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Abstract: Effects of ball milling (BM) on the structure and physicochemical properties of three types
of citrus fibers were investigated. With the extension of the grinding time, the particle size of citrus
fibers significantly decreased. Fourier transform infrared spectroscopy (FTIR) showed that the three
citrus fibers had similar chemical groups, and more -OH and phenolic acid groups were exposed
after BM, and pectin and lignin were not degraded. Scanning electron microscope (SEM) results
showed that the appearance of particles changed from spherical to fragmented, irregular shapes. The
water holding capacity (WHC), oil holding capacity (OHC), and water swelling capacity (WSC) of
citrus fibers LM, JK, and FS reached the maximum value after BM of 2 h (increasing by 18.5%), 4 h
(increasing by 46.1%), and 10 h (increasing by 38.3%), respectively. After 10 h BM, citrus fibers FS
and JK had the highest adsorption capacity of cholesterol and sodium cholate, increasing by 48.3%
and 48.6%, respectively. This indicates that BM transforms the spatial structure of citrus fibers and
improves their physicochemical properties.

Keywords: citrus fiber; ball milling; functional properties; physicochemical properties

1. Introduction

Citrus is one of the most cultivated fruit crops in the world, with annual production
of more than 124 million tons [1]. Worldwide, the quantity of citrus by-products was
estimated to exceed 1.5 million tons. The global citrus processing industry generates
more than 110 million tons of citrus waste [2]. Citrus waste, including citrus peels, pulp
residues, and seeds, accounts for 40–60% of the total fruit mass. In the process of citrus
fruit processing, citrus waste is a burden to the environment without further treatment. In
order to maximize the utilization of citrus waste, citrus pomace is widely applied in the
pectin extraction industry [3].

Citrus fiber is the dietary fiber extracted from citrus waste. It consists mainly of pectin
extracted from insoluble dietary fiber (IDF) [4]. Studies have shown that citrus fiber has
higher total dietary fiber (TDF) and better physicochemical properties than cereal fiber, such
as water holding capacity (WHC) and water swelling capacity (WSC). In addition, research
has found that citrus fiber also has excellent physiological functional properties. Citrus fiber
is composed of IDF, SDF, pectin, and fructooligosaccharides. These components selectively
stimulate the growth and activity of the intestinal microbiota, especially lactobacillus
and bifidobacterium. Therefore, the intake of dietary fiber has a positive impact on the
development of gut microbes [5,6]. The water-soluble dietary fiber in citrus fiber can adsorb
cholesterol and reduce cholesterol in the body [7]. The composition and content of dietary
fiber are different among various kinds of citrus fibers, and are related to the source and
extraction method of dietary fiber.
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The physicochemical properties of citrus fiber have been studied extensively. Many
hydroxyl groups are present in the cellulose side chain in citrus fiber, and can combine
with H2O to generate more stable hydrogen bonds, leading to good WHC. Due to its loose
surface structure and small space barrier, citrus fiber can contain more water and have
WSC [8]. The adjacent cellulose chains form a stable fibrous structure through hydrogen
bonds, which makes cellulose in citrus fiber have oil holding capacity (OHC) [9]. It is
widely believed that dietary fiber (DF) can improve the function properties of foods; for
example, incorporation of dietary fiber in some foods can improve the viscosity of food
and the ability to form gels [8]. The authors of [10] added citrus fiber to ice cream and
found that citrus fiber can improve the sensory properties and non-fusibility of ice cream.
The authors of [11] added citrus fiber to gluten-free corn breads, which showed that citrus
fiber can improve the WHC of bread, and the incorporation of citrus fiber reduced the
firmness of bread. Gedikoğlu and Clarke reported that all ground beef meatballs with
citrus fiber were lower in saturated fatty acids and higher in dietary fiber compared to the
control samples [12]. The authors of [13] added citrus fiber to sausage and found it can also
decrease residual nitrite levels.

A large amount of research has showed that the modification technology of citrus fiber
can enhance the physicochemical properties of dietary fiber. The modification methods
are divided into physical and chemical methods, of which the physical method is the
most common application. It includes ultrasonic treatment, high pressure homogenization
treatment, ultrafine grinding treatment, and extrusion treatment [14]. Among these, ball
milling (BM) is a kind of physical modification method which has a low cost and is friendly
to the environment [15].

BM treatment can effectively decrease the particle size, and change the surface area
and physicochemical properties [16]. For instance, the authors of [17] showed that BM
significantly increased the WHC of the insoluble fiber-rich fraction and cellulose. Further-
more, the authors of [18] found that rice bran dietary fiber can remarkably enhance WHC,
WSC, and nitrite ion adsorption capacity after ultrafine grinding. The authors of [19] also
reported that the surface of citrus dietary fiber was smoother and its fluidity was higher
after ultrafine grinding, and the cation exchange ability and metal cation binding ability
were improved.

Although BM treatment has been applied for modification of citrus dietary fiber, it
has been not expounded whether there are remarkable differences in the characteristics of
commercial citrus fibers of various sources after BM treatment. Thus, the main innovation
of this study is to highlight the modification effect of ball milling on citrus fibers from
different sources. A comparison and characterization of the structure and physicochem-
ical properties of three commercial citrus fibers after ultrafine grinding treatment were
undertaken in this study. Additionally, the characteristic differences of three commercial
citrus fibers after BM treatment were compared and analyzed through detection of their
soluble dietary fibers (SDFs), IDF and TDF content, particle size, WHC, OHC, WSC, choles-
terol adsorption capacity (CAC), sodium cholate adsorption capacity, Fourier transform
infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). After comparing
the structure and physicochemical properties of the three citrus fibers, we selected an
optimal citrus fiber for further in-depth research. This investigation provides basic data
support for modification of commercial citrus fibers and broadens their application in the
food industry.

2. Materials and Methods
2.1. Materials

The citrus fiber FS (5.7% protein, 1.12% fat, 5.36% moisture, 3.75% ash) was acquired
from Fiberstar Biotechnology Co., Ltd., River Falls, WI 54022, USA. The citrus fiber LM
(5.91% moisture, 5.04% protein, 3.75% ash, 0.79% fat) was acquired from Laimeng Biotech-
nology Co., Ltd., Guangdong, China. The citrus fiber JK (5.94% moisture, 5.21% protein,
3.13% ash, 0.87% fat) was acquired from JinKangjun Biotechnology Co., Ltd., Guangdong,
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China. Cholesterol, furfural, and sodium cholate was purchased from Solarbio Science and
Technology., Ltd., Beijing, China. Soybean oil was purchased from Jiusan Grain and Oil
Industry Group Co., Ltd., Heilongjiang, China.

2.2. Preparation of Modified Citrus Fiber by BM

Three citrus fiber powders were placed in the jar of a QM-ISP2 planetary ball mill
(Nanjing University Instrument Factory, Nanjing, China). Mill balls (25 g) were added to
the citrus fiber powders at the ratio of 1:8. The mill equipment was rotated at a speed of
560 rpm. BM was carried out for 2, 4, 6, 8, and 10 h. After BM, samples were stored for
further use.

2.3. Determination of Citrus Fiber Components

Moisture was determined by drying a 10 g sample at 130 ± 3 ◦C for 3 h (AOAC, 1997).
Ash was produced at 550 ◦C for 2 h (AOAC, 2000). Protein was analyzed according to the
Kjeldahl method, and the conversion factor was 6.25 (AOAC method 2001.11). Fat was
calculated by weight loss after a 6-cycle extraction with petroleum ether (AOAC, 2000).

2.4. Determination of SDF, IDF and TDF Content

TDF, IDF, and SDF contents were measured by the AOAC method 991.43 (AOAC,
2000). TDF was determined as follows: 225 mL ethanol was added to the sample and
precipitated for 1 h. Residue was washed with 78% ethanol, 95% ethanol, acetone, and
dried at 105 °C. IDF and SDF were determined as follows: Enzyme digestate was filtered
into residue and filtrate. Residue was washed and dried at 105 °C to obtain IDF. A quantity
of 80 g filtrate and washing water was mixed with 320 mL ethanol and precipitated for 1 h.
The residue was washed with 78% ethanol, 95% ethanol, and acetone, and dried at 105 °C
to obtain SDF.

2.5. Particle Size Analysis

The particle size distribution and median particle size of three citrus fibers were
measured according to the authors of [20] using a laser diffraction particle analyzer (HYL-
1076, Haoyu Technology Co., Ltd., Liaoning, China). The sample groups and control groups
were diluted with deionized water to a concentration of 0.5 mg/mL. Further, Ultrasonic-
assisted dispersion was used before measurement. The refractive index of the sample was
set at 1.460, and the absorption rate was set at 0.1.

2.6. Determination of WHC

WHC of the samples was analyzed according to the method described by [21] with a
small modification. Initially, each sample (1.0000 g) was mixed with distilled water (20 mL)
for 24 h, and the mixture was centrifuged (3000× g, 15 min). The calculation formula of
WHC is as follows:

WHC (g/g) =
M2 − M1

M0

where M2 is the weight of the sample in the centrifuge tube after supernatant removal, M1
is the weight of the centrifuge tube, and M0 is the weight of the sample.

2.7. Determination of OHC

OHC was determined using a modified method from [22]. Each sample (0.5000 g) was
mixed with 5 mL of oil and kept for 24 h, and then centrifuged (3000× g, 15 min).

The calculation formula of OHC is as follows:

OHC (g/g) =
M2 − M1

M0

where M2 is the weight of the centrifuge tube and oil-contained sample, M1 is the weight
of the centrifuge tube, and M0 is the weight of the sample.
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2.8. Determination of WSC

WSC was determined using a method described by [23]. Initially, 0.2 g of citrus fiber
samples was weighted. Subsequently, distilled water (10 mL) was added to this vessel, and
it was stored for 24 h at room temperature.

The calculation formula of WSC is as follows:

WSC (mL/g) =
V2 − V1

M0

where V2 is the volume of the hydrated sample, V1 is the volume of the dried sample, and
M0 is the weight of the dried sample.

2.9. Determination of CAC

CAC was determined using a modified method [24].
Fresh egg yolk was diluted 10-fold with distilled water. Mixtures of samples (1.0 g)

and diluted yolk (25 mL) at pH 2.0 and 7.0, respectively, were shaken at 37 ◦C (120 rpm, 2 h).
Then, it was centrifuged (2000 rpm, 15 min). The supernatant (1 mL) was diluted with the
quintupling volume of glacial acetic acid. The supernatant dilution (400 µL), phthaladehyde
color reagent (1.5 mL), and sulfuric acid (1 mL) were mixed. The absorbance was recorded
at 550 nm.

The standard curve was drawn with the cholesterol standard solution (0.025, 0.050,
0.075, 0.100, and 0.125 mg/mL) as the abscissa and the absorbance value as the ordinate
(the regression equation was y = 0.0159x + 0.0028, R2 = 0.9959). CAC was calculated using
the standard curve.

2.10. Determination of Adsorption Capacity of Sodium Cholate

The adsorption capacity of sodium cholate was determined using a modified method [25].
Briefly, 1.00 g sample and 0.1 g sodium cholate were dissolved with 50 mL of 0.15 mol/mL

NaCl (pH 7.0), and shaken (120 rpm, 2 h) at 37 ◦C. Subsequently, this mixed solution was
centrifuged (2000 rpm, 15 min) and supernatant was collected. Further, three reagents
of supernatant (1 mL), concentrated sulfuric acid with a concentration of 45% (6 mL),
and furfural at a concentration of 0.3% (1 mL) were mixed well and placed in a water
bath (65 ◦C, 30 min). After cooling, the absorbance was measured at 620 nm. The stan-
dard curve was drawn with sodium cholate (0.025, 0.050, 0.075, 0.100, and 0.125 mg/mL)
as the abscissa and the absorbance value as the ordinate (the regression equation was
y = 0.5431x + 0.0221, R2 = 0.9980). The adsorption capacity of sodium cholate was calcu-
lated using the standard curve.

2.11. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR was measured by a reported method [26]. The infrared spectrum was performed
in a total reflection FTIR instrument (AVATA 360, Nicolet, Thermo Fisher Scientific, Madison,
WI, USA). The dry sample powder was mixed with KBr (1:100, v/v), and the spectra were
obtained between 400 and 4000 cm−1.

2.12. Scanning Electron Microscopy (SEM)

The micrograph was observed according to a method described by [27] using a SEM
(EVO 18, ZEISS, Oberkochen, Germany) at 5.0 KV. Each micrograph of samples was taken
at 500–2000× magnification.

2.13. Statistical Analysis

Statistical analyses were performed using an analysis of variance (ANOVA) procedure
of the SPSS 25.0. Significant differences (p < 0.05) of means were determined by the Duncan
test, and the figures were drawn with Origin 2019. All tests were carried out in triplicate
and the results are presented as mean values ± standard deviation.
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3. Results and Discussion
3.1. The Content of IDF, SDF and TDF

Effects of BM on IDF, SDF, and TDF contents of three citrus fibers are shown in Table 1.
The TDF content of FS, JK, and LM was significantly different, and the contents of TDF
and IDF in citrus fiber LM were the highest among the three citrus fiber products (p < 0.05).
In addition, citrus fiber FS has the highest SDF content. The authors of [28] investigated
the dietary fiber composition of five types of pummelo and showed that Shatianyu had
the highest TDF content. The authors of [29] also demonstrated that citrus fibers from
chemical industry sources had higher lignin and cellulose contents, whereas citrus fibers
from food industry sources had higher hemicellulose and pectin contents. However, the
author of [24] reported the chemical composition of five citrus fibers, and found that there
were no remarkable distinctions in the contents of TDF, SDF and IDF in five citrus fibers.
The above research results show that composition of citrus fiber from different sources was
different.

Table 1. Effects of BM on IDF, SDF, and TDF contents of three citrus fibers (g/100 g).

Sample IDF SDF TDF IDF: SDF

sFS-0h 46.42 ± 0.28 j 30.82 ± 0.18 c 77.24 ± 1.00 e 1.51
sFS-2h 45.72 ± 0.49 jk 30.91 ± 061c 76.64 ± 0.83 e 1.48
sFS-4h 44.88 ± 0.73 k 31.52 ± 0.37 bc 76.40 ± 0.72 ef 1.42
sFS-6h 43.31 ± 0.92 l 31.93 ± 0.07 b 75.25 ± 0.99 fg 1.36
sFS-8h 42.35 ± 0.23 lm 32.19 ± 0.34 ab 74.55 ± 0.10 g 1.31

sFS-10h 41.31 ± 0.45 m 32.73 ± 0.61a 74.05 ± 0.16 g 1.26

sJK-0h 65.28 ± 0.25 cd 18.99 ± 0.11 j 84.27 ± 0.33 c 3.44
sJK-2h 62.86 ± 0.74 e 20.76 ± 0.61 hi 83.63 ± 0.72 cd 3.03
sJK-4h 61.41 ± 1.13 f 21.70 ± 1.4 gh 83.10 ± 0.27 cd 2.82
sJK-6h 59.32 ± 0.33 g 23.63 ± 0.53 f 82.95 ± 0.19 cd 2.51
sJK-8h 57.78 ± 0.66 h 25.09 ± 0.30 e 82.87 ± 0.65 d 2.30

sJK-10h 56.17 ± 1.28 i 26.50 ± 0.38 d 82.67 ± 1.28 d 2.12

sLM-0h 70.48 ± 0.56 a 17.97 ± 1.05 j 88.46 ± 0.73 a 3.92
sLM-2h 69.61 ± 0.51 a 18.23 ± 0.97 j 87.85 ± 1.30 a 3.82
sLM-4h 67.35 ± 0.94 b 20.08 ± 0.54 i 87.43 ± 1.46 a 3.35
sLM-6h 66.45 ± 0.76 bc 20.92 ± 0.07 hi 87.38 ± 0.68 b 3.18
sLM-8h 65.94 ± 1.05 c 21.04 ± 0.91 hi 86.98 ± 0.13 b 3.13

sLM-10h 64.35 ± 0.47 d 22.41 ± 0.23 g 86.53 ± 0.35 b 2.87
Note: Values with the different superscript letters in the same column are significantly different (p < 0.05).

The contents of TDF and IDF of three citrus fibers were significantly decreased after
BM, whereas the contents of SDF were significantly increased (p < 0.05). Generally, the
hydrogen bond between the molecules of IDF in citrus fiber was potentially broken during
the process of BM, resulting in transfer of branch-chain celluloses into short-chain soluble
amorphous celluloses [30]. Another possibility is that BM may destroy the cell structure of
citrus pomace, thus releasing soluble polysaccharides in the cells, leading to the increase in
SDF [31].

3.2. Particle Size Distribution

Particle size analysis is an important indicator for evaluating physicochemical prop-
erties [32–34]. Effects of BM on particle size distribution and median particle size (D50)
of three citrus fibers are shown in Figure 1A–D. D50 is the median particle size and is
commonly used to represent the average particle size of powders [35]. From Figure 1A–C,
the particle size distribution of three kinds of citrus fibers was moved to the left and be-
came narrower in the grinding time between 2–10 h. D50 of FS, LM, and JK decreased
from 188.52 ± 0.83 µm, 195.31 ± 2.00 µm, and 200.07 ± 0.474 µm to 40.44 ± 0.31 µm,
56.65 ± 0.50 µm, and 47.85 ± 0.42 µm, respectively. From Figure 1D, the particle size of JK
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was the largest before modification, whereas the particle size of LM was the largest after 10 h
of BM. In addition, it can be concluded that BM treatment has the greatest influence on the
particle size of JK, which decreased by 152.22 µm. This may be due to the different sources
of three citrus fibers. The authors of [17] found that BM (5 and 10 h) remarkably (p < 0.05)
decreased the particle size of the carrot insoluble fiber-rich fraction to 58.4 µm (−55.8%) and
12.4 µm (−90.6%). A study by [36] showed that the D50 of citrus fibers gradually decreased
with BM from 4 to 10 h under the same HPH pressure conditions (p < 0.05).
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Figure 1. Effects of BM on particle size distribution of LM (A), JK (B), and FS (C). Average particle size
of BM-treated citrus fibers (D). Error bars represent the standard deviation of the mean of triplicate
experiments. Different letters (a–p) indicate significant difference (p < 0.05).

Furthermore, Figure 1D also indicates that D50 of three dietary fibers greatly declined
(p < 0.05). This may be due to the grinding force generated by the impact between the
balls during the grinding process, which makes the particle size of the three kinds of citrus
fibers decrease continuously. Another possibility is that BM destroyed the cellular structure
of citrus fibers and released small molecule polysaccharides, thus significantly reducing
D50 of citrus fibers [37]. Consistent with our findings, BM treatment resulted in reduced
particle sizes of potato, taro, and yam peels, and persimmon by-products [37]. According
to [38], with the increase in grinding time, D50 of onion peel powder also decreased, but as
the grinding time reached 18 h, D50 value did not decrease further.

3.3. Analysis of WHC

Effects of BM on WHC of three citrus fibers are shown in Figure 2A. WHC of three
citrus fibers was 15.21 ± 0.17 g/g, 9.88 ± 0.08 g/g, and 13.33 ± 0.21 g/g. After BM, WHC
of citrus fibers JK and LM initially increased and then decreased. The reason for this
may be that interfacial tension was reduced by BM and water binding sites were exposed
to water [39]. During the BM process, the particle size of citrus fiber was reduced, and
hydrophilic groups in the insoluble cellulose were exposed, thus resulting in the increase
in WHC of LM and JK. The authors of [40] found that WHC of fibers was related to the
porous structure formed by polysaccharide chains, which held a large amount of water
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through hydrogen bonds; however, it could be damaged with longer milling times, thus
reducing WHC of JK and LM. The authors of [41] also found that WHC of asparagus leaf
by-product powder decreased gradually from 6.2% to 3.8% with increasing grinding time
from 0 to 6 h (p < 0.05).
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Error bars represent the standard deviation of the mean of triplicate experiments. Different letters
(a–k) indicate significant differences (p < 0.05).

However, WHC of FS increased significantly with the increase in grinding time.
Potentially, WHC of dietary fiber was positively correlated with the content of SDF [42].
Among the three citrus fibers, FS had the highest SDF content, and it gradually increased
with the extension of grinding time, so WHC of FS also showed an increasing trend.
Specifically, WHC of citrus fibers LM, JK, and FS was increased by 18.52%, 9.07%, and
13.15% (p < 0.05), respectively, after being crushed by BM for 2, 4, and 10 h. LM and JK
have more IDF (shown in Table 1).

3.4. Analysis of OHC

Citrus fiber has a large number of lipophilic groups, and the spatial structure is a
loose network structure, which can absorb and bind a certain amount of oil, so it has OHC.
Effects of BM on oil holding properties of three citrus fibers are shown in Figure 2B.

The authors of [23] showed that micronization improved OHC in Fraction 1 (>2 mm)
of olive pomace, which was separated in a 2 mm sieve, but that of its Fraction 2 (<2 mm)
was slightly declined (p < 0.05). The authors of [43] found that there were no significant
differences in OHC of four citrus fibers, indicating that homogenization had little effect on
OHC. The authors of [3] modified citrus fibers by water media BM; the results showed that
this modification method could further enhance OHC of citrus fibers.
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In our study, OHC of three citrus fibers LM, JK and FS was significantly improved
during BM (p < 0.05). Compared with the untreated sample, OHC of LM and JK after
BM for 4h was increased by 25.1% and 46.1%, and OHC of FS after BM for 8h increased
by 41.8% (p < 0.05). This is because the spatial structure of three citrus fibers was looser
after BM, and more lipophilic groups were released. The morphology analysis (shown in
Figure 3) was consistent with the change in OHC, indicating that a coarse surface, loose
structure, and particles with good dispersion were more favorable to retain oils in citrus
fibers [3]. However, after prolonged BM treatment, the network spatial structure of JK and
LM was destroyed, so it could not absorb more oil. Therefore, OHC of LM and JK showed
a trend of rising first and then falling.
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Figure 3. Effect of BM on the apparent structure of three citrus fibers ((A) was FS, (B) was JK, and
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2000×, respectively.

3.5. Analysis of WSC

Citrus fiber has WSC, probably due to its loose network space structure with hy-
drophilic groups, which can absorb a certain amount of water [44]. The effects of BM on
WSC of three citrus fibers are shown in Figure 2C. WSC and WHC of three citrus fibers
showed the same change trend.
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Compared with the unmodified samples, WSC of citrus fibers LM and JK increased by
9.28% and 12.45%, respectively, after 2 h of BM (p < 0.05). After milling for 10 h, WSC of
citrus fiber FS was increased by 38.3% (p < 0.05). Furthermore, the porosity and specific
surface area of LM and JK were increased after BM for 2 h, and more hydrophilic groups
were exposed [16], so its WSC could be improved. However, after BM for 4–10 h, the side
chain structure and spatial structure of the cellulose were destroyed, leading to the decrease
in WSC of LM and JK. In addition, WSC of FS that contained high water-soluble dietary
fiber increased with the increase in BM time, due to the fact that its hydrophilic groups in
water-soluble dietary fiber were exposed. More polar groups and water binding sites of
citrus fiber were exposed after BM, resulting in an increase in WSC of FS [45]. The rice bran
was crushed by a grater and then the coarse powder was obtained through an 80-mesh
sieve. The fine powders and superfine powders were further obtained by regulating the
grinding time. The result proved that WSC of superfine powders from rice bran dietary
fiber was obviously higher than that of its coarse powders and fine powders [18]. Chitrakar
et al. also found that WSC of dietary fiber powders from asparagus leaves increased from
25.74% to 32.47% with the increase in grinding time [41]. This is because the porous matrix
structure of cell wall polysaccharides was damaged by BM, which enables them to retain
water through hydrogen bonds [46]. This is similar to the mechanism of increased WHC of
citrus fibers.

3.6. Analysis of CAC

The influence of BM on CAC of three citrus fibers FS, JK, and LM is shown in
Figure 4A–C. CAC can be associated with porosity and available surface area of dietary
fibers [47].
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sodium fibrous cholate (D) of three citrus fibers (JK, LM, and FS). Error bars represent the standard
deviation of the mean of triplicate experiments. Different letters (a–i) indicate significant difference
(p < 0.05).
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After BM, CAC of three citrus fibers was significantly increased at pH 7.0 and pH 2.0
(p < 0.05). Among them, CAC of citrus fiber FS was the strongest as FS had more SDF. The
internal structure of SDF had many pores and exhibited a strong adsorption capacity for
cholesterol. Pectin and other SDF can improve the viscosity of foods in the intestinal tract,
which can further absorb a large amount of cholesterol [48]. Compared with the unmodified
samples, CAC of FS and LM at pH 7.0 increased by 48.34% and 47.95%, respectively, after
10 h of BM. CAC of JK increased by 41.50% after 6 h of BM. Because of the loose structure
of citrus fibers, there were many holes on the surface after BM, which probably provided
more binding sites for cholesterol [3].

In addition, CAC of three citrus fibers treated with pH 2.0 was lower than those
treated with pH 7.0. Under acidic conditions, citrus fiber and cholesterol had partial
positive charges and had a repulsive force, leading to the weakening of the binding force
between citrus fiber and cholesterol [3], thus reducing CAC.

3.7. Analysis of Adsorption Capacity of Sodium Cholate

The influence of BM on the sodium cholate adsorption capacity of three citrus fibers
is shown in Figure 4D. The adsorption capacity of sodium cholate of citrus fiber FS was
the strongest, followed by that of LM and JK. After BM, the adsorption capacity of sodium
cholate of three citrus fibers increased significantly (p < 0.05). Compared with the unmodi-
fied samples, the sodium cholate adsorption capacity of FS and JK increased by 10.74% and
48.64% after BM for 10 h; and that of LM increased by 13.07% (p < 0.05) after milling for
8 h. This was potentially due to the increase in SDF contents of three citrus fibers by BM,
and the release of some chemical groups that adsorbed sodium cholate, which improved
adsorption capacity of sodium cholate. Dietary fiber can effectively absorb sodium cholate,
thus reducing the concentration of bile acid in the intestinal tract. As a result, the absorption
of cholesterol was accelerated, and the blood glucose was then reduced in the body [49].

3.8. The Apparent Structure

The effects of BM (0–10 h) on the apparent structure of FS, JK, and LM are shown in
Figure 3A–C, respectively. It can be observed at 500× magnification that, before, BM, LM,
and JK had a spherical structure, whereas FS had a flake structure. After BM for 2 h, JK
and LM changed from a spherical to a fragmented conformation. The flake structures of
three citrus fibers became smaller and more uniform in the grinding time between 2 and
10 h. The authors of [41] also studied the effect of low-temperature BM on microstructural
characteristics of asparagus leaf by-product. SEM demonstrated that the particles were
irregular and broken form large particles to small particles in the process of BM.

It was observed at 2000× magnification that, before BM, compared with FS and JK,
the overall structure of LM was looser and had more pores. In addition, the surface of JK
and LM was looser, and the number of pores increased after BM for 2 h, which exposed
more hydrophilic and lipophilic groups in citrus fiber [41], leading to improve its functional
properties such as WHC and OHC. The surface of JK and LM was smooth at BM 6–10 h,
while the surface of FS showed more pores, so the functional properties of FS increased
with the extension in the grinding time.

3.9. Analysis of FTIR

FTIR is an important indicator for evaluating proteins, fibers, and other substances [50,51].
Figure 5A–C respectively represent the effects of BM on FTIR of three citrus fibers. FTIR
results of three citrus fibers were similar, but the curve transmittance results of the three
citrus fiber samples were different. The peak vibration intensity of the three citrus fibers
increased after BM due to the increase in the exposed -OH content in citrus fibers by BM [44].
As BM increased from 0 to 10 h, the peak values of three citrus fibers were enhanced in
2927 cm−1 bands (stretching vibration of C-H on the polysaccharide methylene), 1735 cm−1

and 1636 cm−1 bands (vibration of acetyl ester and uronic acid groups on the hemicellulose),
and 1370 cm-1 bands (bending vibration of C-H in cellulose). The results showed that BM
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can loosen the structure of citrus fibers, and more functional groups were exposed. In
addition, the characteristic bending or tensile vibration peak of lignin at 1519 and 1276 cm−1

did not decrease after BM, meaning that lignin was not degraded by BM [52].
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4. Conclusions

This study was the first to compare the effects of BM on structure, physicochemical,
and functional properties of three citrus fibers (LM, JK, and FS) from different sources. The
results showed that the particle size of three citrus fibers reduced significantly after BM,
and more hydrophilic and lipophilic groups were exposed, improving WHC, OHC, and
WSC of citrus fibers. In addition, the content of SDF of LM, JK, and FS increased, and the
adsorption capacity of cholesterol and sodium cholate was improved. Finally, it can be
concluded that FS treated by BM for 8 h has good functional and adsorption properties. BM
is a green mechanical grinding technology with the advantages of environmental protection
and low cost. It is an effective technology to improve the characteristics of citrus fibers, and
can thus widen the application of citrus fibers in the food industry as natural functional
ingredients.
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