extremely low frequency (light period), whereas
the control group did not. For each animal, the average number of tail lifts per day was determined.
No significant difference between the two groups, neither for the average ratio of the number of tail
lifts on test days to the baseline value nor the average increase in the number of tail lifts on test days
minus the baseline value (p = 0.41 and p = 0.67, respectively). The results of this experiment suggest
that light-dependent magnetoreception in P. vitticeps only occurs when the light hitting the parietal
eye is of a wavelength lower than 580 nm.

Abstract: In a previous study, the agamid lizard Pogona vitticeps was discovered to respond to an
electromagnetic field (EMF) of extremely low frequency (6 and 8 Hz; peak magnetic and electric fields
of 2.6 µT and 10 V/m, respectively). Furthermore, when the third eye of a lizard was covered, using
a small round aluminum cap, the reaction to the EMF disappeared. These results suggested that
the parietal eye has a role in light-dependent magnetoreception. However, the wavelength of light
needed to activate light-dependent magnetoreception has not been identified and was thus explored
in the present study. Lizards were randomly divided into control and EMF groups. In both groups,
a small round light-absorbing filter was positioned on the back of the head of each lizard and blocked
light of wavelengths lower than 580 nm. The EMF group was subjected to EMF exposure for half of
the day, whereas the control group was not. No significant intergroup differences were discovered in
the average ratio of the number of tail lifts on test days to the baseline value or average increase in the
number of test-day tail lifts minus the baseline value (p = 0.41 and p = 0.67, respectively). Lizards
with light-absorption filters that cut out light with wavelengths lower than 380 nm were found to
respond to the EMF. Therefore, the lizards appeared to respond to light of certain wavelengths rather
than the filters themselves. The results of these experiments suggest that light of wavelengths lower
than 580 nm is required to activate light-dependent magnetoreception in the parietal eye of P. vitticeps.

Keywords: tail lifting; tail behavior; magnetoreception; magnetic sense; lizard; ELF-EMF; extremely
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1. Introduction

Various animals, such as fish, turtles, mammals, birds, insects, and bacteria, have been reported to
be sensitive to magnetism, which they use for orientation [1]. It has been reported that one lizard uses
a geomagnetic sensor [2].

In our previous studies [3,4], we focused on tail-lifting behavior of lizards, including the agamid
lizard Pogona vitticeps [5]. The lizard Leiocephalus carinatus shows tail-curling behavior during
intraspecific agonistic encounters and courtship [6,7]. We discovered that exposure to electromagnetic
fields (EMFs) of extremely low frequency (6 and 8 Hz; peak magnetic and electric fields, 2.6 µT
and 10 V/m, respectively) increased the number of tail-lifts by lizards [3]. Additionally, when a
small, round aluminum “cap” was employed to shield the parietal eye of each lizard, the reaction
to the EMF disappeared. Some tuatara species (Rhynchocephalia) and lizards (Squamata) have
been reported to have parietal eyes that are photosensitive [8]. Our results suggested a role of the
parietal eye in light-dependent magnetoreception. However, the wavelength of light that activates
this magnetoreception was not identified at that time. In the present study, an attempt was made to
identify the wavelength of light that activates the light-dependent magnetoreception by evaluating the
behavioral EMF responses of P. vitticeps.

2. Materials and Methods

The author obtained adult central bearded dragons (P. vitticeps; Agamidae) from a commercial
source (Daiwa Pet Co., Kyoto, Japan) and bred the lizards for use in the experiment. Individual dragons
were easily recognized according to their morphological characteristics. Four of the lizards used in
Experiment 1 were used again in Experiments 2 and 3.

Birds are disoriented when exposed to wavelengths greater than 590 nm [9]. Therefore, as a
first step, the author selected a filter that screened out light with wavelengths lower than 580 nm in
Experiment 1/2. Since it has been reported that the photoreceptor cells of the lizard parietal eye are
sensitive to blue and green light [10], filters having wavelengths lower than those were selected in
Experiment 3.

The free-flying Catharus thrush (a night-migrating songbird) uses magnetic fields to determine its
direction on very dark nights, even at light levels as low as 0.0003 lux [11]. In Experiments 1 and 2,
and Experiment 3 in this study, the intensity of light entering the parietal eye was approximately 1000
and 500 lux, respectively. Therefore, the light intensity was sufficient to activate magnetoreception in
animals. If the author adjusted the intensity of light entering the lizard’s parietal eye in Experiment 3,
it was necessary to use twice as much light as that in Experiments 1 and 2. If the author used light that
was twice as intense as that in Experiments 1 and 2, the light intensity that entered the lizards’ eyes
was also twice as intense. The author believes that this is a considerable problem because doubling the
light intensity may affect animal behavior; in this study, the intensity of light that entered the lizards’
eyes was the same as that in Experiments 1/2 and 3.

The Kyoto University Animal Research Committee approved all of the animal experiments
(MedKyo09516).

2.1. Experiment 1

This experiment was designed to determine whether the parietal eye of P. vitticeps requires light of
wavelengths lower than 580 nm to activate light-dependent magnetoreception. A cross-over test was
performed, using eight lizards (four males and four females; mean body weight (BW), 57.9 ± 40.4 g;
mean snout–vent length (SVL), 10.4 ± 2.7 cm; mean total length (TL), 12.4 ± 6.1 cm) (Figure 1). Briefly,
experiments were conducted twice; the control group in the first instance became the EMF group in
the second instance, and the first EMF group served as the second control group. Between the two
sessions in Experiment 1, the lizards had 3 days of rest. The lizards were housed in four terrariums
(60 × 45 × 45 cm3), each divided in half by a wooden board (30 × 45 × 45 cm3) [3]. Each half of a
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terrarium had one lizard. Sheets of paper were fixed to the sides of each terrarium, half to prevent
the lizards from seeing each other. Each terrarium housed one lizard each in the EMF and control
groups. Four lizards in each group (eight in total) were simultaneously tested, and the experiment was
performed twice. The four terrariums were stored in a single room that was maintained at a constant
temperature and relative humidity (27.0 ± 1.5 ◦C and 50 ± 5%, respectively). Incandescent bulbs were
used in this study and emitted a broad spectrum of light. A 12 h light–dark cycle was applied to the
terrariums by using incandescent bulbs (RS-100V 60 W, Panasonic, Osaka, Japan, 2000 lux, lit at 09:00 h;
Figure 2). The lizards had ad libitum standard food and tap-water access.
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The definition of a tail lift and method of EMF exposure were identical to those used in another
work [3]. The method of observing the number of tail lifts was the same as the method described
as follows in the previous paper: “To monitor the number of tail lifts, images of each terrarium
were captured automatically every minute for 24 h day-1 during the experimental period using two
web cameras (CG-NCMNV2; Corega K.K., Kanagawa, Japan) placed in front of the terrariums and
connected to a PC” [3].

A small round light-absorbing filter (diameter of 6 mm, SC-60, Fujifilm Corporation, Tokyo, Japan;
Figures 3a and 4a) was attached to the dorsal surface of the heads of the lizards in both groups, by
using tape and blocked light at wavelengths lower than 580 nm. These filters were retained during the
baseline and exposure periods (3 and 5 days, respectively).

Experiment 1 was conducted from June 13 to July 1, 2009.
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2.3. Experiment 3

To determine whether attaching the light-absorption filter had an effect on tail-lifting behavior,
Experiment 3 was performed, using the lizards from Experiment 2. In both groups, small round
light-absorption filters (6 mm in diameter; SC-40, Fujifilm Corporation, Tokyo, Japan; Figures 3b and
4b) that blocked light of wavelengths lower than 380 nm were attached, using tape, to the head’s dorsal
surface for each lizard. These filters were retained during the baseline and exposure periods (3 and
5 days, respectively). The experiment was conducted from May 24 to June 11, 2010. Other details were
identical to those in Experiment 2.

2.4. Statistical Analysis

The two sets of data used in the present cross-over study—corresponding to the set of data obtained
for the lizards first in the control and then the EMF group and that obtained for the lizards in first the
EMF group and then the control group—were merged and analyzed. Additionally, the Experiment 1
and 2 findings were combined. The Wilcoxon signed-rank test was applied to evaluate the intergroup
difference in mean increase in test-day tail lifts minus the baseline value. SAS version 9.2 (SAS Institute,
Cary, NC, USA) was employed for statistical analysis. Herein, values are expressed as the mean ±
standard deviation (SD). A p < 0.05 denoted statistical significance.

3. Results

3.1. Experiment 1

No significant difference was discovered in the mean increase in tail lifts (test-day values minus
baseline values) between the groups (1.5± 20.0 vs. 3.7± 18.4 in the control and EMF groups, respectively;
n = 8 each, p = 0.66; Table 1). The intergroup difference in mean ratio of number of tail lifts (test-day
values divided by baseline values) was also nonsignificant (1.1 ± 0.2 vs. 1.2 ± 0.2 in the control vs.
EMF groups, respectively; n = 8 each, p = 0.45; Table 1).
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Table 1. Combined data from Experiments 1 and 2 (wavelengths < 580 nm were filtered out, cross-over
study; control group vs. electromagnetic field (EMF) of extremely low frequency group, n = 16 each):
mean number of tail lifts, ratio of the number of tail lifts (test-day values divided by baseline values),
and increase in number of tail lifts (test-day values minus baseline values; data shown are means ± SD
per individual per day).

Experiments 1 and 2
Control Group * EMF Group *

No. of
Tail Lifts Ratio a No. of

Increase b
No. of

Tail Lifts Ratio a No. of
Increase b

Pre-test baseline 9.4 ± 14.6 1 0 9.8 ± 15.3 1 0

Test-day values
Day 1 9.5 ± 14.4 1.0 0.1 ± 6.9 13.8 ± 20.7 1.4 4.0 ± 9.7
Day 2 9.8 ± 20.7 1.0 0.4 ±10.5 11.7 ± 16.7 1.2 1.9 ± 13.8
Day 3 9.1 ± 12.6 1.0 −0.3 ± 11.5 10.6 ± 14.8 1.1 0.7 ± 14.8
Day 4 9.0 ± 16.0 1.0 −0.4 ± 15.0 11.4± 16.8 1.2 1.5 ± 17.7
Day 5 12.4 ± 25.6 1.3 3.0 ± 23.7 9.9 ± 12.4 1.0 0.0 ± 10.6

Days 1–5 combined 10.0 ± 18.0 1.1 ± 0.2 0.6 ± 14.3 11.5 ± 16.1 1.2 ± 0.2 1.6 ± 13.3

Experiment 1
Control Group * EMF Group *

No. of
Tail Lifts Ratio No. of

Increase
No. of

Tail Lifts Ratio No. of
Increase

Pre-test baseline 15.5 ± 18.5 1 0 16.5 ± 18.8 1 0

Test-day values
Day 1 16.6 ± 18.0 1.1 1.1 ± 9.8 24.4 ± 25.1 1.5 7.9 ± 12.6
Day 2 16.3 ± 28.4 1.0 0.7 ± 14.8 20.4 ± 20.4 1.2 3.9 ± 19.7
Day 3 13.5 ± 16.3 0.9 −2.0 ± 15.6 20.1 ± 15.9 1.2 3.7 ± 20.8
Day 4 16.4 ± 20.5 1.1 0.8 ± 21.5 18.8 ± 21.3 1.1 2.3 ± 25.3
Day 5 22.5 ± 34.1 1.5 7.0 ± 33.9 17.1 ± 14.0 1.0 0.7 ± 15.1

Days 1–5 combined 17.1 ± 23.3 1.1 ± 0. 2 1.5 ± 20.0 20.2 ± 18.9 1.2 ± 0.2 3.7 ± 18.4

Experiment 2
Control Group * EMF Group *

No. of
Tail Lifts Ratio No. of

Increase
No. of

Tail Lifts Ratio No. of
Increase

Pre-test baseline 3.3 ± 3.5 1 0 3.2 ± 5.6 1 0

Test-day values
Day 1 2.4 ± 1.6 0.7 −0.9 ± 1.6 3.3 ± 5.4 1.0 0.0 ± 2.7
Day 2 3.4 ± 3.7 1.0 0.1 ± 4.1 3.0 ± 3.2 0.9 −0.2 ± 3.3
Day 3 4.8 ± 5.7 1.4 1.5 ± 5.7 1.0 ± 1.9 0.3 −2.2 ± 3.8
Day 4 1.6 ± 2.8 0.5 −1.7 ± 3.6 4.0 ± 4.9 1.3 0.8 ± 5.0
Day 5 2.4 ± 2.4 0.7 −0.9 ± 4.1 2.6 ± 3.4 0.8 −0.6 ± 3.7

Days 1–5 combined 2.9 ± 3.5 0.9 ± 0.4 −0.4 ± 3.7 2.8 ± 3.9 0.9 ± 0.3 −0.4 ± 4.0

* Two datasets (that for EMF grouping, followed by control grouping, and that for control grouping, followed by
EMF grouping) were combined and analyzed. a The ratio of test-day values divided by the baseline values. b The
increase in the number of tail lifts = test-day values minus baseline values.

3.2. Experiment 2

The mean increase in the number of tail lifts had a nonsignificant intergroup difference (−0.4 ± 3.7
vs. −0.4 ± 4.0 in the control and EMF groups, respectively; n = 8 each, p = 0.96; Table 1). No significant
intergroup difference was found in the mean ratio of the number of tail lifts (0.9 ± 0.4 vs. 0.9 ± 0.3 in
the control and EMF groups, respectively; n = 8 each, p = 0.96; Table 1).

3.3. Combined Data of Experiments 1 and 2

No significant intergroup difference was discovered in the mean increase in number of tail lifts
(0.6 ± 14.3 vs. 1.6 ± 13.3 in the control and EMF groups, respectively; n = 16 each, p = 0.67; Table 1).
The mean ratio of the number of tail lifts was also found to be not significantly different between the
two groups (1.1 ± 0.2 vs. 1.2 ± 0.2 in the control and EMF groups, respectively; n = 16 each, p = 0.41;
Table 1).
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3.4. Experiment 3

A significant intergroup difference was discovered for the average increase in number of tail lifts
(−0.5 ± 7.1 vs. 3.7 ± 9.4 in the control and EMF groups, respectively; n = 8 each, p = 0.02; Table 2). The
control group had a significantly lower mean ratio of number of tail lifts than the EMF group (0.9 ± 0.3
vs. 1.9 ± 0.6, respectively; n = 8 each, p = 0.02; Table 1).

Table 2. Experiment 3 results (cross-over study; filtering out light of wavelengths < 380 nm; control
group vs. EMF group, n = 8 each): average number of tail lifts, ratio of the number of tail lifts (test-day
values divided by baseline values), and increase in the number of tail lifts (test-day values minus
baseline values; data shown are mean ± SD per individual per day).

Experiment 3
Control Group * EMF Group *

No. of
Tail Lifts Ratio a No. of

Increase b
No. of

Tail Lifts Ratio a No. of
Increase b

Pre-test baseline 5.9 ± 6.3 1 0 4.0 ± 4.7 1 0

Test-day values
Day 1 3.8 ± 4.1 0.6 −2.2 ± 6.1 4.1 ± 4.1 1.0 0.1 ± 5.9
Day 2 7.1 ± 9.1 1.2 1.2 ± 8.9 7.1 ± 9.9 1.8 3.1 ± 10.6
Day 3 7.4 ± 5.7 1.2 1.5 ± 5.3 7.9 ± 9.0 2.0 3.9 ± 10.4
Day 4 4.3 ± 2.8 0.7 −1.7 ± 6.2 8.8 ± 11.2 2.2 4.8 ± 10.5
Day 5 4.9 ± 6.8 0.8 −1.6 ± 9.2 10.6 ± 11.8 2.6 7.1 ± 10.1

Days 1–5 combined 5.5 ± 5.9 0.9 ± 0.3 −0.5 ± 7.1 7.6 ± 9.3 1.9 ± 0.6 3.7 ± 9.4

* Two sets of data (that for EMF grouping followed by control grouping and that for control grouping followed by
EMF grouping) were merged and underwent analysis. a Ratio = number of tail lifts divided by the baseline number
of tail lifts (0.9 ± 0.3 vs. 1.9 ± 0.6 in the control and EMF groups, respectively; n = 8 each, P = 0.02). b Increase in the
number of tail lifts = test-day value minus baseline value (−0.5 ± 7.1 vs. 3.7 ± 9.4 in the control and EMF groups,
respectively; n = 8 each, p = 0.02).

4. Discussion

In this study, the author attempted to identify the wavelengths of light necessary to activate
light-dependent magnetoreception by using a light-absorbing filter that cut out light with wavelengths
lower than 580 nm. No significant intergroup difference was discovered in terms of the average ratio
of number of tail lifts on test days to baseline values and the average increase in number of tail lifts on
test days from the baseline value. The finding’s reproducibility was confirmed by performing another
cross-over study. In addition, an experiment was conducted in which a light-absorbing filter was
used that cut out light with wavelengths lower than 380 nm, to determine whether the presence of the
filter itself affected tail-lifting behavior. Both the average ratio and average increase in number of tail
lifts exhibited significant differences between the two groups. Thus, light wavelength was the factor
affecting the number of tail lifts rather than the presence of a filter on the heads of the lizards.

The mean number of daily tail lifts obtained for Experiment 1 was different from that obtained for
Experiment 2. In Experiment 1, eight juvenile lizards were tested. They ate more food than the adult
lizards, were more active, and did more tail lifts. The juvenile lizards used in Experiment 1 were also
used in Experiment 2, at which point they had become adults. These factors are explanations for why
more tail lifts were observed on average in Experiment 1. In Experiments 1 and 2, the lizards fitted
with light-absorption filters that cut out light of wavelengths lower than 580 nm did not respond to the
EMF, but in Experiment 3, the lizards with light-absorption filters that cut out light of wavelengths
lower than 380 nm did respond to the EMF. Therefore, the lizards appeared to respond to light of a
certain wavelength rather than the presence of a filter. The results of the present study thus strongly
suggest a role of the parietal eye in light-dependent magnetoreception for lizards, a finding that has
also been reported for salamanders [12,13]; the current findings also indicate that magnetoreception is
only activated in the parietal eye of P. vitticeps when the incident light has a wavelength below 580 nm.

Table 2 shows increased tendency of tail lifts in EMF group over time on test days, but not in
control group. In our previous study, we observed the P. vitticeps in EMF group and control group for
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two years and found that in the EMF group responded to the full moon, whereas those in the control
group did not [4]. That is, the response to environmental factors may be different between the EMF
group and the control group. There is the possibility that this difference influenced the difference in
the tendency between the two groups on test days.

By using tail-lifting behavior in lizards as a magnetoreceptive reaction in our experiments, our
experiments have a number of advantages: (1) Experiments can only be performed in certain seasons
when using seasonal animals, but experiments can be performed at any time for lizards; (2) our
experiments do not require specialized devices with which to cancel natural geomagnetic fields and
generate artificial geomagnetic fields; and (3) the parietal eye can easily be shaded. For these reasons,
our method may be helpful for researchers to study magnetoreception in animals.

Currently, researchers have proposed two hypotheses regarding magnetoreception: that it is
a chemical compass that is driven by a radical-pair mechanism, and that it is a process involving
magnetite particles [14]. According to the radical-pair model, magnetoreceptivity is dependent on light;
the magnetic compass of birds and salamanders requires light [14]. The salamander Notophthalmus
viridescens was observed to become disoriented in the absence of visible light [15]. In salamanders, light
receptors were found in the pineal organ, as the third eye of ancient vertebrates was their pineal organ,
which in amphibians have light sensitivity [16]. In a test, a colored filter was placed on the skull, above
the pineal organ, but the eyes were exposed to natural light; the researchers discovered that the magnetic
compass of the salamander was dependent only on the spectral characteristics of the light incident
on the pineal organ [12,13]. Light has different effects on magnetic orientation in birds and newts.
Orientation in birds occurs at light wavelengths lower than 590 nm [9]. Salamanders trained in the
heading direction exhibited the normal orientation only when exposed to light of wavelength 450 nm
or lower. When exposed to light with a wavelength of 475 nm, they were disoriented. At wavelengths
greater than 500 nm, their orientation was shifted approximately 90◦ counterclockwise [13]. Thus, the
current results are consistent with those obtained for birds but not for salamanders. This inconsistency
can be explained by birds and P. vitticeps being diurnal but salamanders being nocturnal.

5. Conclusions

In summary, the results of the present experiments suggest that light-dependent magnetoreception
is activated in the parietal eye of P. vitticeps only for light with wavelengths less than 580 nm.
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