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of Neurosurgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China

Background: Reliable and individualized biomarkers are crucial for identifying

early cognitive impairment in subcortical small-vessel disease (SSVD) patients.

Personalized brain age prediction can effectively reflect cognitive impairment.

Thus, the present study aimed to investigate the association of brain age with

cognitive function in SSVD patients and assess the potential value of brain age

in clinical assessment of SSVD.

Materials and methods: A prediction model for brain age using the relevance

vector regression algorithm was developed using 35 healthy controls.

Subsequently, the prediction model was tested using 51 SSVD patients

[24 subjective cognitive impairment (SCI) patients and 27 mild cognitive

impairment (MCI) patients] to identify brain age-related imaging features.

A support vector machine (SVM)-based classification model was constructed

to differentiate MCI from SCI patients. The neurobiological basis of brain age-

related imaging features was also investigated based on cognitive assessments

and oxidative stress biomarkers.

Results: The gray matter volume (GMV) imaging features accurately predicted

brain age in individual patients with SSVD (R2 = 0.535, p < 0.001). The

GMV features were primarily distributed across the subcortical system (e.g.,

thalamus) and dorsal attention network. SSVD patients with age acceleration

showed significantly poorer Mini-Mental State Examination and Montreal

Cognitive Assessment (MoCA) scores. The classification model based on GMV

features could accurately distinguish MCI patients from SCI patients (area

under the curve = 0.883). The classification outputs of the classification model

exhibited significant associations with MoCA scores, Trail Making Tests A and
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B scores, Stroop Color and Word Test C scores, information processing speed

total scores, and plasma levels of total antioxidant capacity in SSVD patients.

Conclusion: Brain age can be accurately quantified using GMV imaging data

and shows potential clinical value for identifying early cognitive impairment

in SSVD patients.

KEYWORDS

brain age, subcortical small-vessel disease, subcortical vascular cognitive
impairment, gray matter volume, relevance vector regression

Introduction

Subcortical small-vessel disease (SSVD) is the most common
cause of vascular cognitive impairment in elderly people and
shows visible radiological biomarkers on magnetic resonance
imaging (MRI), i.e., lacunar, white matter hyperintensity
(WMH), cerebral microbleeds (CMBs), or brain atrophy
(Chojdak-Łukasiewicz et al., 2021; Hamilton et al., 2021).
Although the pathological mechanisms of SSVD remain unclear,
there is strong evidence that potential pathophysiological
mechanisms, including oxidative stress, inflammatory response,
and endothelial dysfunction, can impair the structure and
function of cerebral small vessels (Ungvari et al., 2021). Vascular
dysfunction in SSVD can progressively induce neuronal damage
and result in subcortical vascular cognitive impairment (SVCI),
ranging in severity from subjective cognitive impairment (SCI)
to mild cognitive impairment (MCI) and dementia (Gorelick
et al., 2011; Diciotti et al., 2017). However, traditional imaging
biomarkers are insufficiently accurate for identifying SVCI,
especially early SVCI (Hosoki et al., 2021). Therefore, there is
urgent need for new, more effective imaging biomarkers for
SVCI, which will contribute to early interventions for cognitive
impairment in SSVD patients.

Multimodal MRI has revealed abundant age-related changes
in the brain microstructure of SSVD patients. Some subregions
of the temporal lobes, hippocampus, and thalamus show
decreased gray matter volume (GMV) and these changes
are correlated with poor cognition in SSVD patients (Wang
et al., 2020). In elderly people with WMH, higher functional
connectivity in the fronto-parietal and salience networks may
protect executive function (Benson et al., 2018). Patients with
SSVD exhibit high heterogeneity in imaging characteristics; as
a result, cognition-related imaging differences at the group-
level are difficult for use as biomarkers at the individual level.
Previous studies have indicated that brain age prediction can
determine brain aging based on individual brain MRI data,
which can be used as an effective biomarker to estimate cognitive
impairment in neurological and psychiatric disorders (Liem
et al., 2017; Shahab et al., 2019; Beheshti et al., 2020; Gautherot
et al., 2021; Mishra et al., 2021). Thus, it is essential to investigate
the association of SVCI with individual brain age.

Multivariate machine learning algorithms provide
substantial advantages in processing multidimensional data
and constructing personalized neuroimaging models (Shi et al.,
2021b; Wang et al., 2021). Although some algorithms have been
used to analyze cerebral WMH and diffusion tensor imaging
data, machine learning in SSVD is preliminary (Ciulli et al.,
2016; Zee et al., 2021). To date, no study has explored the
potential of machine learning for the analysis of multimodal
MRI data in SSVD. Among the available machine learning
methods, the relevance vector regression (RVR) algorithm
offers great advantages for reducing model complexity and
increasing predictive efficacy and has been widely used to build
effective prediction models, including brain age prediction
models (Cui and Gong, 2018; Hajek et al., 2019; Baecker et al.,
2021).

The aim of the present study is to build a brain age
predication model and evaluate the relationship between brain
age and cognitive impairments in SSVD. Brain age-related
neuroimaging features are then identified and their potential
clinical applications in SVCI are further explored. The study
design and analyses are shown in Figure 1.

Materials and methods

Participants

Thirty-five healthy controls (HCs) were recruited through
community health screening and 51 SSVD patients were
recruited from The Affiliated Wuxi People’s Hospital of Nanjing
Medical University (Wuxi, China). All participants underwent
a standardized clinical interview, including demographic
inventory and examination of their physical and mental
health. Routine blood testing and brain imaging (three-
dimensional T1-weighted, T2-weighted, fluid-attenuated
inversion recovery, susceptibility weighted images, diffusion-
weighted imaging, and magnetic resonance angiography)
were performed for each participant. All participants or their
legal guardians provided written informed consent after being
explained all details of the study. The ethical approval was
obtained from the Ethics Committee of the Affiliated Wuxi
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FIGURE 1

Schematic of the data analysis pipeline. (A) Discovery of prediction model. Imaging feature extraction for each brain region was based on the
Brainnetome atlas and used to establish brain age prediction models. (B) Verification of the prediction model. Determination of the brain age
prediction model in SSVD patients and evaluation of the association of brain age with cognitive assessments. (C) Expansion of the model.
Establishment of a SVM classification model with brain age-related imaging features and exploration of its neurobiological basis. HCs, healthy
controls; SSVD, subcortical small-vessel disease; GMV, gray matter volume; mALFF, mean amplitude of low frequency fluctuation; mfALFF,
mean fractional amplitude of low-frequency fluctuation; RVR, relevance vector regression; SVM, support vector machine; SCI, subjective
cognitive impairment; MCI, mild cognitive impairment; AUC, area under the curve.

People’s Hospital of Nanjing Medical University (approval
number: KY2112).

Neuropsychological assessments

All participants underwent a neuropsychological battery
comprising the following tests: (1) global cognition: Mini-
Mental State Examination (MMSE) and Montreal Cognitive
Assessment (MoCA); (2) episodic memory: Auditory Verbal
Learning Test-immediate recall (AVLT-IR) and Auditory Verbal

Learning Test-20-min delayed recall (AVLT-20 min DR); (3)
information processing speed: Trail Making Tests A (TMT-A)
and Stroop Color and Word Test A and B (Stroop-A and Stroop-
B); (4) executive function: Trail Making Tests B (TMT-B),
Stroop Color and Word Test C (Stroop-C), and Digit Span Test
(DST); (5) visuospatial function: Clock Drawing Test (CDT);
(6) emotional assessment: 17-item Hamilton Depression Rating
Scale (HAMD-17), and (7) National Institutes of Health Stroke
Scale (NIHSS) was also conducted.

To facilitate data analysis, standard data
translation was performed as previously described
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(Shu et al., 2016; Shi et al., 2020a). The raw test scores
underwent Z-transformation using the mean and standard
deviation. To obtain the total information processing speed
and executive function scores, the composite scores for
these two cognitive domains were calculated using the
Z-transformed averages.

Inclusion and exclusion criteria

The general inclusion criteria for all participants were
as follows: (1) aged 50−80 years old; (2) ≥ 6 years of
education; (3) generally in good health with adequate visual
and auditory acuity for neuropsychological assessments; and (4)
no contraindication to MRI scanning. All HCs showed normal
cognition (MMSE score ≥ 26, MoCA score ≥ 26, and HAMD-
17 < 7) without any symptoms of stroke or imaging changes
reflecting cerebrovascular disease.

According to established diagnostic criteria (Pantoni, 2010;
Chen et al., 2019), SSVD patients were diagnosed based on
MRI evidence of vascular changes as follows: (1) total number
of lacunes were counted, and ≥ 2 lacunes were considered
as the presence of lacunes; (2) WMH was quantified using
the Fazekas scale (overall score of 6), and a score ≥ 1 was
considered as displaying WMH; and (3) the total number of
CMBs were counted, and ≥ 3 CMBs was considered as a
threshold. Among the SSVD patients, those with MCI exhibited
some degree of cognitive impairment as confirmed by family
members and neuropsychological assessments, without meeting
the Diagnostic and Statistical Manual of Mental Disorders, Fifth
Edition criteria for dementia. SSVD patients with SCI had
subjective complaints about impaired cognitive function, but
there was a lack of objective evidence of cognitive impairment
(i.e., normal neuropsychological assessments).

Participants with any of following characteristics were
excluded: (1) major depressive disorder or other psychiatric
disorders; (2) clinical cerebrovascular disorders with large
intracranial vascular lesion; (3) a history of brain trauma
or other neurologic disease (e.g., Parkinson’s disease); (4)
significant medical problems (e.g., autoimmune disease, tumor,
significantly impaired liver, or kidney function); and (5) abuse
or dependence of alcohol or drugs.

Magnetic resonance imaging data
acquisition and preprocessing

Multimodal imaging data acquisition and preprocessing
have been described in our previous studies (He et al., 2019;
Shi et al., 2019; Wang et al., 2021) and Supplementary
material. A 3.0T MR scanner (MAGNETOM Prisma, Siemens
Healthcare, Germany) was used in the present study. The
average GMV values of 210 cortical and 36 subcortical

subregions (Supplementary Table 1), as described in the
Brainnetome Atlas (Fan et al., 2016), were obtained for
each participant. Processing of the mean amplitude of low
frequency fluctuation (mALFF) and mean fractional amplitude
of low-frequency fluctuation (mfALFF) are described in
Supplementarymaterial. The values of the MRI indicators were
utilized as feature vectors for the subsequent analyses.

Multivariate relevance vector
regression analysis

Multivariate RVR analysis was described in our previous
studies (Shi et al., 2020b, 2021a) and additional details of RVR
method (Tipping, 2001) are provided in the Supplementary
material. In brief, the association between age and GMV values
was analyzed using a multivariate RVR method implemented
in the Pattern Recognition for Neuroimaging Toolbox.1 In the
training and test sets, leave-one-out cross-validation (LOOCV)
was performed to evaluate the generalizability of the model
(Cui and Gong, 2018). The Pearson correlation coefficient (R)
and mean absolute error (MAE) between chronological age and
estimated age were used to evaluate the prediction performance
of the model (Feng et al., 2019). Next, a permutation test was
performed to determine the significance of r and MAE. The
above-mentioned processing method was also performed for the
single mALFF, single mfALFF features, and combined GMV and
mALFF/mfALFF features (Supplementary Table 2).

In the present study, HCs were used as the training set
to determine the optimal prediction model. Subsequently,
the prediction model was utilized for SSVD patients (as the
test set) to predict individual brain age. The weight of each
imaging feature can quantify its contribution in the prediction
model; an imaging feature was retained if the absolute value
of its weight was in the top 10%, thereby retaining the most
predictive imaging features. Furthermore, to better annotate the
distribution of imaging features, eight brain networks including
the seven large-scale functional modules and one subcortical
module, were assigned 246 brain regions (Yeo et al., 2011).
These brain networks included visual network, sensorimotor
network, dorsal attention network, ventral attention network,
limbic network, fronto-parietal network, default mode network,
and subcortical system.

Support vector machine classification

The LIBSVM toolbox of MATLAB was used to construct the
SVM classification model (Hsu and Lin, 2002) to distinguish
SSVD patients with MCI from SCI ones. LOOCV was used

1 http://www.mlnl.cs.ucl.ac.uk/pronto/

Frontiers in Aging Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnagi.2022.973054
http://www.mlnl.cs.ucl.ac.uk/pronto/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-973054 August 26, 2022 Time: 15:26 # 5

Shi et al. 10.3389/fnagi.2022.973054

to assess the generalizability of the model while the average
accuracy, sensitivity, and specificity were used to evaluate
its performance. The area under the curve (AUC) of the
receiver operating characteristic curve was used to determine
the classification capacity of the model.

Measurement of oxidative stress
biomarkers

Peripheral venous blood was collected from each SSVD
patient between 8:00-9:00 a.m. after overnight fasting in EDTA-
coated tubes. Within 30 min of collection, samples were
centrifuged at 1000 g for 10 min at 4◦C to obtain plasma. The
plasma sample was aliquoted and stored at−80◦C.

Three common antioxidant indexes were measured: the
levels of superoxide dismutase (SOD), catalase (CAT), and
total antioxidant capacity (T-AOC) in plasma were determined
using a fully automatic biochemical analyzer (Beckman
Coulter UniCel DxC 600 Synchron, United States). Human
plasma samples were assayed using SOD assay kits (Lot:
20220712.40001, RGB, Beijing, China), CAT assay kits (Lot:
20221113.40051, RGB, Beijing, China), and T-AOT assay kits
(Lot: 20220715.40009, RGB, Beijing, China).

Sample size calculation

The sample size was determined using an online sample size
calculator.2 The sample size for the SCI and MCI groups in
this study were roughly based on the results using α = 0.05 and
β = 0.2. Additional details can be found in the Supplementary
material and Supplementary Table 2.

Statistical analysis

SPSS version 20.0 software (IBM Corp., Armonk, NY,
United States) was used for the present statistical analyses.
Continuous variables were analyzed using the independent-
samples t-test in cases with a normal distribution as determined
using the Kolmogorov–Smirnov test, while the Mann–Whitney
U test was used in cases showing a non-normal distribution.
Bonferroni correction was used for multiple comparison
using one-way ANOVA, and Nemenyi correction was used
for multiple comparison using Kruskal–Wallis. Categorical
variables were analyzed using the Chi-square test. Pearson
correlation analysis and partial correlation analysis (controlling
for chronological age, sex, years of education, and NIHSS
score) were used to determine the relationship between

2 https://sample-size.net/

estimated age and cognitive function as well as the relationship
between the classification outputs and cognitive assessment
scores and plasma levels of oxidative stress biomarkers in
SSVD patients. Results with p < 0.05 were considered to be
statistically significant.

Results

Participant characteristics

The clinical features of the 35 HCs and 51 SSVD patients are
shown in Table 1. Data are also provided for the SSVD patient
subgroups, namely the SCI group (n = 24) and MCI group
(n = 27). There were significant differences in sex, cognitive
assessment scores (i.e., MMSE, MoCA, AVLT-IR, AVLT-
20 min DR, TMT-A, TMT-B, Stroop-B, Stroop-C, information
processing speed, and executive function), and plasma T-AOC
levels between the SCI and MCI groups (Table 1). In addition,
among HC, SCI, and MCI groups, MMSE, MoCA, AVLT-
IR, AVLT-20 min DR, TMT-A, TMT-B, Stroop-B, Stroop-C,
information processing speed, and executive function scores
were also significantly difference (Supplementary Figure 1).

Discovery of prediction model

To develop an optimal prediction model, 35 HCs with
MRI features were used as the training set. Application of the
RVR algorithm to the GMV features (R2 = 0.535, p < 0.001,
MAE = 3.916, p < 0.001; Figures 2A,C,D) achieved better
individualized prediction of brain age than other MRI features
(Supplementary Table 3). Therefore, the RVR prediction model
with GMV features was retained.

Prediction of brain age in subcortical
small-vessel disease patients

The optimal prediction model with GMV features,
determined from the training set, was then tested in the 51
SSVD patients. Figure 2B shows that the application of the RVR
algorithm to the GMV data allowed quantitative prediction of
each patient’s brain age with statistically significant accuracy
(R2 = 0.183, p < 0.001, MAE = 6.425, p = 0.045; Figures 2B,E,F).

The 25 brain regions that contributed most to RVR
prediction were identified by setting the threshold to ≥ 10%
of the maximum weight vector value (Table 2). These regions
were mainly localized in the subcortical system (especially the
thalamus) and dorsal attention network (Figure 3A).

Among SSVD patients, the estimated ages were significantly
correlated with MoCA, AVLT-IR, TMT-A, TMT-B, and
Stroop-C scores, and information processing speed and
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TABLE 1 Demographic information, cognitive assessment scores, and plasma data for HC and SSVD participants.

HC (n = 35) SSVD (n = 51)

Age (years) 60.57± 7.80 67.16± 7.80

Sex (Male/Female) 20/15 22/29

Education (years) 11.54± 3.42 9.80± 2.66

Fazekas score 0.00± 0.00 2.08± 1.25

NIHSS scores 0.00± 0.00 0.18± 0.48

MMSE scores 28.86± 1.33 27.98± 1.79

MoCA 28.71± 1.67 26.45± 3.49

HAMD-17 scores 1.23± 2.30 1.76± 2.30

SCI (n = 24) MCI (n = 27) P-value

Age (years) 65.29± 7.74 68.81± 7.62 0.108*

Sex (Male/female) 3/21 19/8 < 0.001&

Education (years) 9.96± 2.84 9.67± 2.54 0.700*

Fazekas score 1.833± 1.24 2.30± 1.23 0.134#

NIHSS score 0.17± 0.48 0.10± 0.30 0.561*

MMSE score 29.00± 1.06 27.22± 1.69 < 0.001*

MoCA score 28.42± 1.25 25.04± 3.12 < 0.001*

HAMD-17 scores 1.58± 2.00 1.78± 2.56 0.766*

AVLT-IR (raw score) 7.19± 1.94 4.95± 1.91 < 0.001*

AVLT-IR (Z score) 0.54± 0.87 −0.48± 0.86 < 0.001*

AVLT-20 min DR (raw score) 6.67± 2.91 4.07± 2.67 0.002*

AVLT-20 min DR (Z score) 0.45± 0.95 −0.40± 0.88 0.002*

TMT-A (raw score) 56.58± 16.38 80.67± 19.13 < 0.001*

TMT-A (Z score) −0.59± 0.76 0.53± 0.89 < 0.001*

Stroop-A (raw score) 28.21± 6.85 31.26± 5.95 0.095*

Stroop-A (Z score) −0.25± 1.05 0.22± 0.91 0.095*

Stroop-B (raw score) 42.88± 11.37 61.67± 14.72 < 0.001*

Stroop-B (Z score) −0.61± 0.70 0.55± 0.91 < 0.001*

Information processing speed −0.49± 0.66 0.43± 0.64 < 0.001*

TMT-B (raw score) 137.88± 25.48 271.93± 168.64 < 0.001#

TMT-B (Z score) −0.51± 0.18 0.45± 1.20 < 0.001#

Stroop-C (raw score) 77.63± 19.30 142.41± 52.79 < 0.001*

Stroop-C (Z score) −0.66± 0.37 0.59± 1.02 < 0.001*

DST-backward (raw score) 4.54± 0.72 4.22± 0.64 0.053#

DST-backward (Z score) 0.24± 1.04 −0.22± 0.93 0.053#

Executive function −0.31± 0.31 0.27± 0.71 0.001*

CDT (raw score) 8.54± 0.98 8.22± 1.05 0.360#

CDT (Z score) 0.17± 0.96 −0.15± 1.03 0.360#

Plasma SOD (U/ml) 106.22± 12.20 103.80± 7.46 0.227*

Plasma CAT (U/ml) 6.58± 2.77 5.92± 2.36 0.367*

Plasma T-AOC (U/ml) 11.80± 3.31 9.31± 2.28 0.003*

(1) Data are presented as the mean ± standard deviation. (2) The SCI and MCI groups were two sub-groups of the SSVD group. (3) The information processing speed total scores were
calculated using the TMT-A, Stroop-A, and Stroop-B scales (Z scores) scores, while the executive function total scores were calculated using the TMT-B, Stroop-C, and DST-backward
scale (Z scores) scores. HC, healthy control; SSVD, subcortical small-vessel disease; SCI, subjective cognitive impairment; MCI, mild cognitive impairment; NIHSS, National Institutes
of Health Stroke Scale; MMSE, Mini-mental State Examination; MoCA, Montreal Cognitive Assessment; AVLT-IR, Auditory Verbal Learning Test-immediate recall; AVLT-20 min DR,
Auditory Verbal Learning Test-20-min delayed recall; TMT-A, Trail Making Test A; Stroop-A, Stroop Color and Word Test A; Stroop-B, Stroop Color and Word Test B; TMT-B, Trail
Making Test B; Stroop-C, Stroop Color and Word Test C; DST, Digit Span Test; CDT, Clock Drawing Test; SOD, superoxide dismutase; CAT, catalase; T-AOC, total antioxidant capacity.
*P-values were obtained by Independent-Samples T-test.
#P-values were obtained by Mann-Whitney U test.
&P-values were obtained by Chi-square test.
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FIGURE 2

Multivariate relevance vector regression analysis. Scatterplot showing the estimated age for each participant derived from their imaging features
compared with their chronological age (A: HCs; B: SSVD patients). Distribution of permutation of the prediction R and mean absolute error (C,D:
HCs; E,F: SSVD patients). The values obtained using real scores are indicated by the dashed line. HCs, healthy controls; SSVD, subcortical
small-vessel disease.

executive function total scores (Table 3). Moreover, these
correlations remained after controlling for chronological age,
sex, years of education, and NIHSS score (Table 3). However,
chronological age of SSVD patients showed less association
with cognitive assessment scores (Table 3). Furthermore, further
correlation analyses in MCI, SCI, and HC groups, respectively
(Supplementary Tables 4–6), indicated that the estimated ages
of MCI patients showed stronger correlation with executive
function than SCI patients, and abundant associations of
chronological age with cognitive assessments could be found in
the health status rather than the disease state.

Next, the brain age gap (estimated age − chronological age)
was calculated for each SSVD patient. Regardless of whether
chronological age, sex, education years, and NIHSS score
were controlled, the brain age gap was negatively correlated
with MMSE and MoCA scores and positively correlated with

TMT-B scores and executive function total scores in SSVD
patients (Table 3). Meanwhile, more associations between
the brain age gap and cognitive assessments were observed
in the MCI group than the SCI group, and no association
were found in the HC group (Supplementary Tables 4–
6).

Additionally, age acceleration (AgeAccel) (Monseur et al.,
2020) is defined as estimated age > 2 years older than
chronologic age, which will avoid the number in the AgeAccel
group thins quickly (e.g., 14 and 6 cases of AgeAccel if using > 5
and > 10, respectively). As a result, there were 21 SSVD patients
with AgeAccel and 31 ones without AgeAccel in the present
study. Significantly, SSVD patients with AgeAccel were noted
to have lower MMSE scores [27.45 vs. 28.45 (p = 0.036)] and
lower MoCA scores [25.40 vs. 27.41 (p = 0.015)] than those
without AgeAccel.
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TABLE 2 Contributing GMV features and their weight scores in the RVR algorithm used to predict brain age in SSVD patients.

Neuroanatomical region Weight score MNI (x, y, z)

SFG, medial area 10 (R) 0.1097 8, 58, 13

IFG, inferior frontal sulcus (L) 0.1093 −47, 32, 14

PrG, area 4 (upper limb region) (L) 0.1119 −26,−25, 63

PrG, area 4 (upper limb region) (R) 0.1060 34,−19, 59

ITG, extreme lateroventral area 37 (R) 0.2470 53,−52,−18

ITG, caudolateral of area 20 (L) 0.1608 −59,−42,−16

ITG, ventrolateral area 37 (L) 0.1597 −55,−60,−6

ITG, caudoventral of area 20 (R) 0.1508 54,−31,−26

FuG, lateroventral area 37 (L) 0.1429 −42,−51,−17

PhG, area 28/34 (EC, entorhinal cortex) (R) 0.0985 19,−10,−30

PhG, area TI (temporal agranular insular cortex) (R) 0.1482 22, 1,−36

SPL, rostral area 7 (L) 0.2543 −16,−60, 63

SPL, rostral area 7 (R) 0.1115 19,−57, 65

INS, hypergranular insula (L) 0.1002 −36,−20, 10

CG, caudal area 23 (R) 0.1077 6,−20, 40

LOcC, occipital polar cortex (L) 0.1056 −18,−99, 2

LOcC, medial superior occipital gyrus (L) 0.1265 −11,−88, 31

Amyg, medial amygdala (R) 0.1456 19,−2,−19

Hipp, caudal hippocampus (L) 0.1075 −28,−30,−10

Tha, pre-motor thalamus (L) 0.2542 −18,−13, 3

Tha, pre-motor thalamus (R) 0.1275 12,−14, 1

Tha, rostral temporal thalamus (L) 0.1969 −7,−14, 7

Tha, rostral temporal thalamus (R) 0.1572 3,−13, 5

Tha, caudal temporal thalamus (R) 0.1232 10,−14, 14

Tha, lateral pre-frontal thalamus (L) 0.1558 −11,−14, 2

GMV, gray matter volume; RVR, relevance vector regression; SSVD, subcortical small-vessel disease; SFG, superior frontal gyrus; IFG, inferior frontal gyrus; PrG, precentral gyrus; ITG,
inferior temporal gyrus; FuG, fusiform gyrus; PhG, parahippocampal gyrus; SPL, superior parietal lobule; SPL, superior parietal lobule; INS, insular gyrus; CG, cingulate gyrus; LOcC,
lateral occipital cortex; Amyg, amygdala; Hipp, hippocampus; Tha, thalamus.

Building a support vector machine
model in subcortical small-vessel
disease patients

To determine whether brain age-related GMV features can
contribute to distinguishing SSVD patients with MCI from
ones with SCI, a SVM classification model was built using
the 25 GMV features derived from the RVR prediction model
(Figure 3A). The classification accuracy of the SVM model was
80.4% (sensitivity = 70.8%, specificity = 88.9%) and the AUC
value was 0.883 (Figure 3B).

Relationships between support vector
machine model decision values and
cognitive ability and plasma oxidative
stress indicator levels

Among SSVD patients, the MoCA, TMT-A, TMT-B,
and Stroop-C scores were significantly correlated with the

classification outputs (Figures 4A−D). In addition, the
information processing speed total scores and classification
outputs showed significant associations (Figure 4E).
A significant correlation of the classification outputs with
the plasma levels of T-AOC was detected in SCI and MCI
patients (Figure 4F). Controlling for chronological age, sex,
years of education, and NIHSS score, the association of
MoCA and TMT-A scores with the classification outputs
was significant statistically in SSVD patients (MoCA:
correlation coefficient = −0.327, p = 0.025; TMT-A: correlation
coefficient = 0.323, p = 0.027).

Discussion

In the present study, individualized brain age was
predicted for HCs using the RVR algorithm. Subsequently,
the reproducibility and generalizability of the RVR model was
determined in SSVD patients and the distinguishing power
of brain age-related imaging features were systematically
investigated in SSVD patients with SCI and MCI. We

Frontiers in Aging Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fnagi.2022.973054
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-973054 August 26, 2022 Time: 15:26 # 9

Shi et al. 10.3389/fnagi.2022.973054

FIGURE 3

Establishment of SVM classification model. (A) Visualizations of 25 gray matter volume features using relevance vector regression analysis for
the prediction of brain age in SSVD patients. (B) Classification Performance of SVM classification model between SCI patients and MCI patients
in participants with SSVD. SSVD, subcortical small-vessel disease; SVM, support vector machine; AUC, area under the curve.

TABLE 3 Association of age with cognitive function and plasma antioxidant index levels in SSVD patients.

chronological age* estimated age* estimated age# brain age gap* brain age gap#

MMSE r = 0.129; p = 0.367 r =−0.324; p = 0.020 r =−0.336; p = 0.021 r =−0.410; p = 0.003 r =−0.383; p = 0.008

MoCA r = 0.103; p = 0.474 r =−0.408; p = 0.003 r =−0.422; p = 0.003 r =−0.424; p = 0.002 r =−0.418; p = 0.003

AVLT-IR r =−0.122; p = 0.392 r =−0.288; p = 0.041 r =−0.296; p = 0.043 r =−0.215; p = 0.129 r =−0.334; p = 0.022

AVLT-20 min DR r = 0.022; p = 0.881 r =−0.250; p = 0.077 r =−0.264; p = 0.073 r =−0.253; p = 0.073 r =−0.278; p = 0.058

TMT-A r = 0.356; p = 0.010 r = 0.455; p = 0.001 r = 0.420; p = 0.003 r = 0.188; p = 0.188 r = 0.429; p = 0.003

TMT-B r = 0.140; p = 0.326 r = 0.441; p = 0.001 r = 0.403; p = 0.005 r = 0.388; p = 0.005 r = 0.508; p < 0.001

Stroop-A r = 0.045; p = 0.754 r = 0.189; p = 0.183 r = 0.199; p = 0.180 r = 0.170; p = 0.234 r = 0.222; p = 0.133

Stroop-B r = 0.066; p = 0.646 r = 0.183; p = 0.198 r = 0.169; p = 0.255 r = 0.118; p = 0.409 r = 0.166; p = 0.266

Stroop-C r = 0.211; p = 0.137 r = 0.400; p = 0.004 r = 0.375; p = 0.009 r = 0.274; p = 0.052 r = 0.438; p = 0.002

DST-backward r =−0.100; p = 0.485 r =−0.025; p = 0.862 r =−0.029; p = 0.846 r = 0.021; p = 0.885 r =−0.021; p = 0.891

CDT r =−0.055; p = 0.700 r =−0.269; p = 0.056 r =−0.269; p = 0.068 r =−0.216; p = 0.128 r =−0.273; p = 0.064

Information processing speed r = 0.197; p = 0.166 r = 0.349; p = 0.012 r = 0.334; p = 0.022 r = 0.200; p = 0.159 r = 0.347; p = 0.017

Executive function r = 0.113; p = 0.429 r = 0.359; p = 0.010 r =−0.322; p = 0.027 r = 0.313; p = 0.025 r = 0.399; p = 0.005

Plasma SOD (U/ml) r =−0.199; p = 0.162 r = 0.105; p = 0.464 r = 0.153; p = 0.306 r = 0.207; p = 0.144 r = 0.135; p = 0.365

Plasma CAT (U/ml) r = 0.122; p = 0.395 r = 0.074; p = 0.606 r = 0.072; p = 0.629 r =−0.022; p = 0.879 r = 0.052; p = 0.731

Plasma T-AOC (U/ml) r =−0.260; p = 0.065 r =−0.220; p = 0.120 r =−0.126; p = 0.398 r =−0.040; p = 0.783 r =−0.151; p = 0.311

(1) Z scores of other assessments were used for the present analysis except for the use of raw scores of the MMSE and MoCA. (2) The information processing speed total scores were
calculated using the TMT-A, Stroop-A, and Stroop-B scales (Z scores) scores, while the executive function total scores were calculated using the TMT-B, Stroop-C, and DST-backward
scale (Z scores) scores. (3) Brain age gap = (estimated age - chronological age). SSVD, subcortical small-vessel disease; MMSE, Mini-mental State Examination; MoCA, Montreal Cognitive
Assessment; AVLT-IR, Auditory Verbal Learning Test-immediate recall; AVLT-20 min DR, Auditory Verbal Learning Test-20-min delayed recall; TMT-A, Trail Making Test-A; Stroop,
Stroop Color and Word Test; TMT-B, Trail Making Test-B; DST, Digit Span Test; CDT, Clock Drawing Test; SOD, superoxide dismutase; CAT, catalase; T-AOC, total antioxidant capacity.
*P-values were obtained by Pearson correlation test.
#P-values were obtained by Partial correlation test (adjusting chronological age, sex, years of education, and NIHSS score).
Bold represents statistically significant.
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FIGURE 4

Correlation between the support vector machine model classification probabilities and MoCA (A), TMT-A (B), TMT-B (C), Stroop-C (D) scores,
information processing speed total scores (E), and plasma levels of T-AOC (F) in patients with SSVD. SSVD, subcortical small-vessel disease;
MoCA, Montreal Cognitive Assessment; TMT-A, Trail Making Test A; TMT-B, Trail Making Test B; Stroop-C, Stroop Color and Word Test C;
T-AOC, total antioxidant capacity.

found that the GMV features could predict brain age
of individual HCs and patients with SSVD with great
accuracy. The SVM classifier developed with 25 brain
age-related GMV features could distinguish between SCI
and MCI patients with an AUC of 0.883. Importantly, the
estimated age of SSVD patients showed better correlation
with current cognitive function than chronological age,
especially for MCI patients, and the classification outputs
also showed significant associations with the various
cognitive assessment measures and antioxidant index
levels. Taken together, these findings indicate that GMV
MRI biomarkers can predict individual brain aging and
contribute to identifying SSVD patients with a high risk of
cognitive impairment.

Consistent with previous studies (Cole, 2020; Demro et al.,
2022), structural MRI features showed prominent potential
for the prediction of brain age. In the present study, brain
age-related GMV features were mainly distributed in the
subcortical system (e.g., thalamus and hippocampus) and
dorsal attention network. Autopsy findings have indicated
a potential link between an impaired thalamus and severe
cognitive impairment in SSVD patients (Gorelick et al., 2011).
Thong et al. (2014) reported that SVCI patients exhibited
significantly decreased GMV in the thalamus compared to
normal controls. Furthermore, SSVD patients showed abnormal
function connectivity between the dorsal attention network
and other networks (Liu et al., 2019) and, compared with
HCs, significant GMV reductions were found in brain regions
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corresponding to the dorsal attention network in subjects with
cognitive impairment (Joshi et al., 2019). Thus, simultaneous
gray matter atrophy of multiple brain regions appears to be an
important basis of brain aging and impaired cognitive function
in SSVD patients.

In the present study, the predicted brain age of SSVD
patients exhibited a strong association with cognitive decline.
Compared with chronological age, the estimated age based
on objective imaging features showed significant associations
with global cognitive function and executive function scores,
which suggests that individual brain age can reflect cognitive
function in SVCI. Furthermore, by calculating the brain age
gap, we observed a pattern such that SSVD patients with worse
cognitive function had an older estimated age, which is similar
to studies of Alzheimer’s disease (Gaser et al., 2013; Cheng et al.,
2021). Meanwhile, further analyses indicated that significantly,
SSVD patients with AgeAccel had lower MMSE and MoCA
scores. Altogether, brain age is a potential biomarker of cognitive
impairment in SSVD patients, which represents an accelerated
aging in some brain structures involving in cognition.

To explore the underlying mechanism of brain age in SVCI,
brain age-related MRI features were further investigated. Using
25 brain age-related GMV features, a SVM-based classification
model was constructed and shown to accurately classify SSVD
patients with MCI from those with SCI at the individual
level. The present study also found significant correlations
between the classification outputs of SVM model and cognitive
assessment scores, indicating that the probability of identifying
SVCI patients depended on the degree of cognitive decline.
A previous study showed that a worse cognitive capacity
was significantly associated with lower plasma T-AOC levels
in older adults (Alghadir et al., 2021). Our results showed
that the classification outputs were related to plasma levels
of T-AOC, which suggests that the diagnostic model for
SVCI patients performs better with poor antioxidative stress
levels. These findings illustrate a potential association between
brain age-related MRI features and the personalized clinical
features of SVCI.

In the present study, individual brain age was estimated
accurately and conveniently in SSVD patients using objective
MRI biomarkers for the first time. We used a strict training
set and test set (two independent cohorts) to construct
the RVR prediction model to assure its reproducibility
and generalizability. In addition, important brain age-related
brain regions were determined and their clinical value in
SVCI was further assessed via clinical manifestations and
molecular changes.

Some limitations of the present study should be noted.
First, the study included a small sample of SCI and MCI
patients. Although a sample size calculation was performed
to ensure an acceptable sample size (Supplementary Table 2),
a larger sample of SVCI patients is necessary for testing the
present SVM classification model and dementia patients should

be included in a subsequent study. Moreover, a balanced
distribution of sex in SSVD patients should be also considered
in the future. Second, although the combined GMV and
mALFF/mfALFF features showed a non-ideal performance to
predict brain age compared to single GMV features in the
present study, additional MRI features (e.g., functional regional
homogeneity, functional connectivity, cortical thickness, etc.,)
should be considered for achieving data fusion in future
studies. Meanwhile, abundant biomarkers (e.g., whole-blood,
cerebrospinal fluid) and many potential algorithms in search
of capturing accurate and reliable biomarkers are valuable
approaches to improve the prediction accuracy of brain age.
Third, there was significant differences in mean age between
HC and SSVD group although they had the obvious overlap
in age distribution (HC: minimum value = 51, maximum
value = 78; SSVD: minimum value = 50, maximum value = 80).
In the present study, RVR prediction model showed better
generalizability and predictive performance for each participant,
however, same age range between training and test sets
may further improve the performance of model. Lastly,
additional cardiovascular risk factors [e.g., genetic information,
high blood pressure, alcohol intake (de Lange et al., 2020)]
should be incorporated to evaluate the clinical value of
brain age in SVCI.

Conclusion

Gray matter volume imaging data can be used to
quantitatively and accurately predict brain age in individual
patients with SSVD based on a multivariate RVR algorithm. This
model provides an important means to reflect current cognitive
function in SSVD patients. Furthermore, objective brain age-
related MRI features in SSVD can be used as an effective aid to
distinguish MCI patients from SCI patients with neurobiological
interpretability.
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