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A B S T R A C T   

The utilization of antibiotics is prevalent among lactating mothers. Hence, the rapid determination of trace 
amounts of antibiotics in human milk is crucial for ensuring the healthy development of infants. In this study, we 
constructed a human milk system containing residual doxycycline (DXC) and/or tetracycline (TC). Machine 
learning models and clustering algorithms were applied to classify and predict deficient concentrations of single 
and mixed antibiotics via label-free SERS spectra. The experimental results demonstrate that the CNN model has 
a recognition accuracy of 98.85% across optimal hyperparameter combinations. Furthermore, we employed 
Independent Component Analysis (ICA) and the pseudo-Siamese Convolutional Neural Network (pSCNN) to 
quantify the ratios of individual antibiotics in mixed human milk samples. Integrating the SERS technique with 
machine learning algorithms shows significant potential for rapid discrimination and precise quantification of 
single and mixed antibiotics at deficient concentrations in human milk.   

1. Introduction 

Doxycycline (DXC) and tetracycline (TC) are broad-spectrum anti-
biotics classified under the group of tetracycline antibiotics (TCs) and 
are widely used for treating human bacterial infections (Anand, Siva-
sankaran, Jose, & Kumar, 2019). In clinical settings, the joint use of 
tetracycline and doxycycline is not usual (Holmes & Charles, 2009). 
However, due to the widespread use of antibiotics for the treatment of 
bacterial infections in both humans and animals (Ibraheem & Abdul- 
Ahad, 2012), excessive antibiotic residues have been found in food 

products (meat, fish, milk, etc) and contaminated water supplies (Boxall, 
Kolpin, Halling-Sørensen, & Tolls, 2003). For example, antibiotic resi-
dues like tetracycline, chlortetracycline, oxytetracycline, and doxycy-
cline are frequently found in duck meat (T. Wang et al., 2021), pork (De 
Wasch et al., 1998) and cow milk (Prado, Ferreira, Bando, & Machinski 
Jr, 2015). The disproportionate use of TCs led to their excessive accu-
mulation in food products and the natural environment, and these res-
idues will finally enter the human body through water and food, 
endangering human health (Miao, Wang, & Yang, 2018). Antibiotic 
residues disrupt the delicate microbial balance and contribute to human 
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bacterial drug resistance, impacting normal growth processes and 
causing persistent physiological changes (Mueller & Tronick, 2019). 
Nursing mothers may consume food products contaminated with these 
residues during breastfeeding. Therefore, it is essential to identify un-
desirable toxins and metabolites in human milk that may be passed on to 
breastfeeding infants. Moreover, infants in their developmental stages 
may accumulate higher concentrations of these contaminants and 
experience delayed excretion due to their immature metabolic processes 
(Mueller & Tronick, 2019; Organization, W. H, 2010). Consequently, it 
becomes imperative to identify the presence of harmful toxins and me-
tabolites in human milk to prevent their transmission to breastfeeding 
infants (Dinleyici et al., 2018) . 

Numerous studies have evaluated chemical contaminants in human 
milk and their potential impacts on infants and mothers. Detecting TCs 
in human milk has garnered significant attention from researchers 
worldwide due to the associated risks (Z. Xu et al., 2020). However, 
detecting antibiotics in milk poses challenges owing to the complex 
matrix composition and low concentrations of target analytes in real- 
world samples. Hence, developing a sensitive and convenient method 
for rapid antibiotic quantification would be invaluable for effective 
control and regulation. Consequently, regulatory authorities have 
implemented monitoring tests, which have demonstrated significant 
reductions in the occurrence of milk contaminated with antibiotics 
(Gajda, Nowacka-Kozak, Gbylik-Sikorska, & Posyniak, 2018; Sivakesava 
& Irudayaraj, 2002). Microbial inhibition tests, immunoassays, and 
chemical-physical techniques such as high-performance liquid chroma-
tography or mass spectrometry are widely employed for detecting 
antibiotic residues. However, these methods entail high operational 
costs and intricate sample preparation procedures, necessitating sub-
stantial volumes of reagents and specialized personnel (Yuan et al., 
2024). Furthermore, the number of samples that can be analyzed within 
a given time frame is limited (Toma, Oishi, Iitani, Arakawa, & Mitsu-
bayashi, 2022). 

Surface-enhanced Raman spectroscopy (SERS), known for its 
exceptional molecular specificity and high sensitivity of substrate ma-
terials, has emerged as a valuable tool in various fields, including 
pathogen detection, cancer diagnosis, and identification of antibiotics in 
dairy products (Usman et al., 2022; Usman et al., 2023; Wei et al., 2024). 
In food research, Yang et al. utilized polydimethylsiloxane (PDMS) 
plasma cavities as SERS substrates to detect tetracycline in milk, 
achieving a low detection limit of 0.28 μg/L (Z. Yang et al., 2021). 
Similarly, a study focused on tetracycline residue detection in milk 
employed silver colloid nanoparticles to prepare mixed solutions of 
antibiotics and milk with varying concentrations; the concentration of 
tetracycline was estimated by observing intensity values of character-
istic peaks, facilitating qualitative and quantitative detection of tetra-
cycline residues at production sites (Sagar, Kuanglin, Huang, Kim, & 
Schmidt, 2018). However, most studies have primarily focused on 
analyzing individual, pure antibiotics within a sample, and the identi-
fication and quantification of multiple antibiotics in mixed SERS spectra 
still need to be improved due to spectral overlap within complex inter-
ference backgrounds. Furthermore, applying the SERS approach for 
precise molecular quantification encounters certain limitations. Manual 
visual inspection fails to discern minute differences in SERS spectra of 
antibiotics at varying concentrations, and conventional antibiotic trace 
detection techniques struggle to detect the vibrational fingerprints of 
antibiotic molecules. Additionally, Raman signals originating from the 
blank SERS substrate impede the detection of antibiotics at low con-
centrations. Consequently, relying solely on the intensity of a single 
molecular characteristic peak becomes inadequate for concentration 
differentiation. To address these challenges, machine learning, an 
advanced statistical method employing multivariate analysis, enables 
identifying and classifying signal features embedded within large and 
complex datasets; furthermore, integrating machine learning algorithms 
with Raman spectroscopy eliminates the subjectivity in determining 
analyte concentrations based on a single characteristic peak. (Thrift 

et al., 2020; L. Wang et al., 2022). 
Numerous studies have utilized the SERS approach to achieve rapid 

antibiotic detection (Usman et al., 2019; Usman et al., 2023). Several 
investigations have been conducted to detect various types of antibiotics 
using the SERS approach in conjunction with machine learning models 
(Xie et al., 2012; Z. Xu et al., 2020). However, limited research has 
focused on using the combined power of the SERS approach and ma-
chine learning models to effectively differentiate between antibiotics 
and to accurately quantify mixed antibiotic concentrations simulta-
neously. Due to the consumption of food and water products contami-
nated by antibiotics, co-occurrence of DXC and TC in the human body is 
possible and these antibiotics can be excreted into human milk with high 
concentrations (Matsuda, 1984; Niebyl, 2003). Therefore, in this study, 
we employed a portable Raman spectrometer to collect SERS spectra of 
doxycycline (DXC) and tetracycline (TC) in human milk samples. These 
spectra were subsequently analyzed using clustering algorithms and 
machine learning models to classify and predict single and mixed anti-
biotics at deficient concentrations. The results demonstrated that human 
milk samples containing different antibiotics could be rapidly and 
accurately categorized and predicted. In particular, we employed the 
Independent Component Analysis (ICA) method and the Pseudo- 
Siamese Convolutional Neural Network (pSCNN) method to determine 
the ratios of individual antibiotics. Our findings indicated that the 
pSCNN algorithm based on SERS technology can successfully quantify 
the DXC and TC ratios within mixed antibiotic samples. In summary, the 
proposed machine learning model overcomes the challenges associated 
with quantitative detection and accurate prediction of mixed antibiotics 
in human milk. These advancements encourage the development of 
SERS sensors and their real-world application in this field, which will 
improve the quality and safety control of human milk and benefit infant 
health in the near future. 

2. Materials and methods 

2.1. Chemicals and instruments 

Silver nitrate (AgNO3), sodium citrate (Na3C6H5O7), and sulfosali-
cylic acid were procured from China National Pharmaceutical Group 
Co., Ltd. (Beijing, China). At the same time, tetracycline and doxycycline 
were obtained from Sangon Biotech Co. Ltd. (Shanghai, China). All 
chemicals were used as received without the need for further purifica-
tion. Human milk samples were collected from a lactating individual at 
the affiliated hospital of Xuzhou Medical University, with ethical 
approval and informed consent (Approval Number: XYFY2023-KL169). 
All magnetic stirring bars and glassware were immersed in aqua regia 
for 10 h and then triple-rinsed with ultrapure water obtained from a 
Milli Q-Plus system (Millipore, Bedford, MA, USA). 

2.2. Preparation of silver nanoparticles as SERS substrate 

Our previous publications have described the synthesis methods for 
silver nanoparticles (AgNPs) (L. Wang et al., 2022). A triangular flask 
was employed, and 200 mL of deionized distilled water and 33.72 mg of 
AgNO3 were added while stirring and heating to boiling. Subsequently, 
8 mL of Na3C6H5O7 was added, and the mixture was heated at 120 ◦C for 
40 min at 650 rpm. Afterward, the heating was stopped, and stirring 
continued until the solution cooled to room temperature. The solution 
(1 mL) was transferred to a clean Eppendorf (EP) tube and centrifuged at 
7000 rpm for 7 min. The supernatant was removed, and the pellet was 
resuspended in 100 μL of water for long-term storage at room temper-
ature (RT). 

2.3. Sample preparation and Raman spectroscopy measurements 

Freshly expressed milk from a healthy lactating participant was 
collected from the Obstetrics and Gynecology Department of the 
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Affiliated Hospital of Xuzhou Medical University. The 10 mL of milk was 
centrifuged at 10,000 rpm for 10 min to remove the upper-fat layer. 
Subsequently, a sulfosalicylic acid solution with a final concentration of 
5% was added to the milk, followed by another centrifugation at 10,000 
rpm for 10 min to eliminate proteins and polypeptides. The resulting 
supernatant was then collected for subsequent use. To prepare the stock 
solutions, 0.9618 mg of tetracycline (TC) and 0.8888 mg of doxycycline 
(DXC) powder were separately added to 2 mL of the pre-treated human 
milk supernatant, resulting in a final concentration of 10− 6 M. Serial 
dilutions were performed to prepare antibiotic solutions with concen-
trations of 10− 6 M, 10− 7 M, 10− 8 M, 10− 9 M and 10− 10 M. Additionally, 
a mixed solution of tetracycline and doxycycline with a final concen-
tration of 10− 9 M was prepared. All samples were sonicated for 10 min to 
ensure homogeneity. 

For Raman spectroscopy measurements, each antibiotic solution at 
different concentrations was mixed with the AgNPs solution, and the 30 
μL mixture was dropped onto a silicon wafer to form circular spots. The 
spots were then naturally dried in a safety cabinet before detection. 
Raman spectra were acquired using a portable Anton Paar Cora100™ 
Raman spectrometer (Anton Paar Shanghai Trading Co., Ltd., China) 
with the following settings: excitation wavelength of 785 nm, excitation 
power of 25 mW, spectral resolution of 1 nm, spectral wave number 
resolution of 10 cm− 1, and detection spectral range of 400–2300 cm− 1. 
The Raman peak at 520 cm− 1 was utilized as the reference peak to 
calibrate all SERS spectra, and the dark current was subtracted using 
integration time. 100 spectra were randomly collected from within each 
dried sample spot, resulting in 600 SERS spectra generated for each 
sample for further analysis in this study. 

2.4. Clustering analysis of SERS spectra 

Two clustering algorithms, PCA and OPLS-DA, were employed to 
investigate the. 

inherent differences between the spectra of different saliva samples. 
Since external factors may influence saliva samples during the collection 
process, various preprocessing methods were combined with cluster 
analysis to assess the data quality before cluster analysis. All spectral 
preprocessing operations were performed using the commercial analysis 
software Unscrambler X (Version 10.4 64bit, CAMO, Norway). 
Maximum and minimum normalization was applied to reduce all spec-
tral intensity ranges to the [0,1] range through Maximum normaliza-
tion. Savitzky-Golay smoothing with a polynomial order of 3 was used 
for spectral smoothing, and baseline correction was achieved through 
baseline offset. After each preprocessing step, PCA and OPLS-DA were 
used for cluster analysis. PCA was implemented using the PCA function 
in the sci-kit learn (version 0.21.3) data analysis library, with the 
n_components parameter set to 2 for data fitting. OPLS-DA analysis was 
performed using the OPLS-DA function in the multivariate statistical 
analysis software SIMCA (version 13.0, 32-bit) to fit all SERS data of the 
two types. The clustering results were evaluated using R2X, R2Y, and Q2 
indices. These evaluation indices were also used to assess the quality of 
data preprocessing. 

Clustering analysis involves grouping similar SERS spectra into 
distinct classes to uncover the underlying structures within the spectral 
data (Aggarwal, 2018; Liu et al., 2023). In this study, two clustering 
methods, namely Principal Component Analysis (PCA) and Orthogonal 
Partial Least Squares Discriminant Analysis (OPLS-DA), were employed 
to analyze the SERS data obtained from human milk samples mixed with 
three types of antibiotics (DXC, TC, DXC&TC). The PCA method was 
implemented using the PCA function from the Python sci-kit learn 
package (version 0.21.3). The fit_transform method within the PCA 
function was utilized to fit the various SERS signals and perform 
dimension reduction on the complete set of SERS spectral data. PC1 and 
PC2, representing the two principal components with the highest 
contribution values, were selected to capture the overall characteristics 
of the SERS data. However, as an unsupervised learning algorithm, PCA 

only uncovers underlying patterns based on data distribution, which can 
be influenced by factors such as Raman signal intensities and feature 
shifts. The OPLS-DA, a supervised learning algorithm, was employed to 
address this limitation. OPLS-DA leverages prior knowledge obtained 
from data labels to learn specific data patterns and achieve the separa-
tion of different SERS signals. In this study, OPLS-DA was conducted 
using SIMCA software (version 13.0, 32-bit), a commercial multivariate 
analysis tool, to mitigate the influence of confounding factors on the 
classification outcomes. Three evaluation indices, namely R2X, R2Y, 
and Q2, were employed to assess the explanatory and predictive capa-
bilities of the OPLS-DA model. 

2.5. Supervised machine learning analysis of SERS spectra 

To differentiate and forecast SERS signals of various antibiotics and 
determine the most effective identification model, this study employed 
six commonly used machine learning algorithms: Adaptive Boosting 
(AdaBoost), extreme Gradient Boosting (XGBoost), Linear Discriminant 
Analysis (LDA), Decision Tree (DT), Random Forest (RF), and Support 
Vector Machine (SVM). The SERS spectra of two pure antibiotics and 
mixed antibiotics in human milk were analyzed using these algorithms. 
The dataset was divided into training, test, and validation sets in a 6:2:2 
ratio using the train_test_split function from the scikit-learn package 
(version 0.21.3). To prevent overfitting, each model's training accuracy 
(Accuracytrain) was compared with the validation accuracy (Accu-
racyvali) in the training set during the model training processes. The test 
dataset, independent of the model training, was solely used to assess the 
performance of each model after training. Before applying different 
machine learning algorithms to identify spectral data, we optimized the 
hyperparameters of each model using the GridSearchCV function. By 
setting predetermined ranges for the hyperparameters, we trained each 
model to obtain the best combination of parameters (Supplementary 
Table S1). After hyperparameter optimization, we performed five-fold 
cross-validation using the cv function, with the parameter set to 5, to 
assess the robustness of the machine learning models. Throughout the 
grid search process, we utilized score gradient plots to record the 
progress and monitored the accuracy and stability of the model during 
parameter iteration. 

2.6. Model performance evaluation 

To identify the machine learning model with the best performance, a 
comprehensive evaluation was conducted using various metrics to 
compare the performance of different models on the test dataset. The 
evaluation metrics employed in this study included accuracy (ACC), 
precision (Pre), recall (Re), and F1-score (F1). These metrics encompass 
four distinct scenarios: True Positive (TP), True Negative (TN), False 
Positive (FP), and False Negative (FN). The accuracy_score function was 
utilized to calculate the ACC score, providing an overview of correct 
predictions across all outcomes. To address any imbalances in dataset 
splitting, the precision_score and recall_score functions were employed to 
measure the model's ability to identify samples with actual values. As 
precision and recall are mutually exclusive, the F1-score, calculated 
using the f1_score function, served as the harmonic average of the two 
metrics, offering a measure of the model's proficiency in identifying true 
values. A 5-fold cross-validation approach was adopted to mitigate 
model overfitting, dividing the dataset into five subsets. One subset was 
selected as the validation set, while the remaining four subsets were 
used for training. This process was repeated five times, and the average 
value was considered the final evaluation score. Furthermore, to opti-
mize computational resources and obtain highly accurate and efficient 
identification models, the training times of different models were 
compared using the time function to record the duration of the training 
process. Models that consumed less time during training required lower 
computational resources, aligning with our objectives. 
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2.7. Ratio quantification in human Milk with mixed antibiotics 

2.7.1. Independent component analysis 
To observe the linear combination of independent components in 

mixed antibiotic SERS signals and achieve maximum independence 
among different antibiotic signal components, this study employed the 
FastICA function in the sci-kit learn library (version 0.21.3) for blind- 
source separation of SERS signals from mixed antibiotics in human 
milk samples. During the analysis, we included different numbers of 
n_component (NC) from 2 to the maximum number and determined the 
optimal NC via ICA_by_blocks (Boiret, Rutledge, Gorretta, Ginot, & 
Roger, 2014). Each IC loading was denoted as ICx/NCy, where x rep-
resents the range [1, y], and y corresponds to the value of NC. The 
implementation of all loadings was carried out using the components_ 
function in FastICA. Subsequently, the correlation between these IC 
loadings and each reference spectrum was calculated using the Pearson 
function from the Scipy data analysis package (version 1.4.1) to identify 
the compounds in the mixture. The IC loading with the highest corre-
lation was recorded and repeated until all reference spectra were 
compared. 

2.7.2. Pseudo-Siamese convolutional neural network (pSCNN) 
As ICA cannot discern the proportion of components in the mixture, 

the Pseudo-Siamese Convolutional Neural Network (pSCNN) was 
introduced to characterize the SERS signal of the mix. This network 
consists of two sub-network structures which do not share the training 
weight. These sub-networks extract features from the Raman spectrum 
using convolutional layers. Due to the involvement of mixtures and pure 
compounds in the model training, using a network with shared weights 
to extract feature vectors is unsuitable. During the network training, the 
weights of each subnetwork are trained separately, ensuring there is no 
weight sharing between the two subnetworks. The learned feature 
vectors are input into dense layers to identify whether there is a 
containment relationship between the two inputs, thereby achieving 
compound identification in the SERS spectra of mixtures. The network 
structure primarily comprises an input layer, convolutional layer, Batch 
Normalization layer, Maxpooling layer, and dense layer. Unlike a reg-
ular convolutional neural network, the input of the pSCNN is a pair of 
SERS spectra categorized as follows: 1 represents a pure antibiotic, 0.1 
represents a mixture of antibiotics containing the pure compound, and 
0 represents the spectrum of a pure antibiotic or a mixture of antibiotics 
not containing that pure compound. Upon inputting the spectral pair 
into the pSCNN network, the convolutional layers of the two sub- 
networks independently extract signal features. Each convolutional 
layer consists of 32 kernels with a size of 3*1, and a relu activation 
function is applied to introduce non-linear relationships between 
network structures. The BatchNormalization layer is employed to 
accelerate model training and prevent overfitting. A Maxpooling layer is 
utilized to reduce the dimensionality of feature maps and enhance 
translation invariance, with a pool_size set to 3. Finally, the feature 
vectors are fed into the last dense layer, which combines advanced 
features extracted from the leading body network in a non-linear 
manner to determine the presence of an inclusion relationship be-
tween the spectrum of unknown mixed antibiotics and the spectrum of a 
single antibiotic. The Sigmoid activation function provides the proba-
bility of the components present in the mixture, enabling the recognition 
of single antibiotics within the SERS spectrum of the mix. 

3. Result and discussions 

3.1. Workflow of trace antibiotic detection 

This study subjected human milk to a mixture of DXC and TC anti-
biotics. The aim was to establish the detection limit for the lowest 
concentration by generating label-free SERS spectra for each antibiotic 
and its combination. Clustering analysis was employed to gain an initial 

understanding of the spectral sample distributions. Furthermore, six 
classical machine learning algorithms (AdaBoost, LDA, DT, RF, SVM, 
and XGB) were utilized to identify the three antibiotic combinations. To 
ascertain the mixed ratio of antibiotics, pSCNN was employed. This 
method involved dissecting the SERS spectrum of the mixture and 
providing a schematic representation, which indicated the proportion of 
each antibiotic. Applying SERS sensors directly to real-world samples 
like human milk presents challenges due to interfering compounds 
(Fang et al., 2022). It should be noted that, in this experiment, human 
milk underwent centrifugation with acid to eliminate fat and protein, 
and the resulting supernatant was collected for SERS spectral detection. 

3.2. SERS reproducibility and uniformity 

In specificity, the SERS spectra of the two antibiotics DXC and TC in 
human milk were generated and demonstrated with concentrations 
ranging from 10− 6 to 10− 10 M, separately and jointly (Fig. 1A-B). Ac-
cording to the previous report, following an oral dosage of 200 mg of 
DXC, the concentration of DXC in human milk can reach 0. 38 mg/L, 
which is equivalent to 8.24 × 10− 7 M; in addition, after orally taking 
150 mg tetracycline, the peak concentration of TC in human milk was 
0.8 mg/L, which corresponds to 1.8 × 10− 6 M (Matsuda, 1984; Niebyl, 
2003). In this study, our approach's detection limit equals to 10− 9 М for 
both doxycycline and tetracycline. Therefore, our method is able to 
provide sufficient sensitivity for the detection of the two antibiotics in 
human milk. It is worth noting that various techniques have also been 
reported for antibiotic detection in different milk samples for compar-
ative study (Table 1). In these studies, DXC and TC are detected in cow, 
ovine, and whole milk, but in our work. The major drawbacks of these 
methods are the long measuring time and the requirement for special 
pretreatment of the milk samples. In contrast, our SERS approach re-
quires no special treatment of either milk or TCs, enabling direct and 
label-free detection at low concentration levels with shorter measuring 
times. 

The DXC spectra exhibited primary characteristic peaks at 1316 
cm− 1 and 1628 cm− 1, while the TC spectrum displayed primary char-
acteristic peaks at 1268 cm− 1 and 1616 cm− 1. Specifically, the 1316 
cm− 1 peak in DXC was attributed to the rocking of C1-H33 and C8-H34, 
while the 1628 cm− 1 band originated from the symmetric stretching of 
C21-C28 and the bending of C29-O32-H57. On the other hand, the 1268 
cm− 1 peak in tetracycline resulted from the amide triple doublet, and 
the 1616 cm− 1 peak was attributed to C––O stretching vibrations. Pre-
vious literature has compared the SERS spectra of antibiotics in raw milk 
to assess the impact of centrifugally filtered human milk on the SERS 
spectra of antibiotics (Pinheiro, Fateixa, Nogueira, & Trindade, 2018; 
Tackman et al., 2018). The results confirmed the emergence of new 
characteristic peaks in the SERS spectra of antibiotic samples in human 
milk compared to those in raw milk. Thus, the human milk solution 
exhibited more distinct and pronounced characteristic antibiotic peaks, 
facilitating spectral analysis. To assess the reproducibility of the DXC 
SERS spectra, a comprehensive statistical analysis was conducted to 
quantify the variations in SERS signal intensity across different spot-to- 
spot measurements (P. Li et al., 2016). The SERS intensity's relative 
standard deviation (RSD) was determined for the 1218 cm− 1, 1316 
cm− 1, and 1628 cm− 1 peaks of DXC, based on 100 randomly selected 
spots, as depicted in Fig. 1C. The calculated RSD values for these peaks 
were 7.66%, 7.84%, and 8.32%, respectively. 

Similarly, for TC, the SERS performance of the substrate was evalu-
ated by measuring the intensity of 1238 cm− 1, 1314 cm− 1, and 1614 
cm− 1 peaks at 100 different random spots, yielding RSD values of 8.12%, 
8.82%, and 8.624%, as illustrated in Fig. 1D (Perales-Rondon, Colina, 
Gonzalez, & Escarpa, 2020). These results confirm the reproducibility of 
the proposed SERS approach in practical and biological contexts. 
Consequently, these findings demonstrate the feasibility of the 
approach, which exhibits excellent accuracy and reproducibility for 
detecting trace antibiotics in real-world human milk samples. Moreover, 
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calibration curves were generated for the characteristic Raman peaks of 
DXC and TC, plotting the intensity-concentration relationship, as pre-
sented in Fig. 1E and F, respectively. The calibration curve was con-
structed using distinct peaks at various concentrations, with 100 

repeated experiments for each concentration. A strong linear correlation 
was observed between the SERS signal and concentration ratio, with 
correlation coefficients of R2DXC = 0.9743 and R2TC = 0.9868. Overall, 
the comparative findings demonstrate that the SERS approach employed 

Fig. 1. Detection and quantitation of DXC and TC in human milk. Panels (A-B) display the SERS spectra of DXC and TC in milk, presenting different concentrations 
ranging from 10− 6 M to 10− 10 M. The histograms in panels (C–D) illustrate the distribution of the peak SERS intensity for major peaks of DXC and TC acquired from 
random spots on the SERS substrate. Panels (E-F) depict the linear correlation between the concentrations of DXC and TC in human milk and the SERS signal intensity 
at 1620 cm− 1. 
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in this study enables rapid and label-free detection of antibiotics in 
human milk at low concentrations compared to conventional methods. 

3.3. SERS spectral characteristic peaks analysis 

To further explore the practical application of this approach, we 
investigated the distinctions among the characteristic peaks of various 
antibiotics. Consequently, we devised a method for detecting spectral 
mixtures based on these distinct peaks. We can identify the character-
istic peaks corresponding to individual antibiotics within the mixture by 
analyzing the Raman spectrum of mixed antibiotics. These typical values 
are marked in Fig. 2 to aid in analyzing variations among different 
spectral mixtures. Specifically, a mixture solution was created by 

combining equal volumes of DXC and TC at a concentration of 10− 9 M, 
and a small quantity of AgNPs was introduced into the solution to 
monitor the vibrational modes of DXC and TC (Fig. 2A-C). The experi-
mental frequencies and assignments for DXC, TC, and the mixed solution 
are presented in Fig. 2D-F. The collected spectra revealed several 
notable peaks for DXC (1172, 1248, 1276, 1450, 1748, 1776 cm− 1) and 
TC (1052, 1314, 1482, 1616, 1748, 1776 cm− 1). Our study's results 
demonstrate the efficacy of our method in producing consistent spectra 
from various surface locations. Moreover, our method can distinguish 
between antibiotic contaminants in human milk samples. These findings 
highlight our approach's potential for accurately identifying and 
differentiating contaminants. 

3.4. Cluster analysis of SERS spectra of different antibiotics 

Clustering analysis, as highlighted by Jain, Murty, and Flynn (1999), 
is a valuable tool for identifying commonalities within datasets. Thus, in 
this study, two clustering algorithms, namely PCA and OPLS-DA, were 
employed to perform clustering analysis on the SERS signals. The out-
comes of the unsupervised learning PCA algorithm revealed a consid-
erable overlap among the sample points of the three antibiotic SERS 
spectra, indicating relatively indistinct clusters and a suboptimal per-
formance of the PCA algorithm on this particular dataset (Fig. 3A). 
Conversely, OPLS-DA, a supervised multivariate statistical approach for 
data clustering, provided insights into the divisions of data groups based 
on high-dimensional spectral measurements. The results obtained from 
OPLS-DA exhibited well-defined clustering of the three antibiotic 
spectra into distinct groups, characterized by reduced intra-genus vari-
ations and clear boundaries between the groups (Fig. 3B). Furthermore, 
the evaluation indices, R2X = 0.971, R2Y = 0.903, and Q2 = 0.88, 
demonstrated the proficiency of OPLS-DA in effectively distinguishing 
different SERS signals. 

3.5. Optimization of machine learning model parameters 

Consistency and optimization of machine learning parameters are 
crucial due to the varying performance they can exhibit across different 

Table 1 
Comparison of various methods employed for detecting TC and DXC in different 
milk samples and the limit of detection (LOD).  

Methods Antibiotics Matrix LOD Refs. 

Colorimetric Tetracycline Cow milk 266 pM 
(Ramezani, Danesh, 
Lavaee, Abnous, & 
Taghdisi, 2015) 

HPLC Tetracycline Bovine 
milk 

0.95–3.6 
μg/L 

(H. Xu et al., 2017) 

ELISA Tetracycline Cow milk 
3.30 μg 
kg− 1 (Du et al., 2019) 

Fluorescent Tetracycline Cow milk 45 ng/mL 
(Ahmed, Kumar, 
Ortega, Srinivasan, & 
Rajabzadeh, 2021) 

ECL Tetracycline Cow milk 0.0053 
ng/mL 

(R. Xu et al., 2023) 

HPLC Doxycycline 
Ovine 
milk 

0.06 μg/ 
mL (Mileva, 2019) 

ELISA Doxycycline Whole 
cow milk 

0.1 μg/L 
(Adrian, Fernandez, 
Sanchez-Baeza, & 
Marco, 2012) 

Capillary Doxycycline Cow milk 0.0808 
μg/mL 

(Mu, Liu, Xu, Tian, & 
Luan, 2012) 

Fluorescence Doxycycline Cow milk 47 nM (Yu et al., 2020) 

SERS 
Doxycycline Human 

milk 10− 10 M This work Tetracycline  

Fig. 2. Average SERS spectra and characteristic peaks of single and mixed antibiotics in human milk. (A) Average SERS spectrum representing doxycycline. (B) 
Average SERS spectrum representing tetracycline. (C) Average SERS spectrum of mixed antibiotics. (D–F) Characteristic peaks in the SERS spectra and biological 
significance. 
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datasets, sometimes even displaying contrasting outcomes (L. Yang & 
Shami, 2020). Therefore, it is essential to optimize model parameters 
before data analysis. In this study, we employed a grid search approach 
to optimize the hyperparameters of six machine learning algorithms, 
and the resulting grid search gradient plots were used to showcase the 
learning capability and stability of these algorithms. The findings 
demonstrated that Support Vector Machine (SVM) consistently achieved 
the highest recognition accuracy (ACC = 98.85%) across all hyper-
parameter combinations (Fig. 4A). This result indicates that the SVM 
algorithm possesses exceptional analytical capabilities for high- 
dimensional data with limited sample sizes, which aligns with previ-
ous studies (Liu et al., 2023). Linear discriminant analysis (LDA) ach-
ieved performance similar to SVM; however, fluctuations in training 
accuracy were observed across different parameter combinations, as 

depicted in the fitting results in Fig. 4B. Only when the shrinkage 
parameter size was set to 0.01 did the algorithm's accuracy exceed 0.98. 
Moreover, Random Forest (RF) with parameters (criterion = ‘gini’, 
max_depth = 8, n_estimators = 90) in Fig. 4C, XGBoost with parameters 
(learning_rate = 0.1, n_estimators = 120) in Fig. 4D, and Decision Tree 
(DT) with parameters (criterion = ‘entropy’, max_depth = 29, max_-
features = 26) in Fig. 4E also identified the optimal parameter combi-
nations for recognition accuracy through the grid search process, The 
recognition accuracy for all these algorithms exceeded 90%. Conversely, 
the AdaBoost algorithm exhibited the lowest performance among all the 
algorithms, achieving recognition accuracy above 0.9 only when the 
parameter learning_rate was set to 0.1 (Fig. 4F). 

Fig. 3. Clustering analysis of SERS spectra of human milk samples with single and mixed antibiotics using PCA and OPLS-DA algorithms. (A) PCA Analysis: The 
scatter plot of sample points shows a relatively dispersed distribution. (B) OPLS-DA Analysis. Distinct clusters are formed as different sample points are grouped into 
separate clusters. 

Fig. 4. Parameter optimization of six machine learning algorithms. (A) Support Vector Machine., (B) Linear Discriminant Analysis, (C) Random Forest, (D)eXtreme 
Gradient Boosting, (E) Decision Tree, and (F) AdaBoost. 
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3.6. Evaluation of machine learning model performance 

The hyperparameters were adjusted and updated using both the 
training and validation datasets. However, it is well-known that evalu-
ation metrics can often be overly optimistic. To honestly assess the 
model's performance on unseen samples, an independent test set was 
utilized for performance evaluation (Table 2). According to the results, 
the SVM model exhibited the best performance among all algorithms, 
with all metrics surpassing 98%. Additionally, the SVM model demon-
strated the second shortest model fitting time (Time = 0.053 s) 
compared to other algorithms. These findings indicate that SVM effi-
ciently and reliably analyzes different SERS data. LDA achieved similar 
scores to SVM across all evaluation metrics, suggesting that LDA could 
also serve as a potential method for recognizing SERS signals. The 
remaining algorithms achieved recognition accuracy of over 90%. 
Notably, the XGBoost algorithm had the highest computational resource 
utilization, with a fitting time of 2.11 s. On the other hand, the DT al-
gorithm exhibited the shortest reasonable time of only 0.004 s, sug-
gesting its ability to swiftly discriminate SERS signals of different 
antibiotics. However, the DT algorithm's recognition accuracy was only 
92.73%. 

3.7. Identification of compounds in mixtures using ICA 

In many instances, identifying biological samples poses a challenge 
due to mixed antibiotics. The complexity arises from the overlapping 
and interfering signals of multiple antibiotics in the SERS signal, making 
it difficult to determine the composition and ratio of the mixed samples 
(Dina et al., 2022). To address this issue, we employed the Independent 
Component Analysis (ICA) method to discern individual antibiotics 
within the SERS spectrum of the mixture. By computing and comparing 
the correlation coefficients of IC loadings with all NCs, we selected the 
top two IC loadings highly correlated with the reference spectra of the 
two antibiotics for presentation. For Doxycycline (Fig. 5A), the optimal 
two IC loadings were IC01/NC02 and IC07/NC07, with correlation co-
efficients of 76.24% and 59.49%, respectively (Fig. 5B). This indicates 
that ICA can only partially deconvolute pure antibiotics. Similarly, in the 
analysis of Tetracycline (Fig. 5C), the best two IC loadings were IC01/ 
NC02 and IC03/NC04, with correlation coefficients of 73.57% and 
56.98%, respectively (Fig. 5D). This result contrasts with previous 
findings suggesting that ICA can accurately identify target antibiotics in 
mixtures (Limwichean et al., 2023). This reduced correlation suggests 
that the signal of antibiotics may be influenced by either the substrate 
background or the interaction between the compounds, particularly as 
the concentration of the mixture decreases (Limwichean et al., 2023). ss. 

3.8. Identification of compounds in mixtures using pSCNN 

Due to the limitations of the Independent Component Analysis (ICA) 
method, the pSCNN algorithm was employed in this study to determine 
the proportions of individual antibiotics in the mixture. To evaluate the 
identification performance of pSCNN on real-world SERS spectra, the 
known content of the single antibiotic component in the mixture spec-
trum was preset in the antibiotic database. The test dataset, consisting of 
mixture spectra not included in the model training, was then used for 

verification. Ten SERS spectrum data points were extracted and input 
into the model to predict the proportions of single antibiotics within the 
mixture. As illustrated in Fig. 6, the pSCNN model successfully main-
tained the ratio of the two elemental antibiotics within the range of 
0.4–0.6 across the ten unknown mixture spectra. Notably, the prediction 
ratios for mixture spectra 6 and 8 almost reached a 1:1 proportion. These 
findings confirm the robust performance of the pSCNN model in accu-
rately identifying the components within the mixture. 

3.9. Limitations and future perspectives 

The application prospects of Raman spectroscopy in detecting trace 
antibiotics are considerable. However, most current research is still in 
the experimental stage, and before this technology can replace tradi-
tional detection methods, several existing challenges need to be over-
come. The preparation of SERS active substrates is the basis for the 
development of SERS technology in the analysis of milk, body fluids, or 
water (He, Sun, Pu, Chen, & Lin, 2019). The SERS active substrates 
developed in this study are mainly derived from nano‑silver colloids, 
which are simple to prepare and cost-effective. However, silver/gold 
substrates are particularly susceptible to oxidation in air, greatly 
reducing the SERS enhancement effect. Therefore, SERS substrates with 
strong signal enhancement and good antioxidative properties are 
needed. Currently, Ag SHIN monolayer (J. L. Yang et al., 2017), 
cyclodextrin-decorated Ag NPs (Ma et al., 2013), and Ni/Au core-shell 
MPs (R. Li, Zhang, Chen, Yan, & Wang, 2011) have been proposed. 
Secondly, similar to this study, most current research covers few types of 
antibiotics, and there is limited availability of high-quality public SERS 
data, with variations in laser wavelength, laser power, and exposure 
time used for spectrum acquisition. Therefore, more research is needed 
to accumulate a database of trace antibiotics in liquids with high 
recognition rates. Additionally, in this study, normalization was per-
formed on all data before using pSCNN analysis. Although this operation 
effectively improved the fitting speed and recognition accuracy of the 
model, the baseline and noise levels of low-concentration component 
samples may be amplified after normalization (Fan et al., 2023), which 
may degrade the performance of pSCNN when processing spectra of 
mixtures of multiple (more than two) low-concentration antibiotics. To 
address this, we need to develop better normalization algorithms and 
recognition models to improve the accuracy of Raman spectral identi-
fication of weak characteristic peaks. 

4. Conclusion 

This study presents a comprehensive analysis of TC and DXC residues 
in human milk samples using SERS in combination with computational 
methods. The study demonstrates a strong linear correlation between 
the concentrations of TC and DXC residues and the intensity of SERS 
signals. In order to develop an optimal intelligent detection method, the 
study explores the application of machine learning algorithms to 
differentiate and predict SERS spectra generated from human milk 
samples containing different antibiotics. Among all the machine 
learning algorithms, SVM consistently demonstrates the highest pre-
diction accuracy (ACC = 98.85%), indicating its effectiveness in 
analyzing trace antibiotics in human milk. Additionally, to quantify the 

Table 2 
Performance Comparison of Six Supervised Machine Learning Algorithms in Predicting SERS Spectra of Three Antibiotics in Human Milk.  

Algorithm Accuracy Precision Recall F1-score 5-Fold Time 

SVM 98.85% 98.85% 98.24% 98.85% 98.14% 0.053 s 
LDA 98.18% 98.18% 97.44% 98.17% 97.19% 0.16 s 
RF 96.36% 96.36% 96.10% 96.36% 95.83% 0.214 s 
XGBoost 94.55% 94.55% 94.77% 94.52% 94.94% 2.11 s 
DT 92.73% 92.73% 90.97% 92.53% 90.72% 0.004 s 
AdaBoost 90.91% 90.91% 92.10% 90.98% 92.68% 1.82 s  

J.-Y. Mou et al.                                                                                                                                                                                                                                 



Food Chemistry: X 22 (2024) 101507

9

proportions of various antibiotics in mixed breast milk samples, the 
pSCNN algorithm was employed to effectively identify pure substances 
in mixed antibiotic spectra. In conclusion, the study highlights the po-
tential of a machine learning-enabled Raman spectral identification 
approach for rapid and reliable detection of antibiotics and quantifica-
tion of their ratios in human milk samples. This approach holds promise 
for real-world applications and can contribute to ensuring the safety and 
quality of human milk products. 
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