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Abstract

Transforming growth factor-b (TGF-b) principally relays its effects through the Smad pathway however, accumulating
evidence indicate that alternative signaling routes are also employed by this pleiotropic cytokine. For instance recently, we
have demonstrated that ligand occupied TGF-b receptors can directly trigger the TRAF6-TAK1 signaling module, resulting in
MAP kinase activation. Here we report identification of the adaptor molecule T TRAP as a novel component of this non-
canonical TGF-b pathway. We show that the protein associates with TGF-b receptors and components of the TRAF6-TAK1
signaling module, resulting in differential regulation of TGF-b activated p38 and NF-kB responses. Modulation of cellular
TTRAP level affects cell viability in the presence of TGF-b, suggesting that the protein is an important component of the
TGF-b induced apoptotic process.
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Introduction

TGF-b has pervasive and diverse effects on cell physiology as

well as it acts as a potent anticancer agent that prohibits

uncontrolled cell proliferation [1–3]. The most accepted model

for the signaling mechanism of TGF-b family cytokines portrays a

relatively simple pathway, in which ligand binding to a membrane

bound receptor complex induces a conformational change,

resulting in phosphorylation and activation of the type I receptor

(TbRI) by the type II receptor kinase (TbRII). Through its own

kinase activity, TbRI then phosphorylates the appropriate

receptor Smads (R-Smads, Smad2/3). Once phosphorylated, R-

Smads can form complexes with the common Smad (Smad4),

whereupon they translocate to the nucleus to initiate specific

transcriptional programs [4,5]. It is becoming increasingly

apparent however, that the picture depicted above is significantly

more complex. TGF-b can mobilize several intracellular signal

transducers in Smad-independent manner as well [6–8]. These

non-canonical, non-Smad pathways are also activated directly by

ligand-occupied receptors to reinforce, attenuate or otherwise

modulate downstream cellular responses. The non-Smad path-

ways include various branches of MAP kinase pathways, Rho-like

GTPase signaling pathways, the phosphatidylinositol-3-kinase/

AKT pathway and more. Such alternative signal transducers often

regulate the Smad pathway itself and represent extensive

opportunities for crosstalk with other signaling routes, contributing

to the surprising diversity of TGF-b responses.

Perhaps one of the most important non-Smad pathways is the

p38/JNK MAP kinase cascade [9–12]. This signaling route

functions in conjunction with the Smad pathway to regulate such

cellular responses as apoptosis and eptithelial-to-mesenchymal

transition (EMT). Despite their obvious biological significance

however, we still have serious caveats in understanding the

mechanisms by which TGF-b governs them. The need to fill out

these gaps is further underscored by several recent observations,

suggesting that imbalances arising between the Smad-pathway and

the p38/JNK MAPK signaling branches during tumorigenesis

may contribute to the conversion of TGF-b from a suppressor to a

promoter of cancer growth [13–19].

Previous genetic studies placed TGF-b-activated kinase 1

(TAK1) in the TGF-b mediated p38/JNK activation pathway

however, the link between TAK1 and the activated receptor

complex had been lacking [20–22]. Recently, we and others have

demonstrated that the E3 ubiquitin ligase, TRAF6 is one of the

missing pieces [23,24]. The molecule physically interacts with the

TGF-b receptor complex and is required for Smad-independent

activation of the JNK and p38 kinases. TGF-b promotes

association between TRAF6 and TAK1, resulting in lysine 63-

linked (K63) ubiquitylation and subsequent activation of TAK1.

Interestingly, the TRAF6-TAK1 signaling module is also em-

ployed by a number of different signaling routes such as those

emanating from the IL-1b receptor, Toll-like receptors, T-cell

receptor etc. and cellular processes triggered by DNA damage and

osmotic stress [25,26]. Selective activation of TAK1 by the

numerous divergent stimuli is believed to be achieved at least in

part by the use of adaptor proteins indigenous to a given signaling

route and/or employment of unique combinations of more

common ones. Regardless, the identification of these adaptor

proteins and the elucidation of their complex interactions are

essential.

Here we describe one such adaptor molecule, TTRAP (TRAF

and TNF receptor associated protein) [27] that may contribute

to the specific activation of TAK1 in response to TGF-b.

TTRAP was originally reported to interact with members of the
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TNF receptor family and TRAF adaptor proteins [27].

Subsequent studies also implicated the molecule in various

nuclear functions, including transcription and DNA repair [28–

31]. Notwithstanding, a recent work convincingly demonstrated

a role for TTRAP in signal transduction [32]. An antisense

screen in zebrafish indentified the protein as a component of the

Nodal/activin signaling pathway and an important regulator of

embryogenesis. Here we show that TTRAP is involved in TGF-

b signaling in mammalian cells as well. Specifically, the protein

associates with components of the TGF-b receptor-TRAF6-

TAK1 signaling module and promotes their ubiquitylation

dependent complex formation. We also demonstrate that

TTRAP, by modulating the activities of non-canonical TGF-b
induced signaling routes, plays an important role in TGF-b
elicited apoptosis.

Materials and Methods

Cell culture, transfection, reporter assays
HEK293T, Phoenix-E, NMuMG and AML12 cells were

purchased from the American Type Culture Collection and

maintained as recommended by the supplier. Cells were

transfected with Fugene 6 (Roche) or FugeneHD (Promega),

according to the manufacturers instructions. Reporter assays were

performed as described earlier [33].

Antibodies, shRNAs, chemicals
The following antibodies were used in this study: phospho-

Smad2(Ser465/467), phospho-p38(Thr180,Tyr182)(D3F9), p38 and

phospho-TAK1(Thr187) were from Cell Signaling Technology;

Smad2/3(C8), TRAF6(D-10), TAK1(M-579), TTRAP/EAPII(K-

13), TTRAP/EAPII(N-18) were from Santa Cruz; Myc(9E10) and

HA(3F10) were purchased from Roche; His and FLAG(M2) were

from Sigma. Mission shRNA lentiviruses, targeting the mouse

TTRAP mRNA (TRCN0000174689, TRCN0000174799 and

TRCN0000174910) were purchased from Sigma. Recombinant

human TGF-b1 was from R&D Systems. SB431542, SB203582 and

SP600125 were obtained from Sigma. The TAK1 inhibitor, (5Z)-7-

oxozeaenol was from Calbiochem.

Plasmids
Most of the expression plasmids used here were described

earlier [23]. Full length TTRAP, TAK1 and TAB2 cDNAs were

generated by PCR and cloned into the pRK family of mammalian

expression vectors [34] using standard techniques. Retroviral

expression constructs were created in the pBabe-Puro backbone

[35]. Deletion and point mutants were generated by PCR.

Sequences of all constructs were verified by sequencing.

Immunoprecipitation, western blotting
Western blotting of proteins and immunoprecipitations (IP)

were performed as described earlier [33].

Cell viability measurements
Cell viability was assessed by three different methods: 1.

Propidium iodide (PI) uptake of cells, as a measure of membrane

integrity, was determined by fluorescence activated cell sorting

(FACS). Cells were seeded at a density of 36104 cells/well in 24-

well plates and treated as indicated. Subsequently, cells were

collected by trypsinization, washed with BSA-PBS (PBS

containing 0.5% BSA) and resuspended in BSA-PBS containing

2 mg/ml PI. The cell suspension was incubated at room

temperature for 10 minutes and then measured by FACS. FACS

profiles were analyzed by the WinMDI software. 2. Apoptosis

was followed by staining of cells with Alexa Fluor 647 labeled

annexin V (Invitrogene) according to the manufacturer’s

instructions and analyzed by FACS. 3. Cell survival was also

determined by the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphe-

nyltetrazolium bromide) assay. Cells were seeded at a density of

56103 cells/well in 96-well plates. The following day treatments

were commenced as indicated. At the end of the treatments the

medium was replaced with fresh medium containing 1.2 mM

MTT and the cells were incubated at 37uC in 5% CO2 for

4 hours. Subsequently, the cells were washed in the plates with

PBS and the formazan crystals were solubilized in isopropanol,

containing 0.1 M HCL. Optical densities at 570 nm were

measured in a plate reader.

Indirect immunofluorescence
For indirect immunofluorescence, cells were grown on cover-

slips and fixed in cold methanol for 7 minutes and then briefly

permeabilized in cold acetone. The antibody incubations and

washing steps were done as described [33].

Results

TTRAP associates with the TGF-b receptor complex
Based on earlier results implicating TTRAP in the signaling

processes of Nodal/activin ligands, we explored the protein’s

potential involvement in TGF-b signaling in mammalian cells.

Zebrafish TTRAP has been shown to bind components of the

Nodal/activin pathway (the type I Nodal/activin receptor [Alk4],

and Smad3). Thus, as an initial approach, we tested the

association of mammalian TTRAP with elements of the TGF-b
signaling machinery, using various protein-protein interaction

techniques.

First, we wanted to analyze the interaction between endogenous

TTRAP and the TGF-b receptor complex. Unfortunately,

currently there is no commercially available TTRAP antibody

sensitive enough to carry out such studies. To circumvent this

problem, we generated an NMuMG cell population stably

expressing FLAG epitope tagged TTRAP (FLAG-TTRAP) at a

modest level. Using these cells, we were able to detect modest

binding of FLAG-TTRAP to endogenous TbRI by co-immuno-

precipitation (co-IP) (Figure 1A). Importantly, this interaction was

significantly increased upon TGF-b treatment.

Second, epitope tagged TTRAP and TGF-b receptors were

transiently co-expressed in HEK293T cells and their interac-

tions were analyzed by co-IP (Figure 1B). Under these

conditions, TTRAP associated with both TbRI and TbRII

even in the absence of TGF-b stimulation. The protein

exhibited increased affinity toward the catalytically inactive

TbRI-KR receptor mutant compared to the constitutively active

TbRI-TD form.

Third, the binding of TTRAP to TGF-b receptors was

monitored in vitro using GST pull-down. HA-tagged TTRAP

protein was synthesized in rabbit reticulocyte lysate in vitro,

while GST-tagged cytoplasmic domains of TbRI and TbRII

were produced in bacteria. In vitro TTRAP bound to the

cytoplasmic domains of both TGF-b receptors immobilized on

gluthatione beads, indicating that their interactions are direct

(Figure S1).

Fourth, we evaluated the binding of TTRAP with membrane

associated TGF-b receptor complexes. HEK293T cells were co-

transfected with TTRAP, TGF-b receptors and TRAF6 in various

combinations. Subsequently, surface proteins were affinity labeled

with [125I ]-TGF-b. Following cross-linking with disuccinimidyl

suberate (DSS) the cells were lysed and TTRAP was precipitated

Role of TTRAP in TGF-b Signaling
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with a FLAG antibody. As shown in Figure 1C, TTRAP pulled

down [125I ]-TGF-b occupied TGF-b receptor complexes. Impor-

tantly, the relative binding affinities of TTRAP toward the various

mutant forms of TbRI detected by this technique were similar to

those seen in co-IPs. In addition, we noted that the presence of

TRAF6 strengthened the interaction between TTRAP and the

TGF-b receptor complex (see also later).

Fifth, EGFP-TTRAP and FLAG-TbRI-KR were co-expressed

in AML12 cells and their localizations were monitored by

fluorescence microscopy. TTRAP was present both in the

cytoplasm and the nucleus, consistent with previous reports

[28,29]. Significantly, a fraction of the cytoplasmic TTRAP

exhibited co-localization with TbRI in juxta-membrane foci

(Figure 1D).

Finally, the TGF-b receptor interacting domain of TTRAP was

mapped by co-IPs. Using C-terminally truncated TTRAP

molecules we showed that the region between amino acids 123

and 274 is necessary for TGF-b receptor binding (Figure 1E).

Interestingly, this region of TTRAP is part of the evolutionary

conserved exo/endo/phos domain also present in a number of

Mg2+/Mn2+ dependent phosphodiesterases [36].

In summary, the above results indicate that in analogy to the

TTRAP-Alk4 interaction observed in zebrafish, the mammalian

ortholog of TTRAP associates with TGF-b receptors. The fact

that TTRAP also binds with ligand occupied TGF-b receptor

complexes on the cell surface provides further support for the

physiological relevance of these interactions. Contrary to previous

data however, we were unable to detect direct binding of TTRAP

with Smads (Figure S2).

TTRAP associates with the TAK1 complex
TTRAP was originally identified as a TRAF interacting

protein. Amongst members of the TRAF family, it exhibited the

highest affinity toward TRAF6 and practically no binding with

Figure 1. TTRAP interacts with TGF-b receptors. A) TTRAP associates with endogenous TbRI. NMuMG cells stably expressing FLAG-T TRAP were
treated with 4 ng/ml of TGF-b for one hour or left untreated. Cellular lysates were prepared and T TRAP was precipitated with FLAG affinity beads. The
precipitated proteins and 1/30th of the input lysates were analyzed by western blotting. B) Co-IP analysis of the T TRAP-TGF-b receptor interaction. The
indicated proteins were co-expressed in HEK293T cells. Total cellular lysates were prepared and the TGF-b receptors were precipitated with a FLAG
antibody. The precipitated proteins and 1/20th of the input lysates were analyzed by western blotting. C) Analysis of the binding of T TRAP to membrane
associated TGF-b receptors. To label surface receptors cells were incubate with [125I]-TGF-b, cross-linked with DSS and T TRAP was pulled down. The
precipitated receptors were detected by autoradiography. D) EGFP-T TRAP and FLAG-TbRI-KR were co-expressed in AML12 cells and their localizations
were monitored by fluorescence microscopy. A juxta-membrane region of the cell was zoomed out at the bottom. Co-localized foci are indicated by
arrowheads. The nuclei were stained by 49,6-diamidino-2-phenylindole (DAPI). E) Mapping of the TGF-b receptor binding domain of T TRAP by co-IP. The
precipitated proteins and 1/20th of the input lysates were analyzed by western blotting using HA and FLAG antibodies.
doi:10.1371/journal.pone.0025548.g001
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TRAF2 [27]. Indeed, using co-IP, we were able to verify these

observations (Figure 2A). Given that TRAF6 plays a crucial role

in TGF-b induced p38 activation, next TTRAP’s interactions

with other components of the TGF-b receptor-p38 pathway

were examined. First, we tested whether TTRAP can interact

with TAK1. Co-IP was employed to assess the associations

between FLAG-TTRAP and HA epitope tagged TAK1

molecules (wild-type and various mutant forms) (Figure 2B).

TTRAP bound avidly to catalytically active TAK1 variants (both

the wild-type and the E39G point mutant) however, replacement

of lysine-34 - the major acceptor site for TGF-b induced K63-

linked polyubiquitylation [24] - with an arginine residue,

significantly reduced this interaction. The affinity of TTRAP

toward catalytically inactive mutants of the kinase was

diminished even further, exhibiting no significant binding to

either the ATP binding site mutant (K63W) or the activation

loop mutants (T184,187V and S192A) [37,38]. This finding

raised the possibility that TTRAP specifically binds to auto-

phosphorylated residues in the kinase. Specific inhibition of

TAK1’s catalytic activity with (5Z)-7-oxozeaenol [39] however,

did not abolish the TAK1-TTRAP association (Figure 2C). This

suggests that TTRAP recognizes some structural feature of the

kinase associated with its catalytically active form, rather than

the phosphorylated residues per se.

To analyze the interaction between TTRAP and TAK1 under

more physiological settings, we employed the NMuMG cell

population stably expressing FLAG-TTRAP mentioned earlier. In

these cells, we were able to detect a dynamic interaction between

endogenous TAK1 and FLAG-TTRAP (Figure 2D). The weak

basal TTRAP-TAK1 association was enhanced by TGF-b
treatment, peaked at ,30 minutes and was almost completely

diminished by 180 minutes.

In the cells the activity of TAK1 is strictly regulated by various

TAK1 binding proteins (TABs) [40–43]. Importantly, some of

these TABs have also been implicated in TGF-b signaling. Thus,

the interactions of TTRAP with two such TABs, TAB1 and TAB2

were tested by co-IP. We found that TTRAP did not bind to

TAB1 (data not shown). Conversely, the protein showed strong

interaction with TAB2, which was enhanced even further by the

co-expression TRAF6 (Figure 2E).

Next, the TAK1 binding domain of TTRAP was mapped by

co-IP. We showed that the N-terminal 1–123 aa segment of

TTRAP was sufficient for this interaction (Figure S3A). Given that

TTRAP is using a distinct region to bind TRAF6 (124–274 aa,

Figure S3B), it is possible that the protein can interact with TAK1

and TRAF6 simultaneously in a ternary complex. Indeed, pulling

down either protein (TTRAP, TAK1, or TRAF6) co-precipitated

the other two in approximately equal quantities (Figure 2F). To

provide further support for the existence of the TAK1-TTRAP-

TRAF6 ternary complex, sequential co-IPs were performed

(Figure 2F). FLAG-TTRAP was co-expressed with HA-TAK1

and HA-TRAF6 in HEK293T cells. After 36 hours, cell lysates

were prepared and TTRAP complexes were purified on FLAG

affinity beads. An aliquot of the precipitated material was used for

western analysis to confirm that both TAK1 and TRAF6 were co-

purified with TTRAP. From the remaining sample TTRAP

complexes were eluted with a large excess of FLAG-peptide and

used for a second round of IP with a TAK1 antibody. Western

analysis demonstrated that TRAF6 efficiently co-precipitated with

TAK1 from this eluate, strongly suggesting that TAK1, TTRAP

and TRAF6 are capable of forming stable ternary complexes in

the cell.

Members of the TRAF adaptor protein family display

significant similarity to each other and are all involved in cellular

signaling [44]. It has been reported that in some signaling

pathways they may also share similar functions and act

redundantly. For instance, in the CD40 pathway TRAF2 and

TRAF6 are closely collaborating with each other and perform

partially overlapping tasks [45]. Therefore, the ability of TRAF2

to substitute for TRAF6 in the protein complexes described above

was also examined. As seen in Figure 2G TRAF2, unlike TRAF6,

did not display significant affinity toward TAK1. Conversely,

TRAF2 was even capable of disrupting the TAK1-TTRAP

interaction, emphasizing the specific role TRAF6 plays in the

above complexes.

TTRAP is ubiquitylated by TRAF6 and promotes TRAF6
dependent ubiquitylation of TAK1

TRAF6 is an E3 ubiqutin ligase capable of catalyzing the

formation of K63-linked polyubiquitin chains [46]. To test

whether TRAF6 can ubiquitylate TTRAP an in vivo ubiquityla-

tion assay was performed (Figures 3A and S4). HA-TTRAP was

co-expressed with FLAG-ubiquitin and various forms of TRAF6

in HEK293T cells. After 36 hours, the cells were lysed and the

ubiquitylated proteins - purified from the lysates on FLAG

affinity beads - were subjected to western blot analysis. High

molecular weight HA antibody reactive bands, corresponding to

polyubiquitylated TTRAP molecules, were only detected when

wild-type TRAF6 was co-expressed in the cells. The RING

domain mutant TRAF6(C70A) failed to promote the ubiquityla-

tion of TTRAP, consistent with its inability to catalyze its own

ubiquitylation.

We noted that co-expression of TTRAP with TRAF6 and

TAK1 increases the amount of high molecular weight TAK1

forms, most likely representing ubiquitylated molecules (see for

example Figure 4). Thus, we tested the possibility whether

TTRAP can enhance TRAF6 mediated TAK1 ubiquitylation.

FLAG-TAK1 was co-expressed with HA-TRAF6, HA-TTRAP

Figure 2. TTRAP associates with the TAK1 complex. A) T TRAP associates with TRAF6. The indicated proteins were expressed in HEK293T
cells. Total cellular lysates were prepared and TRAFs were pulled down. The precipitated complexes were analyzed by western blotting.
B) TTRAP binds to TAK1. The indicated proteins were co-expressed in HEK293T cells. T TRAP was precipitated from the cellular lysates and the
co-precipitation of TAK1 was analyzed by western blotting. C) TAK1 kinase activity is not required for T TRAP binding. Transfected HEK293T
cells were treated with 0.5 mM (5Z)-7-oxozeaenol. T TRAP was precipitated from the lysates and the co-precipitating TAK1 molecules were
detected. D) T TRAP associates with endogenous TAK1. An NMuMG cell population was established stably expressing FLAG-T TRAP. FLAG-
T TRAP was precipitated from the TGF-b treated cells and the co-purifying endogenous TAK1 was detected by western blotting. E) T TRAP
interacts with TAB2. TAB2 was precipitated from transfected HEK293T cells and the protein complexes were analyzed by western blotting. F)
Ternary complex formation of T TRAP, TAK1 and TRAF6. TAK1 or T TRAP was precipitated from transfected HEK293T cells with a FLAG antibody
and the co-precipitation of the other two molecules were analyzed by an HA antibody. In the co-IP - indicated by a dashed box - the T TRAP
complexes were eluted from the agarose beads by a large excess of FLAG peptide and subjected to a second round of IP with a TAK1 antibody.
Co-precipitation of TAK1 and TRAF6 was monitored by western blotting. G) TRAF2 can not substitute for TRAF6 in the TAK1-T TRAP-TRAF6
complex. FLAG-TAK1 containing complexes were pulled down from transfected HEK293T cells. The precipitated proteins were analyzed by
western blotting.
doi:10.1371/journal.pone.0025548.g002
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and His-ubiquitin in cells in various combinations. To disrupt

non-covalent protein complexes cellular lysates were prepared

in hot 0.5% SDS solution. FLAG-TAK1 was purified from the

diluted lysates on FLAG affinity beads and ubiquitylated

TAK1 was detected in western blot using a His-tag antibody.

As seen in Figure 3B, co-expression of TTRAP indeed

increased the E3 ubiquitin ligase activity of TRAF6 toward

TAK1.

Figure 3. TTRAP is ubiquitylated by TRAF6 and promotes TRAF6 dependent ubiquitylation of TAK1. A) FLAG tagged proteins were
pulled down from transfected HEK293T cells and the precipitating T TRAP protein was detected by western blotting using an HA antibody. B)
Tranfected HEK293T cells were lysed in 0.5% hot SDS. The lysates were diluted with IP buffer and TAK1 was pulled down. Ubiquitylated TAK1 was
detected by western blotting using a His-tag antibody. The input lysates were also analyzed by western blotting using the indicated antibodies.
doi:10.1371/journal.pone.0025548.g003

Figure 4. The TAK1-TTRAP-TRAF6 complex is stabilized by ubiquitylation and recruited to TbRI. A) FLAG-TRAF6 was precipitated from
transfected HEK293T cells and the co-precipitation of TAK1 and T TRAP was examined by western blotting. B, C) The indicated epitope tagged
proteins were co-expressed in HEK293T cells. TbRI was pulled down from the lysates and the co-precipitating T TRAP, TRAF6 and TAK1 were analyzed
by western blotting.
doi:10.1371/journal.pone.0025548.g004
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The TAK1-TTRAP-TRAF6 complex is stabilized by
ubiquitylation and recruited to TbRI

TRAF6 has been shown to promote the formation of signaling

complexes, by at least partly depending on its E3 ubiquitin ligase

activity [46–48]. Since TRAF6 ubiquitylates both TTRAP and

TAK1, we examined the possible role of this modification in the

stabilization of the TAK1-TTRAP-TRAF6 ternary complex. To

this end, complex forming ability of the wild type TRAF6 protein

was compared with that of the catalytically deficient C70A RING

domain mutant (Figure 4A). In co-IPs wild type TRAF6 efficiently

pulled down both TAK1 and TTRAP. Importantly, in these

samples high molecular weight forms of each protein -

corresponding to ubiquitin modified molecules - could also easily

be detected. In contrast, the interactions of TRAF6(C70A) with

both TAK1 and TTRAP were strongly diminished. Concurrently,

ubiquitylated molecules were also mostly missing from the latter

samples. Co-expression of TAK1 and TTRAP synergistically

increased each other’s affinity toward TRAF6(C70A) however,

even in this case mutant TRAF6 interacted less efficiently with the

two proteins than the wild type, suggesting that ubiquitin mediated

interactions also contribute to the stabilization of the TAK1-

TTRAP-TRAF6 complex.

Ligand engagement of numerous cytokine receptors leads to

the assembly of multiprotein signaling complexes on their

Figure 5. TTRAP is involved in non-canonical TGF-b signaling. A) Stable NMuMG cell populations expressing GFP, GFP-tagged full-length
T TRAP (T TRAP) and GFP-tagged 1–123 aa T TRAP (N-T TRAP) proteins were generated by retroviral transduction. Transduced, GFP positive cells were
sorted by FACS. Expressions of the introduced genes were verified by western blotting (top left). The above NMuMG cell lines were transfected with
Smad (3TP-lux) and NF-kB reporters (top right). The cells were treated with 4 ng/ml of TGF-b for 16 hours and firefly luciferase activites were
measured. To take into account the different transfection efficiencies, a Renilla luciferase expressing plasmid was co-transfected with the reporters.
Subsequently, the firefly luciferase activities were normalized for Renilla luciferase activities. The error bars represent standard deviations. Smad2
phosphorylation was monitored in the parental and T TRAP expressing NMuMG cells by western blotting (bottom). A non-specific band is shown as a
loading control. B) Endogenous T TRAP level was reduced in AML12 cells by transduction of lentiviruses expressing shRNAs specific for the murine
TTRAP mRNA. Transduced, GFP positive cells were enriched by FACS. Lentiviruses expressing three different T TRAP shRNAs were used to rule out off-
target effects. A virus vector expressing a non-target shRNA was also employed as a control. In the transduced cell populations T TRAP level was
monitored by western blotting (left). Smad and NF-kB transcriptional activities were measured as above in parental and shRNA expressing AML12
cells (right). C) Transfected HEK293T cells were treated with 4 ng/ml of TGF-b for 30 minutes before cell lysis. TAK1 and p38 were precipitated from
the lysates and their phosphorylation status was monitored by western blotting. D) Smad2 and p38 phosphorylation were examined in non-target
and TTRAP shRNA expressing AML12 cells. Comparable sample loading was also monitored using p38 and Smad2/3 antibodies.
doi:10.1371/journal.pone.0025548.g005
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intracellular domains. Members of the TRAF adaptor protein

family have been shown to play crucial role in these processes

[44]. Prompted by these observations, we tested whether

TRAF6 can influence TTRAP’s association with the TGF-b
receptors using co-IPs (Figure 4B). As described above, TTRAP

exhibited relatively weak binding to TbRI-TD. Co-expression

of TRAF6 however, dramatically increased TTRAP’s affinity

toward the receptor. Importantly, the increased binding was

accompanied by the appearance of ubiquitylated TTRAP

forms, suggesting that TRAF6 mediated ubiquitylation may

contribute to the stabilization of the TTRAP-TbRI complex.

Similarly to TRAF6, ectopic expression of TRAF2 also

increased the TTRAP-TbRI association, though to a much-

reduced degree, indicating that under physiological conditions

TRAF2’s role may be negligible in the stabilization of the

TTRAP-TGF-b receptor complex.

Binding of TAK1 with TGF-b receptors has been demonstrated

by several studies [23,24,49,50]. We examined how this

interaction is influenced by TTRAP and TRAF6. As shown in

Figure 4C, ectopic expression of TRAF6 helped the recruitment of

not only TTRAP but TAK1 as well to TbRI. Notably, enrichment

of ubiquitylated forms of the proteins could also be observed in the

TbRI immunoprecipitates, indicating that the complexes might be

stabilized by this modification.

TTRAP is involved in non-canonical TGF-b signaling
Having established that TTRAP interacts with TGF-b

receptors and components of the TRAF6-TAK1 signaling

module, we wanted to evaluate the protein’s involvement in

various TGF-b induced biological responses. We started with the

establishment of stable NMuMG cell populations expressing the

EGFP-tagged full-length TTRAP molecule (TTRAP cells). As

controls, cells were also produced expressing the N-terminal 123

aa fragment of TTRAP tagged with EGFP (N-TTRAP cells) or

EGFP alone (EGFP cells) (Figure 5A). Smad-dependent tran-

scription was monitored in the above cells using the 3TP-lux

reporter. TGF-b treatment resulted in the same degree of Smad

activation in all cell lines and consistently, TbRI mediated

Smad2 phosphorylation also followed a similar kinetics

(Figure 5A). Earlier studies suggested that TTRAP is a negative

modulator of NF-kB [27]. Thus, we examined the protein’s

influence on TGF-b induced NF-kB activation as well. TGF-b
treatment did not have a significant effect on the activity of an

NF-kB reporter in NMuMG cells. However, in TTRAP over-

expressing cells the basal NF-kB activity was approximately half

of that observed in the control EGFP or N-TTRAP expressing

cells (Figure 5A).

The effect of TTRAP deficiency on TGF-b induced transcrip-

tional responses was also examined. These studies were performed

in AML12 normal murine hepatocytes, in which the endogenous

TTRAP protein level was knocked down by lentiviruses expressing

shRNAs specific for the mouse TTRAP gene (Figure 5B). Down-

regulation of TTRAP did not have an effect on TGF-b induced

Smad-dependent transcription and the kinetics of Smad2

phosphorylation was not affected either (Figure 5B and D). In

the parental and the non-target shRNA expressing AML12 cells,

TGF-b treatment significantly reduced the activity of an NF-kB

reporter in keeping with an earlier report [51]. TTRAP deficiency

completely abolished this inhibitory effect and even a slight

increase in the basal NF-kB activity could be seen in the TTRAP

shRNA expressing cells (Figure 5B).

TTRAP associates with components of the TRAF6-TAK1

signaling module, which plays an essential role in TGF-b
induced p38 activation. Additionally, the protein has recently

been implicated in proteasome impairment elicited activation of

p38 and JNK [52]. In light of these observations, we examined

TTRAP’s role in TGF-b induced activation of these kinases.

Ectopic expression of TTRAP in HEK293T cells activated p38

however, it did not affect JNK phosphorylation (Figure 5C and

data not shown). Accompanying p38 activation, ubiquitylation

and phosphorylation of TAK1 was also observed. In many cell

lines TGF-b activates p38 in two waves [53,54]. The early stage

- peeking between 15–45 minutes - is Smad-independent, while

the delayed p38 response - reaching its maximum at 1.5–

2 hours - requires Smad-dependent transcription. As shown in

Figure 5D, shRNA mediated knockdown of TTRAP expression

strongly inhibited the early p38 phosphorylation in AML12

cells, while the delayed p38 activation and Smad2 phosphor-

ylation remained unaffected. In summary, the above data

strongly suggest that TTRAP is an important component of

Smad-independent non-canonical TGF-b induced signaling

responses, principally the p38 kinase cascade and the NF-kB

pathway.

TTRAP plays a role in TGF-b induced apoptosis
The NMuMG mammary epithelial cell line has been a well-

characterized model system for TGF-b induced apoptosis

[11,23,55]. TGF-b regulates this process in NMuMG cells

through both Smad-dependent and -independent mechanisms,

with the Smad-independent component predominantly involving

the p38 MAP kinase cascade. To asses the role of TTRAP in

TGF-b induced apoptosis, we treated the TTRAP expressing and

control NMuMG cells described above with TGF-b under

various conditions and subsequently their viability was measured

by PI uptake and MTT assay. In accordance with published data,

TGF-b elicited only modest apoptosis in the control cell

populations (EGFP and N-TTRAP cells) after 24 hours under

low-serum (0.2% FBS) culture conditions (Figure 6A) [11,55]. In

contrast, after 24 hours, TTRAP cells exhibited robust TGF-b
induced cell death (,50%), which by 48 hours increased even

further (,80%). By the same time, the TGF-b elicited apoptotic

rate in the control cell populations was ,2/3rd of that of the

TTRAP cells. Importantly, TGF-b dependent apoptosis was

completely preventable by the TbRI receptor kinase inhibitor,

SB431542 and the p38 inhibitor, SB203580 also provided strong

protection. The JNK inhibitor, SP600125 did not have a

significant effect on the viability of TGF-b treated NMuMG

cells. In 10% FBS medium, 24 hours of TGF-b treatment was

Figure 6. TTRAP is involved in TGF-b induced apoptosis. The stable NMuMG cell populations described in Figure 5 were treated in 0.2% (A) or
10% (B) FBS containing medium as indicated and cell viability was assessed using two different methods. PI uptake of cells, as a measure of
membrane integrity, was monitored by FACS (left panels). The experiments were repeated at least twice with similar outcome. On the right side MT T
assays were used to measure cell viability. The chemicals used at the following concentrations: TGF-b 4 ng/ml; SB431542, SB203580 and SP600125
were all used at 10 mM. The error bars represent standard deviations. C) NMuMG cells stably expressing T TRAP or EGFP were treated as indicated and
integrity of their membranes was monitored by PI uptake. The chemicals used at the following concentrations: TGF-b 4 ng/ml, staurisporine (STS)
1 mM, MG132 2.5 mM. Experiments were repeated several times and a representative result is shown. D) Non-target and T TRAP shRNA lentivirus
transduced AML12 cells were treated as indicated in 10% FBS medium. After 24 hours, cells were stained with annexin V and analyzed by FACS.
doi:10.1371/journal.pone.0025548.g006
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not able to elicit significant degree of cell death in any of the

NMuMG cell lines used, and even after 48 hours only weak

apoptosis (,20%) was detectable in the control cells (Figure 6B).

In contrast, under the same conditions in the TTRAP cells the

apoptotic rate was .50% by 48 hours and whereas the TbRI

inhibitor was still able to prevent apoptosis, the p38 inhibitor lost

its protective effect.

Next, we wished to examine the involvement of TTRAP in

apoptotic processes induced by other death-promoting stimuli

(Figure 6C). TTRAP cells exhibited similar sensitivity to the kinase

inhibitor, staurosporine and the proteasome inhibitor, MG132 as

the control EGFP cells. Interestingly however, while TGF-b alone

was unable to elicit a significant degree of apoptosis after 24 hours

under high serum growth conditions in either cell lines, the

combined TGF-b/MG132 treatment resulted in synergistic killing

of the TTRAP cells.

Finally, TGF-b induced cell death was examined in AML12

hepatocytes made deficient for TTRAP with the use of gene

specific shRNAs (see above). In keeping with a recent report

[56], decreasing cellular TTRAP level resulted in increased basal

apoptosis (,6% versus ,24%) (Figure 6D). Importantly

however, the robust TGF-b induced cell death was significantly

attenuated by TTRAP deficiency (,74% versus ,59%),

confirming that the protein fulfills a TGF-b dependent pro-

apoptotic role in the cells.

Discussion

In this paper we indentify the TTRAP adaptor molecule as a

binding partner for key components of the TRAF6-TAK1 signaling

module and the TGF-b receptor complex, strongly suggesting the

protein’s involvement in non-canonical TGF-b signaling responses.

Support for this hypothesis is provided by the following observa-

tions: 1. TTRAP interacts with endogenous TAK1 and TbRI in a

TGF-b inducible fashion; 2. TTRAP forms a stable ternary

complex with TAK1 and TRAF6, which can interact with the

TGF-b receptor complex; 3. the E3 ubiquitin ligase activity of

TRAF6 is boosted by TTRAP, thereby promoting the ubiquityla-

tion of TAK1 and itself; 4. ectopic over-expression of TTRAP

results in phosphorylation of TAK1 and p38, while it negatively

modulates the activity of NF-kB ; 5. shRNA mediated knockdown

of endogenous TTRAP abolishes TGF-b induced rapid phosphor-

ylation of p38 and repression of NF-kB.

TGF-b controls apoptosis through both Smad-dependent and

-independent signaling routes. Amongst the Smad-independent

pathways, the p38 kinase cascade is generally considered to be a

pro-apoptotic pathway, while the NF-kB route has been shown to

protect cells from TGF-b induced apoptosis [16,17,51,57–59].

Thus, it was not surprising to find that ectopic expression of

TTRAP sensitized cells to TGF-b induced cell death, while its

down-regulation provided partial protection. The ability of

TTRAP to differentially modulate two signaling pathways with

opposing outcomes is intriguing however, by no means unique.

Recently, the XIAP interacting protein Siva1 was demonstrated

to inhibit XIAP and TAK1-TAB1 mediated NF-kB activation,

while prolonged TNFa-induced JNK activation resulting in

enhanced apoptosis [60]. Interestingly, Siva1 similarly TTRAP,

was also shown to interact with the TAK1 complex. Thus, we

suggest that TTRAP, along with Siva1, belongs to a group of

proteins defined by their abilities to modulate the balance

between pro-survival and pro-apoptotic pathways by interacting

with the TAK1 complex.

Several works implicated TTRAP in the regulation of apoptosis

and depending on the cellular context and the death promoting

stimuli used, both pro- and anti-apoptotic properties have been

attributed to the protein [58,56,61]. Our results not only establish

TTRAP as a novel component of the non-canonical TRAF6-

TAK1 signaling branch of TGF-b signaling, but also demonstrate

its specific involvement in TGF-b induced apoptosis. It is

becoming increasingly clear that imbalances arising during tumor

progression between various branches of TGF-b signaling conspire

to convert TGF-b from a suppressor of tumor formation to a

promoter of their growth. Thus, one may hypothesize that

restoration of this equilibrium could be of great therapeutic value.

From this perspective, the TRAF6-TAK1 signaling module could

be a unique and very attractive target for intervention. This

module is a point of convergence for both pro-apoptotic (p38/

JNK MAP kinase cascades) and pro-survival (NF-kB and PI3K/

Akt pathways) signaling routes. Since TTRAP interacts with all

key components of this module, thorough understanding of its

mode of action may help us formulate strategies for steering the

TGF-b pathway in different directions, favoring either survival or

apoptosis.

Supporting Information

Figure S1 In vitro interaction of TTRAP with TbRI and
TbRII. Cytoplasmic domains of TGF-b receptors fused with GST

were produced in bacteria and affinity purifed on gluthatione

beads. HA-TTRAP, FLAG-TRAF2 and -6 were produced by in

vitro translation in rabbit reticulocyte lysates. In vitro binding of

TTRAP and TRAFs to gluthatione bead-bound GST, GST-

TbRI-CD and GST-TbRII-CD were examined by western

blotting.

(TIF)

Figure S2 Analysis of the binding of TTRAP with Smads
by co-IP. TTRAP was pulled-down from transfected HEK293T

cells and the co-precipitation of the Smads and TbRI was

examined by western blotting.

(TIF)

Figure S3 Mapping of the TRAF6 and TAK1 binding
domains of TTRAP by co-IP. A, B) TRAF6 or TAK1 was

precipitated from transfected HEK293T cells and the co-

precipitating TTRAP fragments were detected by western

blotting. Note that TAK1 and EGFP-TTRAP has similar

eletrophoretic mobilities, thus the HA reactive band in lane 2 of

IP panel A corresponds to a mixture of the two molecules.

(TIF)

Figure S4 TRAF6 promotes the ubiquitylation of
TTRAP. Original scans for Figure 3A.

(TIF)
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