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Malignant gliomas are highly heterogeneous brain tumors in molecular genetic

background. Despite the many recent advances in the understanding of this disease,

patients with adult high-grade gliomas retain a notoriously poor prognosis. Fusions

involving oncogenes have been reported in gliomas and may serve as novel therapeutic

targets to date. Understanding the gene fusions and how they regulate oncogenesis

and malignant progression will contribute to explore new approaches for personalized

treatment. By now, studies on gene fusions in gliomas remain limited. However, some

current clinical trials targeting fusion genes have presented exciting preliminary findings.

The aim of this review is to summarize all the reported fusion genes in high-grade gliomas

so far, discuss the characterization of some of the most popular gene fusions occurring

in malignant gliomas, as well as their function in tumorigenesis, and the underlying clinical

implication as therapeutic targets.
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BACKGROUND

Malignant glioma, which includes anaplastic gliomas and glioblastomas (GBMs), is the most
common subtype of adult primary brain tumors. Despite recent therapeutic advances for this
disease, it retains a notoriously deadly prognosis (1). Malignant gliomas are characterized by
extensive genomic heterogeneity and instability (2, 3). With the increasing understanding of
cancer pathogenesis and the development of high-throughput technologies in recent decades, the
consequences of somatic mutations resulting in fusion genes have attracted more concerns (4, 5).
Fusion genes have shown distinct capacity in both triggering and driving oncogenesis, and gene
fusion can occur through various mechanisms in different cells (Figure 1). Investigation into the
role of fusion genes in malignant gliomas has yielded promising yet still unrealized potential in the
future management of these diseases.

The FIG-ROS1 fusion was the first identified gene fusion in GBM (6). Following its discovery,
more fusion genes have been identified, many of which involve growth factor receptors. The EGFR-
SEPT14 and EGFR-PSPH fusions have both been observed, with EGFR-SEPT14 being the most
common fusion gene identified in GBM currently (7, 8). FGFR-TACC fusion is also commonly
identified in anaplastic astrocytoma and GBM, and in mice this fusion has demonstrated explicit
oncogenicity (9). Targeting fusion products has been a successful treatment strategy for other
cancers, such as targeting BCR-ABL1 in chronic myeloid leukemia (10). Similarly, therapy targeted
toward suppressing EGFR function has been shown to be an effective agent in treating GBM, and
FGFR inhibition in mice harboring FGFR-TACC fusion has been shown to increase survival (8, 9).
Notably, NTRK1 is a commonly found oncogene in various tumors while largely lacked in GBMs.
However, NTRK1 fusions could play important roles in the oncogenesis in GBMs (11). Recently,
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PTPRZ1-MET fusion has been identified as an oncogenic
mutation that can be observed in GBM and might provide useful
new targets for future treatments (12).

The number of researches aimed at identifying and trying
to understand the mechanisms of gene fusions in cancer is
vast and will only continue to grow. The goal of this review is
to identify all the reported fusion genes in malignant gliomas,
collect and organize the relevant information mainly regarding
gene fusions. The fusion genes that have been well characterized
will be outlined as a way to guide future research on the less
understood fusion mutations in malignant gliomas, of which
more and more are being identified.

METHODS OF LITERATURE SEARCH AND
SELECTION CRITERIA

A systematic review was performed following the Preferred
Reporting Items for Systematic Review and Meta-Analyses of
individual participant data (PRISMA-IPD) guidelines. PUBMED
was searched for relevant studies published from their inception
to March 16, 2021. The search strategy was a combination
of the following MeSH terms: “glioma” or “astrocytoma” or
“oligodendroglioma” or “oligoastrocytoma” or “glioblastoma”
and “fusion”. The query results were managed by Endnote X9
software (Thomson Reuters, New York, NY, USA) and further
screened, the exclusion criteria were listed as follows: 1) articles
published in languages other than English; 2) meeting abstracts
or abstract-only studies; 3) reviews, guidelines or classifications;
4) comments or letters; 5) case reports or small case series (<
5 cases) unrelated to fusion genes; 6) studies unrelated to fusion
genes; 7) studies in tumors other than adult supratentorial diffuse
high-grade gliomas; 8) animal studies; 9) other irrelevant studies.
Subsequently, potentially relevant literatures were obtained in
full-text and assessed for eligibility, only studies focused on fusion
genes in adult supratentorial diffuse high-grade gliomas would be
included in final review.

RESULTS OF LITERATURE SEARCH

1,773 publications were retrieved through a comprehensive
literature search in PUBMED database. Subsequently, titles
and abstracts of those articles were reviewed and screened.
Ultimately, 69 articles were selected for full-text assessment, and
47 studies were finally reviewed. Figure 2 shows the flowchart.
The selected studies comprised 120 identified fusion genes in
adult supratentorial diffuse high-grade gliomas. Sixteen of them
showed relative clear clinical significance, while the remaining
104 fusions were discovered just by screening analysis and there
was little information regarding the oncologic implications of

Abbreviations: GFR, Epidermal growth factor receptor; FGFR, Fibroblast growth

factor receptor; FIG, Fused In GBM; GBM, Glioblastoma multiforme; HGF,

Hepatocyte Growth Factor; HMGA2, High-mobility group AT-hook protein

2; IDH, Isocitrate Dehydrogenase; JAK, Janus Kinase; PSPH, Phosphoserine

phosphatase; PTPRZ1, Protein tyrosine phosphatase receptor type Z1; RTK,

Receptor Tyrosine Kinase; SEPT14, Septin 14; STAT3, Signal transducers and

activators of transcription 3; TK, Tyrosine Kinase; TKI, Tyrosine Kinase Inhibitors;

TRK, tropomyosin receptor kinase.

these proteins in the context of malignant gliomas. The lists
for the two sets of fusion genes are summarized in Table 1

and Supplementary Table 1. An integrated heatmap presents
the chromosomal relationships between those fusion partners
(Figure 3), showing the top 3 most frequent chromosomal
locations for gene fusions are chromosome 7, 1 and 12.

MAIN TARGETABLE GENE FUSIONS IN
MALIGNANT GLIOMAS

EGFR Fusions
Gene Location and Function
The epidermal growth factor receptor gene (EGFR) which lies
on chromosome 7p11.2 is implicated in various cancers with
some of the well-established examples including squamous cell
carcinoma, epithelial cell line cancers, and GBM. The physiologic
role of EGFR is to promote cellular growth, proliferation, and
survival. Undoubtedly, alterations in such an anabolic pathway
can result in oncogenesis.

Oncologic Implications of Altered EGFR Function
The estimated rate of EGFR amplification in GBM ranges from
25–40% (7, 13). In 20–30% of cases this is due to the variant
EGFRvIII which results from a deletion of exons 2–7 leading
to constitutive activity. The remainders of EGFR alterations are
generally products of upstream gain of function mutations and
fusions. Amplifications of EGFR are more common in tumors
that have gene fusions in general, but the augmentation of
EGFR can result from non-fusion events such as the case with
EGFRvIII (8). Fusions of EGFR to either septin 14 (SEPT14) or
phosphoserine phosphatase (PSPH) are present in 4–7% of GBM
patients. Intriguingly, EGFR fusion events are less likely to co-
occur with EGFRvIII, implying that a single one of the alterations
is sufficient for oncogenesis (7).

The main mechanism by which EGFR fusions exert their
mitogenicity is via activation of the STAT3 (signal transducers
and activators of transcription 3) signaling pathway although
in conjunction with other downstream products of EGFR
activation that serve to promote growth and advancement of
the cell cycle (14). The JAK (Janus Kinase)-STAT pathway is
responsible for initiating transcription of regions of the genome
that promote cellular growth and proliferation by inducing
the expression of anti-apoptotic proteins and other cell cycle
regulators (14). Additionally, activation of the EGFR pathway
and specifically its localization to the nucleus bestows a degree
of radioresistance and chemoresistance to the cell via induced
expression of protective proteins (15, 16). In normal cells this
pathway regulates the cell cycle, activating with growth is needed
and deactivating when cell cycle arrest is appropriate (17). STAT3
in particular has been implicated in a number of other cancers
including those arising from epithelial cell lines such breast
cancer, lung cancer, bladder cancer as well as hematologic cancers
and aberrations such as acute myeloid leukemia, diffuse large
B-cell lymphoma, large granular lymphocytic leukemia, aplastic
anemia, and myelodysplastic syndrome (18). For hematologic
cancers in particular, targeting the overactivity of STAT3 with
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FIGURE 1 | Different mechanisms in the formation of fusion genes.

inhibitors has shown promise (19). The most common EGFR
fusion in GBM, EGFR-SEPT14 is detailed below.

EGFR-SEPT14 Fusion
EGFR-SEPT14 fusion was the most observed gene fusion in
GBM (4%). However, preliminary evidence suggests that it can
be also present in Grade II and Grade III gliomas possessing
wild-type isocitrate dehydrogenase (IDH). The fusion occurs
following an in-frame fusion event with loss of the C-terminal
domain of EGFR to the 9th intron of SEPT14 which also lies on
chromosome 7 (7, 8). SEPT14 is a testis specific member of the
GTP-binding proteins of the cytoskeleton known collectively as
septins, and it is implicated in membrane transport, apoptosis,
cell polarity, cell cycle regulation, and cytokinesis (20). The result
is fusion protein that possesses the tyrosine kinase domain of
EGFR and the coiled-coil domain of SEPT14. Furthermore, as
Frattini et al. demonstrated, this fusion is sufficient to confer
mitogen independence to the cell that possess this fusion which

if unchecked progresses to carcinoma. Nevertheless, at this time,
it is unknown how EGFR-SEPT14 will play into diagnosing,
prognosticating, and treating patients (21).

EGFR-PSPH Fusion
The second most frequent fusion of EGFR is the EGFR-PSPH
fusion (2.2%). Analysis of The Cancer Genome Atlas (TCGA)
has indicated that the same N-terminal portion of EGFR is
implicated; however, in place of SEPT14, PSPH serves as the 3’
partner (7). PSPH, which lies on chromosome 7p11.2, encodes
the protein phosphoserine phosphatase which is responsible
for the hydrolysis of L-phosphoserine as well as involved in
additional aspects of amino acid metabolism (22). Similar to
EGFR-SEPT14, the fusion partner of EGFR merely serves as a
vessel in order to increase the expression of EGFR. The clinical
role and characterization of EGFR-PSPH have not yet to be
extensively explored.
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FIGURE 2 | Flow chart of the systematic review.

TABLE 1 | Summary of fusion genes identified in adult supratentorial diffuse high-grade gliomas*.

Fusion gene Location Significance

BCAN-NTRK1 1q23.1-1q23.1 A potent oncogenic driver of high-grade gliomas, and is sensitive to TRK inhibitor entrectinib.

BCL6-RAF1 3q27.3-3p25.2 A novel RAF1-partnered fusion.

PSPHP1–ROS1 6q22.31-6q22.1 Potentially amenable for clinical intervention with kinase inhibitors.

EGFR-SEPT14 7p11.2-7p11.2 It can activate STAT3 signaling and confer mitogen independence and sensitivity to EGFR inhibition.

FGFR3-TACC3 4p16.3-4p16.3 It can generate an oncogenic protein that promotes tumorigenesis in GBM.

FIG-ROS1 6q22.1-6q22.1 It’s frequency in gliomas remains controversial, but it plays oncogenic properties in many cancers.

GOPC–ROS1 6q22.1-6q22.1 Potentially amenable for clinical intervention with kinase inhibitors.

HMGA2-EGFR 12q14.3-7p11.2 It can activate EGFR signaling.

KANSL1-ARL17A 17q21.31-17q21.31 A cancer predisposition fusion gene associated with genetic backgrounds of European ancestry origin.

KDR-PDGFRA 4q12-4q12 It belongs to the immunoglobulin superfamily.

KIAA1549-BRAF 7q34-7q34 It is more frequent in oligodendroglial neoplasm and potentially responsible for deregulation of the Ras-RAF-ERK

signaling pathway.

NFASC-NTRK1 1q32.1-1q23.1 It might have played driver role during the initiation or progression of the fusion-positive GBMs.

PTEN-COL17A1 10q23.31-10q25.1 It can regulate Collagen XVII expression.

PTPRZ1-MET 7q31.32-7q31.2 Highly enriched in secondary GBM, and has guiding significance for MET-targeted trials.

PTPRZ1-ETV1 7q31.32-7p21.2 A novel potential therapeutic target.

*The clinical significance of these fusion genes is relatively clear.

HMGA2-EGFR Fusion
A novel fusion gene HMGA2-EGFR has been identified by
Komuro et al. (23). It could encode a protein comprising the
N-terminal region of the high-mobility group AT-hook protein
2 (HMGA2, chromosome location 12q14.3) fused to the C-
terminal region of EGFR. The fusion products represented
transforming potential and high tumor-forming capacity in cell
culture. Compared with EGFRvIII, HMGA2-EGFR could induce
a higher level of phosphorylated STAT5B. Further investigation
remains required to explore the clinical role and characterization
of this novel fusion gene.

Targeting EGFR Fusions and Directions for the Future
Tyrosine Kinase Inhibitors (TKIs) like lapatinib and erlotinib are
the most clinically popular EGFR-targeting therapy to date (24).
A previous in vitro study showed that the mitogenic capacity
granted by EGFR-SEPT14 is reversible via TKIs, providing
some exciting insight into treating GBMs with EGFR-SEPT14
fusions (7). But overall, there is still a long way before targeting
EGFR fusions can be applied to clinical practice. In addition,
clinical trials did not show significant survival benefits of EGFR
inhibitors in GBMpatients, and the non-specific patient selection
might be the underlying main reason. Future studies may focus
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FIGURE 3 | Heatmap detailing the chromosomal locations of the fusions identified.

on looking for effective therapeutic targets and selecting patients
through individual genomic examination.

FGFR-TACC Fusions
Gene Function of FGFR
The fibroblast growth factor receptor (FGFR) family that
interacts with fibroblast growth factor (FGF) ligands is a highly
evolutionarily conserved mediator of a variety of physiologic
functions. Some of the functions of the FGFR family include
signaling cellular stages of development, preserving homeostasis,
as well as policing metabolic processes (25). Mutations of the
FGFR family of receptors have been implicated in a number of
different cancers including lung, cervical and bladder cancers in
addition to GBM (26). The four main human FGFR receptor
types are numerically named FGFR1, 2, 3, and 4. FGFR1,

FGFR2, and FGFR3 are the most germane to the discussion of
glioma associated fusion genes with the majority of fusion events
involving FGFR1 (9, 27, 28).

Oncologic Implications of FGFR-TACC Fusions
FGFR-TACC is the best described of the FGFR fusions in gliomas.
The rate of FGFR2/3-TACC fusion in GBM is estimated to be
on the order of 2.6-10% with most estimates in the 3% range
(9, 29, 30). Abstractly, this fusion occurs with an FGFR locus
and its corresponding TACC located on the same chromosome.
The result is a constitutively phosphorylated fusion product that
exerts oncogenic effect (9). For instance, the most commonly
observed fusion is FGFR3-TACC3 both located on chromosome
4. Yet, fusions of FGFR2 and TACC2 along with FGFR1 and
TACC1 located on chromosomes 10 and 8 respectively have
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been reported as well. This fusion event is possible owing to the
proximity of FGFR and TACC on their respective chromosomes
(9). The TACC protein is also a highly evolutionarily conserved
protein with a distinctive coiled-coil domain similar to that of
SEPT14 involved in EGFR fusions. Its overexpression is present
in malignancies such lung cancer, colon cancer, and multiple
myeloma (31). TACC’s physiologic function is to localize to and
stabilize the mitotic spindle during mitosis, specifically during
chromosomal separation (32, 33).When fused, these two proteins
can wreak havoc on the individual genome of a cell culminating
in tumor formation in a manner independent of FGF ligands.

Singh et al. demonstrated a potential mechanism by which
FGFR fusions exert their oncogenic effect. Their analysis was
specifically focused on the FGFR-TACC fusion; however, it has
been postulated that other FGFR fusions (e.g. FGFR3-ELAVL)
exert their effect by a similar mechanism (3). They performed
their experiments both in the presence of FGF ligands and
without and noted that FGF presence was not necessary for effect
but in fact due to constitutive phosphorylation of the tyrosine
kinase (TK) domain of the fusion complex acting in a manner
distinct from the physiologic pathway of FGFR. Experiments
with inactivated TK domains did not demonstrate oncogenic
capacity suggesting that this is the underlying mechanism
for the effect of FGFR fusions (9). The result of this effect
was aberrant chromosome segregation during mitosis leading
to general chromosomal instability and aneuploidy (9, 27).
Once destabilized, the chromosomes lose genetic fidelity during
replication ultimately resulting in oncogenesis (27). Frattini
et al. elucidated that FGFR3-TACC3 fusions could activate
oxidative phosphorylation and mitochondrial biogenesis and
induce sensitivity to inhibitors of oxidative metabolism. It
uncovers an oncogenic circuit engaged by FGFR-TACC fusions
in cancer (34).

Targeting FGFR-TACC Fusions and Directions for the

Future
As far as the clinical role of FGFR-TACC fusions, there are a
number of small molecule and antibody inhibitors that target
the FGFR axis. The oldest class of drugs that target this axis are
the Oxindoles, discovered in 1997. Other drug classes that target
FGFR and have been examined for their potential anti-cancer
properties include the Pyrido (2,3-d) pyrimidines, Quinolines,
Azaindoles, Indazoles, Naphthyridines, Pyrrolo (2,1-f) (1, 2, 4)
triazines, and a variety of antibodies targeting different sites of the
FGFR receptor. However, FGFR inhibitors were not developed
specifically for brain tumors. The existence of blood-brain barrier
remains a challenge for FGFR-TACC targeting and only recently
has FGFR become a focus for targeted glioma therapy.

Drugs like dovitinib are currently in Phase I trials for patients
with recurrent GBM. This drug takes the wide approach and
targets FGFR, VEGFR, PDGFR β, and c-Kit. Unfortunately,
in the Phase I cohort the FGFR-TACC fusion was unable to
be detected in the group of patients with progression free
survival after 6 months. However, it is unclear whether this
observed effect was a product of the interaction between the
drug and tumor genetics or merely a result of the small size of
the Phase I patient cohort (35). BGJ398 is an FGFR inhibitor

originally studied for epithelial cancers that has recently entered
Phase II trials (NCT01975701) for GBM patients with FGFR
amplifications and fusions (36). Erdafitinib (JNJ-42756493) is
a small molecule pan-FGFR inhibitor that shows promise for
specifically inhibiting FGFR3-TACC3 fusions in IDH wild-type
glioma in vitro as well as in a Phase I clinical trial (NCT01703481)
(37). It is thought that erdafitinib exerts its effect by inducing
selective radiosensitivity of tumor cells (27). Although the high
heterogenicity and the indefinable longitudinal evolutionary path
of GBM are still obstacles for successful FGFR-TACC targeting,
cautious optimism should be maintained for future studies (38).

NTRK Fusions
NTRK encodes the tropomyosin receptor kinase (TRK) receptor
family. They actively participate in neuronal development,
maintenance, and protection. The rearrangements of TRK
receptor family play important parts in the oncogenesis in
various cancers including glioma. These fusion proteins may
induce tumor cell proliferation and activate downstream PI3K-
AKT, RAS/MAPK/ERK signaling pathways. Given the little
understanding in the function of NTRK2/3 fusions in glioma, we
emphatically describe NTRK1 fusions here.

NTRK1 Gene Partner Locations and Functions
NTRK1 is a known oncogene located in 1q23.1. It encodes a
kinase member of the NTRK family, which is also a high affinity
receptor for nerve growth factor (NGF). RNA-Seq data of TCGA
showed that NTRK1 was observed to be fused with two genes,
neurofascin (NFASC, location 1q32.1) and brevican (BCAN,
location 1q23.1) (11). Another two novel in-frame fusions of
NTRK1, CHTOP-NTRK1 and ARHGEF2-NTRK1, were found
by Zheng et al. (39), and the biological functions of the two novel
fusion partners are not clear yet.

Oncologic Implications of NTRK1 Fusions
NTRK1 gene fusions indicate not only elevated expression of
NTRK1, but also NGF-triggered activation of the NGF/TrkA
downstream pathway. The involvement of NTRK1 in GBM
remains unknown, however, it is frequently involved in other
cancers. Most of the genes partner of NTRK1 harbor coiled-
coil domains, which could mediate dimerization of the fusion
genes and consequent activation of the TrkA kinase domain.
NFASC and BCAN are two more exceptions without coiled-
coil domains. Ig-like domains appear to mediate dimerization of
TrkA instead of coiled-coil domains. TrkA has Ig-like domains
within the extracellular portion of the protein, which mediate
NGF-dependent dimerization. In addition, transduction of the
NFASC-NTRK1 fusion gene can result in increased proliferation
in cell model (11).

Targeting NTRK Fusions and Directions for the Future
TRK inhibitors have already shown potential efficacy in tumors
with functional NTRK fusions, including gliomas. Entrectinib
(RXDX-101) is a pan-TRK inhibitor. A preclinical study showed
the efficacy of entrectinib onGBM in amousemodel with BCAN-
NTRK1 fusions (40). In a Phase II basket study (STARTRK-2),
the therapeutic effects of entrectinib were evaluated in patients

Frontiers in Neurology | www.frontiersin.org 6 October 2021 | Volume 12 | Article 715206

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


You et al. Fusion Genes in Malignant Gliomas

suffering from different tumors, and the only glioma patient
with BCAN-NTRK1 fusion represented almost a halving in
tumor volume (41). Larotrectinib (LOXO-101) is a selective
pan-TRK inhibitor. Preliminary results from NAVIGATE Phase
2 larotrectinib trial (NCT02576431) showed its significant
role in treating NTRK fusion-positive recurrent GBM (42).
Larotrectinib was also considered to have marked and durable
antitumor activity in patients with TRK fusion-positive cancer
(NCT02576431 andNCT02637687) (43). Although the biological
mechanism and clinical significance of NTRK fusions remain
unclarified, further studies and clinical trials are needed for
targeted therapy in GBM patients regarding NTRK fusions.

MET Fusions
Gene Partner Locations and Functions
MET is a well characterized transmembrane receptor tyrosine
kinase implicated in a number of cancers from non-small-cell
lung cancers and solid organ tumors like papillary renal cell
carcinoma and hepatocellular carcinoma to various head and
neck cancers in addition to CNS tumors. MET’s expression
is normally tightly delimited by numerous mechanisms
including epigenetic modifications, DNA methylation,
transcriptional regulators, post-transcriptional glycosylation and
phosphorylation, as well as interaction with growth factors such
as the Hepatocyte Growth Factor (HGF) ligand (44).

The PTPRZ1-MET (ZM) fusion is a recently discovered
gene fusion of GBM. This fusion occurs as a result of
intron insertion and tandem duplication between the protein
tyrosine phosphatase receptor type Z1 (PTPRZ1) gene located
on chromosome 7q31.32 and the closely located MET proto-
oncogene receptor tyrosine kinase (MET, location 7q31.2).
This insertion can result in both in-frame and out of frame
transcripts depending on the location of gene insertion during
fusion (12). PTPRZ1 is only expressed in the CNS and is
thought to be responsible for CNS development and repair
following injury. Its expression is commonly altered in a
variety of cancers including GBM and other non-CNS tumors
(45). And while its behavior is characterized, its utility as a
clinical tool is yet to be fully characterized. PTPRZ1-MET
bypasses many of these regulatory mechanisms resulting in
overexpression of MET and subsequent activation of the MET
signaling pathway.

Oncogenic Implications of MET Overactivity
Overexpression of MET results in a wide variety of downstream
effects culminating in oncogenesis. Physiologically, MET is
responsible for cellular growth and proliferation in response to
HGF, so it is no surprise that MET overexpression can result in
tumorigenesis. The overexpression of MET exerts its oncogenic
capacity in two main ways: by providing additional binding

TABLE 2 | Biological characteristics of recurrent gene fusions as therapeutic targets in GBM.

Fusion

gene

Fusion

incidence

Chromosome

location

Main gene

partners

Signaling

pathway

Targeted

medicine

EGFR 2.2–4% 7p11.2 SEPT14

PSPH

HMGA2

VWC2

STAT3

STAT

Lapatinib,

Erlotinib

FGFR1

FGRR3

1.1%

1.2–8.3%

8p11.23

4p16.3

TACC1

TACC 3

BRAP

NBR1

ERK,

MAPK,

PI3K,

and JAK-STAT

Ponatinib

BGJ398,

Erdafitinib,

AZD4547

NTRK1

NTRK2

NTRK3

1.2–1.7% 1q23.1 NFASC

BCAN

CHTOP

ARHGEF2

GKAP

KCTD8

NOS1AP

SQSTM1

TBC1D2

VCAN

EML4

NGF/TrkA Entrectinib,

Larotrectinib

MET 3% 7q31.2 PTPRZ1

TGF

CLIP2

CAPZA2

ST7

TPR

HGF,

MAPK,

PI3K,

STAT

PLB1001,

Crizotinib,

Foretinib

ROS1 <0.6% 6q22.1 FIG(GOPC) SHP-2,

MAPK,

PI3K,

STAT

Crizotinib,

Ensartinib
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sites for HGF and undergoing ligand independent dimerization
and activation (46). Once activated, MET effects a number
of known oncogenic pathways namely, RAS, PI3K, and JAK-
STAT. Dysregulation of these pathways results in tumor growth
via self-sustaining neurosphere formation, angiogenesis, and
after sufficient time ability for tumor to metastasize (45, 47–
49). PTPRZ1-MET exerts its oncogenetic capacity by hijacking
the MET pathway resulting in tumor formation and if left
unchecked, metastasis.

Targeting MET Fusions and Directions for the Future
Hu et al. demonstrated that MET-exon-14-skipping frequently
co-occurred with ZM fusions and was present in about
14% of secondary GBM patients with significantly worse
prognosis. As a MET kinase inhibitor, PLB-1001 had
remarkable potency in selectively inhibiting MET-altered
tumor cells in preclinical models and clinically achieved
partial response in some advanced secondary GBM patients
(NCT02978261) (50). In another study by Bender et al. they

FIGURE 4 | Downstream pathways related to specific driver fusions and targeted inhibitors.
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treated a pediatric patient bearing a MET-fusion-expressing
GBM with the targeted inhibitor crizotinib. The therapy
led to substantial tumor shrinkage and associated relief
of symptoms (51). These clinical findings indicate a
clinical potential for precisely treating gliomas by targeting
MET fusions.

FIG-ROS1 Fusion
Gene Partner Locations and Functions
The human ROS1 gene (location 6q22.1) was initially discovered
as the homolog of the chicken c-ros. ROS1 encodes for a
receptor tyrosine kinase (RTK), which is most closely related
to the ALK and LTK human RTKs (52), is recently shown

to be involved in genetic rearrangements with transforming
capability. Endogenous ROS1 rearrangements were first observed
in the human GBM cell line U118MG, in which an interstitial
deletion of 240 kilobases on 6q21 region is responsible for
the fusion of exon 7 of FIG (Fused In GBM, location 6q22.1)
(also known as GOPC, Golgi-associated PDZ and coiled-
coil motif containing) with exon 35 of ROS1. FIG encodes
for a 454-amino acid protein that includes a PSD-95, Disc
Large, ZO-1 (PDZ) domain, two coiled-coil regions, and a
leucine zipper. FIG associates peripherally with the Golgi
apparatus by interacting through its second coiled-coil domain
with a SNARE protein and may play a role in oncogenic
signaling (6).

TABLE 3 | Ongoing clinical trials involving fusion genes in GBM.

Fusion gene Targeted medicine NTC number Phase Number

enrolled

Status Study title

FGFR fusion Anlotinib NCT04004975 I/II 50 Recruiting Clinical study on the treatment of recurrent

Glioblastoma with anlotinib

BGJ398 NCT01975701 II 26 Completed A phase 2 study of BGJ398 in patients with GBM

Erdafitinib (JNJ-42756493) NCT01703481 I 188 Completed A study to evaluate the safety, pharmacokinetics,

and pharmacodynamics of JNJ-42756493 in adult

participants with advanced or refractory solid

tumors or lymphoma

AZD4547 NCT02824133 I/II 14 Completed Treatment with AZD4547 for recurrent malignant

glioma expressing FGFR-TACC gene fusion

NTRK fusion Larotrectinib (LOXO-101) NCT02576431 II 320 Recruiting A study to test the effect of the drug Larotrectinib in

adults and children with NTRK-fusion positive solid

tumors (NAVIGATE)

NCT02637687 I/II 104 Recruiting A study to test the safety and efficacy of the drug

Larotrectinib for the treatment of tumors with

NTRK-fusion in children (SCOUT)

NCT03213704 II 49 Recruiting Larotrectinib in treating patients with relapsed or

refractory advanced solid tumors, non-hodgkin

lymphoma, or histiocytic disorders with NTRK

Fusions (a pediatric MATCH treatment trial)

NCT03834961 II 70 Not yet recruiting Larotrectinib in treating patients with previously

untreated TRK fusion solid tumors and TRK fusion

relapsed acute leukemia

NTRK fusion/ROS1 fusion Entrectinib (RXDX-101) NCT02650401 I/II 65 Recruiting Study of entrectinib (Rxdx-101) in children and

adolescents with no curative first-line treatment

option, recurrent or refractory solid tumors and

primary cns tumors, with or without Trk, Ros1, or

Alk fusions

NCT02568267 II 300 Recruiting Basket study of Entrectinib (RXDX-101) for the

treatment of patients with solid tumors harboring

NTRK 1/2/3 (Trk A/B/C), ROS1, or ALK gene

rearrangements (Fusions) (STARTRK-2)

PTPRZ1-MET fusion PLB1001 NCT02978261 I 20 Recruiting Study of a c-Met inhibitor PLB1001 in patients with

PTPRZ1-MET fusion gene positive recurrent

high-grade glioma

MET fusion/ ROS1 fusion Crizotinib NCT02270034 I 24 Active, not recruiting Study to evaluate safety and activity of crizotinib

with temozolomide and radiotherapy in newly

diagnosed glioblastoma

ROS1 fusion Ensartinib NCT03213652 II 98 Recruiting Ensartinib in treating patients with relapsed or

refractory advanced solid tumors, non-hodgkin

lymphoma, or histiocytic disorders with ALK or

ROS1 genomic alterations (a pediatric MATCH

treatment trial)
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Oncologic Implications of FIG-ROS1 Fusion
The FIG-ROS1 transcript is encoded by 7 FIG exons and 9
ROS-derived exons. In mice, the FIG-ROS1 fusion gene has
been shown to promote the formation of astrocytomas when
ectopically expressed in the basal ganglia (53). The FIG-ROS1
locus encodes for an in-frame fusion protein with a constitutively
active kinase activity. Expression of the FIG-ROS1 fusions in
GBM or fibroblasts cells has been shown to result in auto-
phosphorylation of ROS1 and phosphorylation of SHP-2, MEK,
ERK, STAT3, and AKT (53, 54).

Targeting FIG-ROS1 Fusion and Directions for the

Future
Despite the delineation of the FIG-ROS1 rearrangements is rare
in clinical cases with glioma (55, 56), the prospects of targeting
FIG-ROS1 fusions should not be neglected. Experimental use of
combination therapy consisting of crizotinib and temozolomide
to desensitize and target FIG-ROS1 fusions in cell cultures from
adult GBM has had a profound antitumor effect in vitro and ex
vivo (57). Davare et al. demonstrated that lorlatinib, an ROS1
inhibitor, significantly prolonged survival in an intracranially
xenografted tumor model generated from a ROS1 fusion-positive
GBM cell line (58). Crizotinib is an FDA-approved ROS1
inhibitor that could potentially target the FIG-ROS1 fusion and is
being used as salvage therapy for cancers. Ensartinib, as another
targeted medicine to ROS1 fusion, is currently enrolled into
a phase II Pediatric MATCH trial containing refractory CNS
Neoplasm (NCT03213652). Further development of treatment
guidelines for ROS1 inhibitors may represent a promising
modality for future study.

Other Fusions in GBMs
Ozawa et al. investigated the PDGFRA locus in PDGFRA-
amplified gliomas and identified the first case of a gene
fusion between kinase insert domain receptor (KDR)
(VEGFRII) and the PDGFRA gene (KP fusion) (59).
Tumors with this fusion displayed histologic features of
oligodendroglioma. The authors subsequently demonstrated
the fusion proteins was autophosphorylated on tyrosine
residues and associated with the activation of downstream
MAPK and PI3K signaling pathways. These results suggest
the possibility that KP fusion behaves as oncogene in
PDGFRA-amplified GBMs.

Shah et al. explored genomic data of 185 GBM samples and
identified 27 fusion gene partners, including some novel non-
coding genes, such as non-coding RNA RP11-745C15.2 fused
with LANCL2 gene (8). Moreover, RNA RP11-745C15.2 was also
found to be fused with EGFR. Both fusions can lead to C-terminal
truncation of the fused gene. The underlying signaling pathway
needs to be further investigated.

Subramaniam et al. reported a total fusion incidence of 9.7%
in 404 glioma tumor specimens tested by RNASeq analysis.
Some of them haven’t been previously described in gliomas (e.g.,
EGFR-VWC2, FGFR-NBR1, FGFR-BRAP, ST7-MET, RAB3IP-
PDGFRA and several NTRK2 fusions) (60). Additionally,

fusion genes, such asMAN2A1–FER, CCNH-C5orf30, TRMT11-
GRIK2, were discovered in multiple cancer types including
GBMs (61, 62). The underlying function of these fusions
in gliomas needs to be further investigated. To guide novel
strategies of targeted therapy, more experimental and clinical
trials are essential for further understanding these newfound
fusion genes.

CONCLUSIONS

With the advent of rapid DNA and RNA sequencing, proteomics
and bioinformatics, recent literature has done a wonderful job
in identifying and characterizing fusion partners and transcripts.
However, the effects of fusion genes on tumor biological behavior
and relevant internal mechanism are far from clarified, which
limits further exploration on the diagnostic and therapeutic value
of fusion genes. Accordingly, the functional characterization
of fusion genes should be the next step for translating the
existing wealth of information to the clinical setting. In the
current review, we summarized fusion genes with relatively clear
biological characteristics in adult malignant gliomas (Table 2).
Identification of such fusion genes and associated kinases may
allow us to exploit therapeutic opportunities with targeted
therapies in adult malignant gliomas. Targeted drugs have great
promise to be applied directly to malignant gliomas subject to
the oncogenic fusions (Figure 4). Relative clinical trials are still
ongoing in recurrent high-grade gliomas (Table 3) and some of
them presented exciting preliminary findings. In the coming era
of integrated diagnosis and personalized treatment for gliomas,
to identify more fusion genes as biomarkers across different
glioma subtypes and to apply corresponding targeted therapy is
an inexorable trend.
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