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Abstract: Major depressive disorder (MDD) and bipolar disorder (BD) with melancholia and psy-
chotic features and suicidal behaviors are accompanied by activated immune-inflammatory and
oxidative pathways, which may stimulate indoleamine 2,3-dioxygenase (IDO), the first and rate-
limiting enzyme of the tryptophan catabolite (TRYCAT) pathway resulting in increased tryptophan
degradation and elevated tryptophan catabolites (TRYCTAs). The purpose of the current study is
to systematically review and meta-analyze levels of TRP, its competing amino acids (CAAs) and
TRYCATs in patients with severe affective disorders. Methods: PubMed, Google Scholar and SciFinder
were searched in the present study and we recruited 35 studies to examine 4647 participants including
2332 unipolar (MDD) and bipolar (BD) depressed patients and 2315 healthy controls. Severe patients
showed significant lower (p < 0.0001) TRP (standardized mean difference, SMD = −0.517, 95% confi-
dence interval, CI: −0.735; −0.299) and TRP/CAAs (SMD = −0.617, CI: −0.957; −0.277) levels with
moderate effect sizes, while no significant difference in CAAs were found. Kynurenine (KYN) levels
were unaltered in severe MDD/BD phenotypes, while the KYN/TRP ratio showed a significant
increase only in patients with psychotic features (SMD = 0.224, CI: 0.012; 0.436). Quinolinic acid (QA)
was significantly increased (SMD = 0.358, CI: 0.015; 0.701) and kynurenic acid (KA) significantly
decreased (SMD = −0.260, CI: −0.487; −0.034) in severe MDD/BD. Patients with affective disorders
with melancholic and psychotic features and suicidal behaviors showed normal IDO enzyme activity
but a lowered availability of plasma/serum TRP to the brain, which is probably due to other processes
such as low albumin levels.

Keywords: melancholia; psychotic depression; affective disorders; neuro-immune; inflammation

1. Introduction

Major depression disorder (MDD) and bipolar disorder (BD) may involve severe phe-
notypes including melancholia and psychotic depression [1]. Delusions and hallucinations
are the main characteristics of the psychotic features in MDD, while melancholic MDD
is characterized by severe depressed mood, anhedonia, hypoesthesia, lack of reactivity,
early morning awakening, diurnal variation, and anorexia resulting in weight loss, and
psychomotor retardation. These subtypes of MDD are strongly associated with suicidal
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behaviors in MDD patients [2]. Suicide is one of the major causes of death worldwide, one
of each 100 deaths is due to suicide, and globally 800,000 individuals die per year [3,4]. The
presence of psychiatric illness, particularly MDD and BD, is the major leading cause of
suicide, particularly MDD (around 90% of the victims) [5,6].

Extensive evidence is now available indicating the involvement of activated immune-
inflammatory and oxidative and nitrosative stress pathways (IO&NS) in the pathophysiol-
ogy of mental disorders including MDD, BD and schizophrenia [7–11]. Moreover, MDD
and BD are accompanied by activation of the immune-inflammatory response system (IRS)
reflected by alterations of acute phase proteins (APPs) (e.g. C-reactive protein and albumin)
and activation of cell-mediated immunity as shown by increased interleukin (IL)-6, tu-
mor necrosis factor (TNF)-α, IL-1β, IL-2, interferon (IFN)-γ, soluble IL-2 receptor (sIL-2R),
sCD8, high levels of activated T cells such as CD25+ and HLA-DR+) [11]. IRS is usually
counterbalanced by the compensatory immune-regulatory system (CIRS), which increases
T-regulatory cytokines such as IL-10 and transforming growth factor (TGF)-β [7,12–14].
A large body of studies indicates that MDD and BD are associated with elevated periph-
eral levels of lipopolysaccharide (LPS), which augment inflammation and cell-mediated
immunity (CMI) [15,16].

In comparison with simple MDD, MDD with melancholic and psychotic features
and suicidal behaviors are reported to be associated with increased pro-inflammatory
markers, namely APPs (e.g., haptoglobin), upregulated T cell markers, besides failure to
suppress the production of IL-1β and sIL-2R by administration of dexamethasone [2,17–20].
Hyperactive immune-inflammatory pathways may induce O&NS pathways which are
accompanied by elevated reactive oxygen and nitrogen species (ROS, RNS), especially
in case of lowered total antioxidant capacity levels [7]. Additionally, increased levels of
myeloperoxidase (MPO), a key enzyme in the innate immune response, has been frequently
reported in depression [21,22]. The latter may increase reactive chlorine species (RCS, e.g.
hydrochlorous acid) resulting in chlorinative stress followed by high levels of advanced
oxidation protein products (AOPP) [23]. Moreover, high levels of oxidative mediators
impact the integrity of lipids, proteins, DNA, and mitochondria [7]. Stimulated IRS and
O&NS pathways explain, in part, key characteristics of affective disorders, namely the
frequency of episodes (disease’s staging), the severity of illness, and suicidal behaviors,
including suicidal ideation and attempts [24–26]. Furthermore, the neurotoxic properties
of ROS, RNS, and M1 macrophage and T helper (Th)-1 cytokines generate neuro-affective
toxicity, which may explain the staging and phenome of MDD and BD [24,25].

High levels of IFN-γ, IL-1β, LPS, along with ROS and RNS are implicated in induction
the rate-limiting enzyme of the tryptophan catabolite (TRYCAT) pathway, namely indole 2,3-
dioxygenase (IDO) enzyme [27–30]. The TRYCAT pathway is the major catabolic pathway
of tryptophan (TRP) which when overactive may deplete TRP thereby producing neuroac-
tive metabolites, including kynurenine (KYN), kynurenic acid (KA), 3-hydroxykynurenine
(3HK), anthranilic acid (AA), 3-hydroxyanthranilic acid (3-HA), xanthurenic acid (XA),
quinolinic acid (QA), and picolinic acid (PA). The latter TRYCATs show neuroprotective
as well as neurotoxic effects as shown in Figure 1 [30,31]. Besides, the depletion of central
and peripheral TRP levels (a precursor of serotonin) may lower serotonin levels in the CNS
which have been reported in impulsive suicidal patients [30–33]. Some TRYCATs cause
neuro-oxidative toxicity with oxidative cell damage and lipid peroxidation, such as 3HA,
3HK and QA [28,30,34–36]. Additionally, a substantial amount of hydrogen peroxide and
superoxide anions are produced by 3HA and 3HK [37].
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Figure 1. Summary of tryptophan catabolite (TRYCAT) pathway in severe affective disorders. * : 
significant difference. CNS: central nervous system. TRYCATs: tryptophan catabolites. E.S.: effect 
size. TRYCAT: tryptophan catabolite. LAT 1: large neutral amino acid transporter 1. IFN-γ: inter-
feron-gamma. IL-6: interleukin 6. IL-1β: interleukin-1 beta. O&NS: oxidative and nitrosative stress. 
NO: nitric oxide. 5-HT: 5-Hydroxytryptamine. LPS: lipopolysaccharides. CNS: central nervous sys-
tem. IDO: indoleamine 2,3 dioxygenase. TDO: tryptophan 2,3-dioxygenase. KAT: kynurenine ami-
notransferase. KMO: kynurenine 3-monooxygenase. KYNU: kynureninase. TRP: tryptophan. KYN: 
kynurenine. KA: kynurenic acid. 3HK: 3-Hydroxykynurenine. AA: anthranilic acid. XA: xan-
thurenic acid. 3HA: 3-hydroxyanthranilic acid. PA: picolinic acid. QA: quinolinic acid. 

Furthermore, frequent agonistic effects of QA on the hippocampal N-methyl-D-As-
partate (NMDA) receptors may induce atrophy and apoptosis of the hippocampus [31]. 
Elevated XA levels may cause neurotoxicity by overactivation of the cationic channels that 
lead to intracellular hypercalcemia and, hence, accelerate damage to neural circuits in the 
brain along with mitochondrial dysfunction and apoptosis. These processes may substan-
tially damage the neurons, produce poor glutamate transmission and restrict presynaptic 
transmission via triggering NMDA receptors [30,38]. PA promotes immune-inflammatory 
response and reduces neuroprotection via reducing AA and KA levels which additionally 
have antidepressant roles [38,39]. In contrast, KYN may exert depressogenic and anxio-
genic effects [31]. 

We recently found, in a large-scale meta-analysis, that affective disorders, including 
mild to moderate severe MDD and BD, are associated with a reduction in TRP levels but 
without any signs of an overactivated TRYCAT pathway [40]. However, in MDD patients 
with suicidal, melancholic, and psychotic features, central and peripheral reductions in 
TRP levels, activation of the TRYCAT pathway, and increased TRYCATs levels were fre-
quently reported in previous studies, which may reveal upregulation of the IDO enzyme 
is the leading cause for TRP depletion and increased TRYCATs levels [41–43]. Nonethe-
less, the TRP, competing amino acids (CAAs) and TRYCATs levels were not systemati-
cally reviewed in MDD/BD patients with the most severe phenotypes. Thus, in the pur-
pose of the current study is to systematically review and meta-analyze TRP, CAAs, and 
the activity of TRYCAT pathway as reflected by KYN/TRP ratio (IDO enzyme index), 
KA/KYN (kynurenine Aminotransferase, KAT enzyme index), neurotoxicity indices and 

Figure 1. Summary of tryptophan catabolite (TRYCAT) pathway in severe affective disorders.
*: significant difference. CNS: central nervous system. TRYCATs: tryptophan catabolites. E.S.:
effect size. TRYCAT: tryptophan catabolite. LAT 1: large neutral amino acid transporter 1. IFN-γ:
interferon-gamma. IL-6: interleukin 6. IL-1β: interleukin-1 beta. O&NS: oxidative and nitrosative
stress. NO: nitric oxide. 5-HT: 5-Hydroxytryptamine. LPS: lipopolysaccharides. CNS: central nervous
system. IDO: indoleamine 2,3 dioxygenase. TDO: tryptophan 2,3-dioxygenase. KAT: kynurenine
aminotransferase. KMO: kynurenine 3-monooxygenase. KYNU: kynureninase. TRP: tryptophan.
KYN: kynurenine. KA: kynurenic acid. 3HK: 3-Hydroxykynurenine. AA: anthranilic acid. XA:
xanthurenic acid. 3HA: 3-hydroxyanthranilic acid. PA: picolinic acid. QA: quinolinic acid.

Furthermore, frequent agonistic effects of QA on the hippocampal N-methyl-D-
Aspartate (NMDA) receptors may induce atrophy and apoptosis of the hippocampus [31].
Elevated XA levels may cause neurotoxicity by overactivation of the cationic channels that
lead to intracellular hypercalcemia and, hence, accelerate damage to neural circuits in the
brain along with mitochondrial dysfunction and apoptosis. These processes may substan-
tially damage the neurons, produce poor glutamate transmission and restrict presynaptic
transmission via triggering NMDA receptors [30,38]. PA promotes immune-inflammatory
response and reduces neuroprotection via reducing AA and KA levels which additionally
have antidepressant roles [38,39]. In contrast, KYN may exert depressogenic and anxiogenic
effects [31].

We recently found, in a large-scale meta-analysis, that affective disorders, including
mild to moderate severe MDD and BD, are associated with a reduction in TRP levels
but without any signs of an overactivated TRYCAT pathway [40]. However, in MDD
patients with suicidal, melancholic, and psychotic features, central and peripheral reduc-
tions in TRP levels, activation of the TRYCAT pathway, and increased TRYCATs levels
were frequently reported in previous studies, which may reveal upregulation of the IDO
enzyme is the leading cause for TRP depletion and increased TRYCATs levels [41–43].
Nonetheless, the TRP, competing amino acids (CAAs) and TRYCATs levels were not sys-
tematically reviewed in MDD/BD patients with the most severe phenotypes. Thus, in the
purpose of the current study is to systematically review and meta-analyze TRP, CAAs,
and the activity of TRYCAT pathway as reflected by KYN/TRP ratio (IDO enzyme index),
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KA/KYN (kynurenine Aminotransferase, KAT enzyme index), neurotoxicity indices and
solitary levels of TRYCATs in MDD/BD patients with melancholic or psychotic features
and suicidal behaviors.

2. Material and Methods

In the present meta-analysis, we investigated TRP, CAAs, the TRP/CAAs ratio, KYN,
KA, AA and QA levels, and KYN/TRP and KA/KYN ratios as indicators for IDO and KAT
enzyme activities, respectively. Additionally, we also computed a neurotoxic composite,
namely (KYN+3HK+3HA+QA+XA+PA). These biomarkers were examined in serum and
plasma (peripherally), cerebrospinal fluid (CSF) and brain tissue (centrally) of patients
with severe affective disorders who show features of melancholia, psychosis, or suicidal
behavior versus healthy controls. This study followed the Preferred Reporting Items for
Systematic Reviews and Meta-analyses (PRISMA) 2020 criteria [44], the Cochrane Hand-
book for Systematic Reviews and Interventions guidelines [45], and the Meta-Analyses of
Observational Studies in Epidemiology (MOOSE) guidelines.

3. Search Strategy

Supplementary Table S1 displays the keywords and MESH terms utilized to search
the electronic databases, including PubMed/MEDLINE, Google Scholar, and SciFinder,
for publications concerning TRP and TRYCATs in melancholia, psychotic features, and
suicides of affective disorders. Moreover, to ensure the comprehensiveness of our search,
we reviewed the reference lists of all eligible papers and prior meta-analyses. The current
data collection processes extended from 10 January to 31 March 2022.

4. Eligibility Criteria

Articles in English that were published in peer-reviewed journals were included
in our meta-analysis. Nevertheless, manuscripts in different other languages, namely
Thai, French, Spanish, German, Italian, and Arabic, along with grey literature, were also
selected. Other inclusion criteria were (a) observational case-control and cohort studies that
employed serum, plasma, CSF and brain tissues to evaluate TRP, CAAs, and/or TRYCATs,
(b) Diagnostic and Statistical Manual of Mental Disorders (DSM) or the International
Classification of Diseases (ICD) must have been utilized to diagnose MDD and BD with
either melancholia, psychotic feature and/or suicidal behavior, and (c) the number of
patients with melancholia, psychotic features, or suicidal behavior should be reported.
Exclusion criteria were: (a) genetic, animal-based and translational studies, (b) research
that lacked a control group, (c) studies that utilized samples such as saliva, hair, whole
blood, or platelet-rich plasma, and (d) duplicate articles along with systematic review
and meta-analyses. We emailed the authors when they did not report the mean and
standard deviation (SD) or standard error (SE) of the measured biomarkers. We employed
the Wan et al [46] approach to estimate the mean (SD) and the median (interquartile
range or range) when we did not receive a response from authors. If graphical data
were provided, the mean and SD values were extracted using the Web Plot Digitizer
(https://automeris.io/WebPlotDigitizer/).

5. Primary and Secondary Outcomes

As the primary outcomes, we examined TRP, TRP/CAAs, CAAs, KYN/TRP ratios and
KYN levels in patients with affective disorders with melancholic or psychotic features, and/or
suicidal behaviors versus healthy control. Secondary outcomes involved the KA/KYN ratio
(KAT enzyme) and the neurotoxic composite score (KYN + 3HK + 3HA + QA + XA + PA) along
with solitary KA, AA and QA levels.

5.1. Screening and Data Extraction

Using the above inclusion criteria, the first two authors (AA and YT) performed the
elementary search processes. We checked the titles and abstracts of relevant manuscripts

https://automeris.io/WebPlotDigitizer/
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to evaluate including them in the current meta-analysis. Once the articles passed this
checking step, we downloaded the full-text articles. The first author (AA) made a Microsoft
Excel file to accommodate the extracted data, mainly mean (SD) and sample size of the
assessed biomarkers. Furthermore, we also recorded the medium in which the analytes
were determined (serum, plasma, CSF, brain tissues), type of affective disorder and whether
they showed melancholic or psychotic features, and/or suicidal behaviors, authors’ names,
publication dates, location of study, and study design, as well as sex, age of the participants,
psychiatric ratings scales, and the psychiatric and physical comorbidities of patients and
controls. The second and third authors (YT and AV) performed double-checks for the Excel
file, and they consulted the last author (MM) is case of disagreements. The last author MM,
adjusted the immunological confounder scales for TRP and TRYCATs studies to evaluate
the methodological quality of the included articles [47]. Supplementary Table S2 shows
these two rating scales, namely quality and redpoint scales which were used to examine
the quality of immune-based articles on schizophrenia [48], Alzheimer’s disease [49],
Coronavirus disease 2019 [50] and affective disorders [40]. Sample size, confounder control,
and the time of sampling were the main items of the quality scale, which ranged from 0 to 10,
and the best quality is achieved when the score is close to 10. The redpoint scale examines
the quality level of the study design in terms of major confounders, including biological and
analytical bias, which can be detected by higher redpoint scale scores (ranging from 0 to 26).

5.2. Data Analysis

Supplementary Table S3 shows the PRISMA criteria which were employed in the
present meta-analysis that used the CMA program V3 to analyze all of the data. The
criterion to conduct a meta-analysis was that the biomarker levels should be available in
at least three studies. We assumed dependency while computing the mean values of the
outcomes to compare the neurotoxicity index and the KYN/TRP (an index for IDO enzyme
activity) and KA/KYN (an index for KAT enzyme activity) ratios in depressed patients
versus healthy controls [48,49]. We evaluate the following ratios by specifying the effect
size direction (a) KYN/TRP with KYN in positive direction and TRP in negative direction,
(b) KA/KYN with KA in positive and KYN in negative direction; (c) TRP/CAAs ratio:
TRP in positive and CAAs in negative direction. We employed the random-effects model
with restricted maximum likelihood to extract the effect size and report the standardized
mean difference (SMD) with 95 percent confidence intervals (95% CI) as an indicator for
the effect size with a two-tailed p-value less than 0.05 to describe the statistical signifi-
cance. According to the values of SMD, namely 0.2, 0.5, and 0.8, the effect sizes were
considered small, medium, and large, respectively [50]. We used tau squared statistics
to delineate heterogeneity in the data but also assessed the Q and I2 metrics [11,48,49].
We also performed meta-regression analyses to detect the sources of heterogeneity. Sub-
group analysis was utilized to find the variations in TRP and TRYCATs among patients
with melancholia, psychotic features, and suicidal behavior and central nervous system
(CNS, brain tissues + CSF), serum and plasma, while selecting each of the latter groups as
a unit of analysis. Since we did not find any significant difference between CSF and brain
tissues, we combined the results from CSF and brain tissues into one group, called CNS.
The effect sizes obtained from melancholic, psychotic, and suicidal patients were pooled
in the absence of any significant difference between the above groups. Nevertheless, if
there were significant intergroup differences, we report the effect sizes separately in the
various subgroups. The strength of the effect sizes was examined by carrying out sensitivity
analysis utilizing a leave-one-out approach. The fail-safe N technique along with one-tailed
p-values for Kendall tau with continuity correction and Egger’s regression intercept were
computed to investigate possible publication bias. The adjusted effect sizes were computed
after imputing missing studies by the trim-and-fill method when the Egger’s test showed
significant asymmetry. Funnel plots are generated and show study precision plotted versus
SMD (with both observed and imputed values).
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6. Results
6.1. Search Results

The number of included and excluded studies and the final search outcomes are
displayed in the PRISMA flow chart, Figure 2. We employed MESH terms and keywords
(all shown in Supplementary Table S1) to perform the initial search process, including
inspection of 10861 articles. Based on our exclusion criteria 35 studies were selected as
eligible in our systematic review and meta-analysis [41–43,51–81].
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Figure 2. The PRISMA flow chart.

One of the included studies reported two separate cohorts of patients, namely those
with melancholia and psychotic features. Therefore, we entered the study two times
and pooled the overall effect sizes from 36 studies in the present systematic review and
meta-analysis (8 CNS, 21 plasma, and 7 serum). We included 11 studies on depression
with melancholia (9 plasma and 2 serum), 8 studies of depression with psychotic features
(1 CNS, 5 plasma and 2 serum) and 17 studies with suicidal behavior (7 CNS, 7 plasma and
3 serum). The current meta-analysis included 4647 participants distributed as 2332 patients
and 2315 healthy controls. The mean ages of the individuals in the studies extended from
30 to 59 years.

Supplementary Table S4 shows that the USA, Belgium, and Sweden contributed most
to the total number of studies (8, 6 and 5 studies), respectively. Norway, the United
Kingdom, Germany, Netherlands, and South Korea contributed with 2 studies and Italy,
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Spain, Ireland, China and Tunisia contributed each 1 study. High-performance liquid
chromatography (HPLC) has been used in 14 studies and was, therefore, the most com-
mon technique employed to assess TRP and TRYCATs (see Supplementary Table S4).
This table also shows the quality (median = 5.62, min = 2.75, max = 7.75) and redpoint
(median = 13.75, min = 9.5, max = 18.5) scores.

6.2. Primary Outcome Variables
6.2.1. TRP, CAAs Levels and the TRP/CAAs Ratio

Table 1 shows that the effect size of the TRP level was pooled from 29 studies. The CI
was completely on the negative side of zero in 13 studies, whereas only 2 studies showed
that the CIs were on the positive side of zero. Furthermore, 14 studies intersected with zero
with a negative SMD in 12 and a positive SMD in 2 studies. TRP levels were significantly
decreased with a moderate effect size (SMD = −0.517) in patients compared to healthy
controls. Figure 3 shows the forest plot of the TRP results. Publication bias analysis revealed
5 missing studies to the right side of the funnel plot and imputing these studies resulted in
a lowered effect size although it remained significant.

Table 1. The outcomes and number of patients with affective disorders and healthy control along
with the side of standardized mean difference (SMD) and the 95% confidence intervals with respect
to zero SMD.

Outcome Profiles n Studies
Side of 95% Confidence Intervals

Patient
Cases

Control
Cases

Total Number
of Participants<0 Overlap 0

and SMD < 0
Overlap 0 and

SMD > 0 >0

TRP 29 13 12 2 2 1987 1918 3905

TRP/CAAs 7 2 5 0 0 113 219 332

CAAs 5 2 2 1 0 86 163 222

KYN/TRP 17 1 5 7 4 1727 1538 3265

KYN 17 4 8 2 3 1727 1538 3265

KA/KYN 14 2 9 3 0 1619 1378 2997

(KYN + 3HK + 3HA + XA + QA + PA) 26 6 10 4 6 1874 1752 3626

KA 13 5 4 3 1 1563 1338 2901

AA 3 1 2 0 0 170 149 319

QA 14 2 2 6 4 1461 1131 2592

TRP: tryptophan. KYN: kynurenine. KA: kynurenic acid. 3HK: 3-Hydroxykynurenine. 3HA: 3-Hydroxyanthranilic
acid. XA: xanthurenic acid. QA: quinolinic acid. PA: picolinic acid. AA: anthranilic acid. CAAs: competing amino
acids (valine + phenylalanine + tyrosine + leucine + isoleucine).

CAAs results were obtained from 5 studies which involved only MDD with
melancholia. Table 1 shows that the CIs of 2 studies fell entirely on the negative side
of zero and 3 studies intersected with zero, 2 with negative and 1 with positive SMD
values. Supplementary Figure S1 shows that CAAs were not significantly different
between patients and controls.

The effect size of TRP/CAAs ratio was extracted from 7 studies performed in
MDD with melancholia features. The 95% CI was entirely on the negative size of
zero in 2 studies and 5 studies showed an overlap with zero. Melancholic MDD
patients showed a significant reduction in TRP/CAAs with moderate effect size
(SMD = −0.617). There were 2 missing studies on the left side of the funnel plot and
after adjusting the effect size for these missing studies the SMD value was −0.748.
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6.2.2. The KYN/TRP Ratio and KYN Levels

Table 1 and Figure 4 revealed no significant differences in the KYN/TRP ratio between
patients and controls. Due to the high heterogeneity, we performed group analysis which
showed significant differences between melancholic, suicidal and psychotic patients and
a significant increase with a small effect size was established in psychotic depression. Z
Kendall’s and Egger’s test showed no signs of publication bias.
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Tables 1 and 2 and Supplementary Figure S3 show no significant difference in KYN
levels between patients and controls. Group analysis displayed a significant difference
(p = 0.041) between CNS, serum and plasma KYN levels which were significantly decreased
in plasma. Table 3 revealed 3 missing studies on the right side of funnel plot and imputing
these missing data yielded a non-significant effect size.

Table 2. Results of meta-analysis performed on several outcome (TRYCATs) variables with combined
different media and separately.

Outcome Feature Sets n Groups SMD 95% CI z p Q df p I2 (%) τ2 T

TRP 29 Overall −0.517 −0.735; −0.299 −4.650 <0.0001 226.434 28 <0.0001 87.634 0.282 0.531

TRP/CAAs # 7 Melancholia −0.617 −0.957; −0.277 −3.557 <0.0001 10.435 6 0.107 42.500 0.086 0.293

CAAs # 5 Overall −0.304 −0.674; 0.066 −1.612 0.107 6.676 4 0.154 40.086 0.070 0.264

KYN/TRP *

17 Overall −0.032 −0.193; 0.003 −1.896 0.058 107.82 16 <0.0001 85.161 0.170 0.614

3 Melancholia −0.095 −0.193; 0.003 −1.896 0.058 0.714 2 0.700 0.000 0.000 0.000

4 Psychotic 0.224 0.012; 0.436 2.068 0.039 3 3 0.392 0.000 0.000 0.000

10 Suicidal 0.112 −0.119; 0.055 −0.720 0.471 93.734 9 <0.0001 90.398 0.377 0.614

KYN 17 Overall −0.114 −0.352; 0.152 −0.935 0.350 126.513 16 <0.0001 87.353 0.203 0.450

KA/KYN *

14 Overall −0.035 −0.117; 0.048 −0.824 0.410 26.181 13 0.016 50.346 0.028 0.167

2 Melancholia 0.049 −0.050; 0.148 0.969 0.333 0.402 1 0.526 0.000 0.000 0.000

5 Psychotic −0.201 −0.416; 0.013 −1.838 0.066 0.912 4 0.923 0.000 0.000 0.000

7 Suicidal −0.231 −0.432; −0.030 −2.256 0.024 13.104 6 0.041 54.213 0.039 0.198

(KYN + 3HK + 3HA +
XA + QA + PA) 26 Overall 0.048 −0.189; 0.284 0.396 0.692 209.842 25 <0.0001 89.086 0.295 0.543

KA 13 Overall −0.260 −0.487; −0.034 −2.258 0.024 67.574 12 <0.0001 82.242 0.125 0.354

AA 3 Overall −0.248 −0.485; −0.011 −2.055 0.040 2.115 2 0.347 5.432 0.003 0.051

QA 14 Overall 0.358 0.015; 0.701 2.044 0.041 134.272 13 <0.0001 90.318 0.343 0.585

* Significant difference between melancholia, psychotic feature and suicidal behavior. # The effect size was pooled
from only melancholia. TRP: tryptophan. KYN: kynurenine. KA: kynurenic acid. 3HK: 3-Hydroxykynurenine.
3HA: 3-Hydroxyanthranilic acid. XA: xanthurenic acid. QA: quinolinic acid. PA: picolinic acid. AA: anthranilic
acid. CAAs: competing amino acids (valine + phenylalanine + tyrosine + leucine + isoleucine).

Table 3. Results on publication bias.

Outcome Feature Sets Fail Safe n Z Kendall’s τ p Egger’s t Test (df) p Missing Studies (Side)
After Adjusting

SMD 95%CI

TRP −10.30 1.819 0.034 3.063 (27) 0.002 5 (Right) −0.324 −0.548;
−0.101

TRP/CAAs −4.785 0.300 0.381 1.142 (5) 0.152 2 (Left) −0.748 −1.069;
-0.427

KYN/TRP (Psychotic) 1.827 0.339 0.367 0.764 (2) 0.262 - - -

KA/KYN (Suicidal) −3.342 0.600 0.274 0.663 (5) 0.268 2 (Left) −0.337 −0.541;
−0.133

(KYN + 3HK + 3HA +
XA + QA + PA) −0.094 0.705 0.240 0.892 (24) 0.190 3 (Right) 0.210 −0.046;

0.467

KA −5.072 0.549 0.291 0.692 (11) 0.251 - - -

AA −2.199 0.000 0.500 0.422 (1) 0.372 1 (Right) −0.215 −0.430;
0.00006

QA 3.846 0.985 0.162 1.618 (12) 0.065 3 (Right) 0.646 0.228; 1.065

TRP: tryptophan. KYN: kynurenine. KA: kynurenic acid. 3HK: 3-Hydroxykynurenine. 3HA: 3-Hydroxyanthranilic
acid. XA: xanthurenic acid. QA: quinolinic acid. PA: picolinic acid. AA: anthranilic acid. CAAs: competing amino
acids (valine + phenylalanine + tyrosine + leucine + isoleucine).

6.3. Secondary Outcome Variables
6.3.1. Neurotoxicity Composite (KYN + 3HK + 3HA + XA + QA + PA) and KA/KYN Ratio

Table 1 and Supplementary Figure S4 show no significant differences in this neurotoxi-
city composite between patients and controls. We obtained the effect size of KA/KYN ratio
from 14 studies and Table 2 and Supplementary Figure S5 indicate no overall difference
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between patients and controls. However, group analysis showed a significant difference
between melancholic, psychotic, and suicidal patients, while only the latter displayed a
significant decrease with a small effect size in the KA/KYN ratio compared to controls.
Table 3 shows that there were two missing studies on the left side of the funnel plot of the
KA/KYN ratio in suicidal patients and the adjusted estimate value was more decreased
after imputing these missing studies.

6.3.2. Solitary Levels of KA, AA and QA

Table 2 and Supplementary Figure S6 show that KA levels in patients were signifi-
cantly lower with a small effect size in patients as compared with controls. Table 1 and
Supplementary Figure S7 show that the effect size of AA was obtained from three studies
and that AA is significantly decreased with small effect size in patients. Table 3 shows one
missing study to the right side of the funnel plot and after imputing this missing study
showed that the results were no longer significant.

Tables 1 and 2 and Supplementary Figure S8 show that the QA levels were significantly
increased with small effect size in patients versus controls. Publication bias analysis showed
that there were three missing studies on the right of the funnel plot and after imputing
these studies, the effect size increased to 0.646.

6.3.3. Meta-Regression Analyses

In order to examine factors which could explain heterogeneity, we carried out meta-
regression analyses (Supplementary Table S5). Plasma was the most important con-
founder increasing heterogeneity with significant effects on TRP, KYN, KA, QA and
(KYN + 3HK + 3HA + XA + QA + PA). Moreover, male/female gender, absence of elec-
troconvulsive therapy (ECT), medications and latitude also impact heterogeneity.

7. Discussion
7.1. Availability of TRP to the Brain

The first major finding in the current study is that TRP levels and the TRP/CAAs
ratio are significantly decreased in patients with MDD/BD with melancholia and psychotic
features, and suicidal behaviors as compared with healthy controls and that there was
no significant difference between the latter phenotypes in TRP and TRP/CAAs levels.
The current results align with findings of a recent study conducted on MDD and BD
patients with mild to moderate forms of depression [40]. Moreover, previous studies
revealed a significant TRP reduction in affective disorders with melancholic, psychotic and
suicidal features [55,61,62,66]. We also found that melancholic MDD patients have normal
levels of CAAs and a decreased TRP/CAAs ratio, which is therefore solely determined by
diminished TRP levels. These findings are consistent with our recent findings in mild to
moderate MDD/BD [40]. We could not examine the CAAs levels and TRP/CAAs ratio in
MDD/BD patients with psychotic features and/or suicidal behaviors because there were
not sufficient studies. Thus, the current meta-analysis confirms previous studies about
MDD patients with melancholia [63–66].

It is important to measure the TRP/CAAs ratio because both peripheral TRP (whether
total or free) and CAAs (tyrosine, valine, phenylalanine, leucine and isoleucine) levels
determine at least in part brain TRP concentration [82,83]. Indeed, specific receptors in the
blood-brain barrier (BBB), named the large amino acid transporter 1 (LAT 1), are responsible
for delivering TRP to the brain from the peripheral blood and the above CAAs compete with
TRP to the cross BBB [48]. In this respect, Moller [84] reported that a decreased TRP/CAAs
ratio predicted a successful response to the selective serotonin reuptake inhibitors (SSRIs).

7.2. KYN Levels and IDO Enzyme

The second major finding of the present study is that patients with severe affective
disorders showed unchanged KYN levels compared with healthy controls. However,
these results showed high heterogeneity, and, hence, we performed group analysis which
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revealed that only plasma KYN level was significantly decreased which is consistent with
previous results in mild to moderate MDD/ BD [40,48]. We also found that the KYN/TRP
ratio was unaltered in all patients combined although patients with psychotic features
showed a trend towards significant increases in the KYN/TRP ratio. Nonetheless, since
KYN is not significantly increased, such changes do not result from IDO activation.

While some prior studies are in line with our findings and showed neither significant
changes in KYN/TRP ratio nor KYN level in suicidal patients [76,80], Messaoud et al.
reported a significant plasma elevation of KYN level and KYN/TRP ratio in suicidal MDD
patients [85]. However, another study showed a high serum KYN/TRP ratio without
changes in KYN level [81]. The KYN/TRP ratio was significantly increased in MDD
patients with psychotic features, while the KYN level decreased significantly [75]. Other
studies that included melancholic patients reported no significant changes in plasma KYN
levels and the KYN/TRP ratio [60,67].

The current meta-analysis indicates that there is no overactivation of the TRYCAT
pathway in severe forms of affective disorders, which are, nevertheless, accompanied by
a mild chronic immune-inflammatory response. Similar findings were recently reported
in Alzheimer’s disease, another disorder accompanied by a mild chronic inflammatory
process [40,49]. In contrast, the TRYCAT pathway is more pronounced in conditions
characterized by severe acute inflammatory conditions such as COVID-19 infection [86]
and treatment with IFN-α [87]. In those conditions, cytokine induced TRP depletion (also
known as TRP starvation) is a key element in the innate immune response that impedes
intruding pathogens and results in anti-inflammatory effects [30,31].

Nevertheless, several factors influence the activity of the IDO enzyme and probably
lead to inhibition of the TRYCAT pathway. First, lowered TRP levels may drive the self-
regulation of the IDO enzyme which is accompanied by an inactive ferric IDO form and
autoxidation [88,89]. Second, elevated nitric oxide levels are reported in severe MDD and
BD and may inhibit the IDO enzyme [90–92]. Third, cellular IDO is probably inhibited
at the post-translational level by high hydrogen peroxides concentrations [93] which is
another hallmark of depression [94]. Moreover, other substantial factors which influence
the TRYCAT pathway are deficiencies of riboflavin (vitamin B2), a coenzyme of kynurenine
3-monooxygenase (KMO), and pyridoxal 5′-phosphate (PLP, vitamin B6) which is the
coenzyme for KAT and kynureninase (KYNU) [95]. Both vitamins are repeatedly reported
to be decreased in depression [96,97].

Since IDO is not activated in severe depression, other factors should explain the
lower TRP availability to the brain. First, depression is accompanied by lowered levels of
albumin, a negative APP, whilst a large part of the TRP pool is bound to albumin in the
peripheral circulation [98,99]. As such, lowered albumin will decrease total TRP levels,
thereby lowering brain TRP concentrations and maybe impacting serotonin synthesis in
the brain [66,100,101]. In this respect, lowered albumin showed a negative correlation with
depressive symptoms in patients with suicidal attempts [102]. Second, platelet uptake
of TRP may be increased in MDD [103,104]. Third, increased free fatty acids, partially
mediated by insulin, may affect TRP levels in MDD [48]. All the above-mentioned causes
are probably responsible for reduced levels of TRP in severe affective disorders in the
absence of upregulated TRYCAT pathway.

It should be stressed that patients with severe forms of affective disorders are probably
treated with many antidepressants, mood stabilizers and antipsychotics, which may have
substantial effects on IDO activity and TRYCATs levels [105,106]. Moreover, some antide-
pressants have anti-inflammatory properties by (a) inhibiting overactivated cell-mediated
immunity and decreasing IFN-γ levels (a potent stimulator of IDO enzyme), therefore
impeding stimulation of the TRYCAT pathway [107], and (b) reducing various APPs, such
as haptoglobin, fibrinogen, C3, C4, and α-antitrypsin [108]. Furthermore, animal-based
studies reported that valproate and citalopram negatively regulate the IDO and tryptophan
2,3-dioxygenase (TDO) enzymes and reserve TRP for the 5-hydroxytryptamine (5-HT)
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pathway [105,106]. Therefore, in severe affective disorders, many factors control the activity
of the TRYCAT pathway.

7.3. Neurotoxic Indexes and TRYCATs

The third major finding of the current study is that the neurotoxicity index (including
the composite score KYN+3HK+3HA+XA+QA+PA) is unaltered in patients with severe
affective disorders. In addition, the KA/KYN ratio (another neurotoxicity index) was
significantly decreased in patients with suicidal behavior and psychotic features but not in
those with melancholia. The alteration in the KA/KYN ratio is probably due to decreased
KA levels since we did not find any abnormality in KYN levels. We recently found that
mild to moderate MDD/BD patients showed unchanged neurotoxicity composite scores
and an increased KA/KYN ratio [40]. In line with the current study, previous studies
showed a reduced KA/KYN ratio in suicidal depressed patients [81].

Nevertheless, severe affective disorder was accompanied by a significantly increased level of
QA, a neurotoxic TRYCAT. Previous studies concerning QA were often inconsistent. For example,
in the CSF of suicidal MDD patients, QA levels were elevated [41,42], while postmortem studies
of suicide patients showed that in the CA1 and CA2/3 areas of the hippocampus, QA levels
were either significantly decreased or unchanged [57]. In contrast, QA levels were increased
in subgenual anterior cingulate cortex (sACC), and anterior midcingulate cortex (aMCC) areas
of the brain of depressed patients with suicidal behaviors [79]. Moreover, in the plasma of
suicidal MDD patients, QA levels were either significantly decreased [52] or unaltered [56]. No
significant changes in QA levels were found in depressed patients with psychotic features or
melancholia [54,60]. In the current study, we did not find any difference between peripheral
and central QA levels or between patients with melancholia, psychotic features, and suicidal
behavior, but, overall, there was a significant increase.

7.4. Neuroprotective TRYCATs

The fourth major finding of this study is that severe forms of affective disorders are
linked to lower KA levels without a change in AA levels (after bias correction), even
though the effect size was only computed in 3 studies. Recently, we found in mild to
moderate MDD and BD patients that there was a peripheral reduction in KA and no
changes in central levels [40]. In this regard, we did not find any significant difference
among central and peripheral levels in the present study. Some previous papers indicated
significantly lower central and peripheral KA levels [42,54]. However, other studies showed
no aberration in KA levels, whether centrally or peripherally, in suicidal and melancholic
MDD patients [41,60]. The main cause of lower KA is probably a decrease in KYN, the
substrate of the KAT enzyme, although dietary factors cannot be excluded [109]. Recently,
Steiner et al found a strong negative correlation between AA and severity of depression
scores in unmedicated depressed females implying that the severity of depression is
associated with lowered AA levels [110].

All in all, it appears that MDD/BD may be accompanied by lowered neuroprotection
and consequent increased neurotoxicity. First, our findings indicating decreased KA but
increased QA in severe affective patients indicate QA-based neurotoxicity [30]. Second,
lowered levels of TRP (in itself an antioxidant) may lead to decreased antioxidant metabo-
lites, namely serotonin, melatonin, 3HK and XA [111,112]. Moreover, serotonin enhances
proper neuroplasticity and maintains healthy neurons [113,114]. Third, KA has a neuro-
protective role by antagonizing the action of QA inhibiting excitatory receptors namely
NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate glu-
tamate ionotropic receptors, in addition, to impede alpha 7 nicotinic acetylcholine receptor
(α7nAChr) and thereby decrease glutamate release [30,115]. Fourth, inhibition of the
TRYCAT pathway results in decreased KYN, KA and XA levels, which is associated with
an indirect increase in neurotoxicity since these metabolites exert an anti-inflammatory
role by diminishing IFN-γ/IL-10 ratio [116]. In addition, KA, 3HK, 3HA, and XA display
antioxidant properties [31,117].
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8. Limitations

Some limitations should be noticed while interpreting the current findings. The lack of
information concerning treatment histories restricted our potential to examine the impact
of drugs on TRP, CAAs and TRYCATs levels. We could not examine the status of TRP and
TRYCATs in the central nervous system because only a limited number of studies on CSF
and brain were available. Furthermore, no studies assessed CAAs in MDD with psychotic
features or suicidal behaviors, and, therefore, we could not examine CAAs levels and the
TRP/CAAs ratio in these subgroups.

9. Conclusions

Figure 1 shows the summary of our findings. Severe affective disorders are accom-
panied by a decreased availability of TRP to the brain, whilst the TRYCAT pathway is
not upregulated, probably due to the multiple treatments administered to those patients.
However, there was a significant increase in neurotoxic QA and a significant decrease in
neuroprotective KA, indicating increased neurotoxicity.
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