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Background: Down syndrome (DS) is considered the most frequent cause of

early-onset Alzheimer’s disease (AD), and the typical pathophysiological signs

are present in almost all individuals with DS by the age of 40. Despite of this

evidence, the investigation on the pre-dementia stages in DS is scarce. In the

present study we analyzed the complexity of brain oscillatory patterns and

neuropsychological performance for the characterization of mild cognitive

impairment (MCI) in DS.

Materials and methods: Lempel-Ziv complexity (LZC) values from resting-

state magnetoencephalography recordings and the neuropsychological

performance in 28 patients with DS [control DS group (CN-DS) (n = 14), MCI

group (MCI-DS) (n = 14)] and 14 individuals with typical neurodevelopment

(CN-no-DS) were analyzed.

Results: Lempel-Ziv complexity was lowest in the frontal region within the

MCI-DS group, while the CN-DS group showed reduced values in parietal

areas when compared with the CN-no-DS group. Also, the CN-no-DS group

exhibited the expected pattern of significant increase of LZC as a function of

age, while MCI-DS cases showed a decrease. The combination of reduced

LZC values and a divergent trajectory of complexity evolution with age,

allowed the discrimination of CN-DS vs. MCI-DS patients with a 92.9% of
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sensitivity and 85.7% of specificity. Finally, a pattern of mnestic and praxic

impairment was significantly associated in MCI-DS cases with the significant

reduction of LZC values in frontal and parietal regions (p = 0.01).

Conclusion: Brain signal complexity measured with LZC is reduced in DS and

its development with age is also disrupted. The combination of both features

might assist in the detection of MCI within this population.

KEYWORDS

Down syndrome, magnetoencephalography, brain signal complexity, mild cognitive
impairment, neuropsychological performance, adult

Introduction

Down syndrome (DS) is a genetic condition linked to the
overexpression of chromosome 21, and has been considered the
most frequent cause of early onset Alzheimer’s disease (AD)
associated with a specific genotype (McCarron et al., 2017; Chen
et al., 2018). In spite of this, the number of studies on the
characterization of predementia stages, such as mild cognitive
impairment (MCI), is scarce, probably due to the inherent
difficulties for the diagnosis of this condition (Mak et al.,
2017; Esteba-Castillo et al., 2022). Currently, there is no official
international consensus that delimits the characterization of
MCI in DS. Esteba-Castillo et al. (2022) proposed diagnostic
criteria for MCI in DS. Although there are publications trying
to characterize MCI in DS, this aspect is complicated given
the enormous cognitive variability and the intellectual disability
typical in people with DS.

Considering these difficulties, some noninvasive evaluation
techniques such as the electroencephalography (EEG) or
magnetoencephalography (MEG) have been used. DS and AD
share some basic neurophysiological characteristics, such as
the general slowing of EEG or MEG oscillations including a
reduction of alpha power and peak frequency (Katada et al.,
2000; Menéndez, 2005; Hamburg et al., 2019). However, the
lack of neurophysiological investigations focused on MCI in DS
is also notable, as most published studies compared groups of
young or middle-aged DS patients with age-matched controls.

In the last few decades, novel techniques evaluating the
complexity of brain signals have been added to the conventional
power spectrum analysis. Complexity estimators are suitable
methods to quantify the linear or nonlinear modifications of
brain activity over time (for a review, see Stam, 2005). Different
complexity estimators have been utilized to investigate and assist
in the diagnosis of medical and neuropsychiatric disorders,
and particularly to assess the brain’s oscillatory changes
appearing in the AD-spectrum (for reviews see Fernández
et al., 2013b; Sun et al., 2020). These studies reported a profile
of reduced complexity in AD and MCI patients. Lempel–Ziv

complexity (LZC) is an easy to compute algorithm evaluating
the complexity in a time series by identifying the number of
distinct substrings and the rate of their occurrence along a
temporal sequence (Lempel and Ziv, 1976). LZC is dependent
on the bandwidth of the signal spectrum, and therefore brain
signals displaying a broader spectrum would yield higher values
of complexity (Aboy et al., 2006).

Based on the link between AD and DS, it might be expected
that signals recording brain activity in DS would be less complex
than those from healthy controls, but current evidence seem
to contradict such assumption, perhaps due to the age-interval
of the samples. For instance, Hemmati et al. (2013) studied
EEG signals by means of fractal dimension in a sample of
children with DS, and results indicated that patients with DS
showed higher complexity values than controls. Such tendency
was confirmed in fMRI studies focused on the estimation of
complexity values in young adults (Carbó-Carreté et al., 2020;
Figueroa-Jimenez et al., 2021).

In this study we hypothesize that: (1) given the
pathophysiological similarities between AD and DS, brain
signals from adults with DS will show reduced signal
complexity, with an additional reduction in the MCI group
that might assist in the characterization of this stage; and (2)
patients with DS, particularly those presenting MCI, would
represent another example of abnormal changes of complexity
with aging [i.e., they would not follow the clear pattern of
complexity increase as a function of age within the healthy
population previously found with EEG and MEG, as it was
systematically “broken” in different pathologies (Anokhin et al.,
2000; Fernández et al., 2012)]. In the present study, LZC was
estimated from MEG signals, but taking advantage of MEG’s
technical particularities, LZC values were calculated employing
a source-based methodology (Shumbayawonda et al., 2019).
Finally, it is important to emphasize that this piece of work
is an extension of previous studies (García-Alba et al., 2019;
Ramírez-Toraño et al., 2021) where some other markers were
utilized to investigate the particular characteristics of MCI in
DS.
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Materials and methods

Participants

We recruited 28 DS participants (12 males and 16 females,
mean age 47.21 ± 4.10 years) with genetically confirmed
karyotype, excluding cases of mosaicisms and translocations,
from the Unidad de Adultos con Síndrome de Down (Adult
Down Syndrome Unit-La Princesa University Hospital, Madrid,
Spain). This sample was divided into two groups: (1) patients
with DS who did not match the criteria for MCI or AD diagnosis
(CN-DS group) (4 males and 10 females, age 44.64 ± 3.29;
min = 40, max = 52), and (2) patients with DS who matched the
criteria for MCI (MCI-DS group) (8 males and 6 females, age
51.64 ± 3.96; min = 47, max = 61). In addition, we recruited
a group of healthy control individuals (CN-no-DS) (4 males
and 10 females, mean age 45.21 ± 4.38; min = 40, max = 54)
free of any significant medical, neurologic, and/or psychiatric
disease, and age and sex matched with the CN-DS group. The
demographic characteristics of the sample are presented in
Table 1.

Inclusion and exclusion criteria of the sample were
exhaustively described in García-Alba et al. (2019). The study
was conducted in accordance with The Code of Ethics of
the World Medical Association (Declaration of Helsinki),
and the protocol was approved by the Clinical Research
Ethical Committee of La Princesa University Hospital. Written
informed consent was obtained from parents or legal guardians,
and verbal or written assent was additionally obtained from DS
patients.

Clinical assessment

An exhaustive clinical and neuropsychological assessment
protocol was applied to all patients with DS. This protocol was
not applied to CN-no-DS individuals.

Protocol:

- Cambridge Cognitive Examination for older adults
with Down’s Syndrome (CAMCOG-DS) Spanish

TABLE 1 Demographic characteristics.

CN-no-DS CN-DS MCI-DS

Mean (SD) Mean (SD) Mean (SD) P-value (statistic)

n 14 14 14

Age 45.214 (4.388) 44.643 (3.296) 51.643 (3.954) <0.001 (13.870)

Sex 10 F / 4 M 10 F / 4 M 6 F / 8 M 0.199 (3.231)

The comparison of age was addressed by means of ANOVA. The comparison of sex was
addressed by means of chi-square test.

version (Esteba-Castillo et al., 2013). The CAMCOG-
DS is a section of the CAMDEX-DS, dedicated to the
cognitive assessment of the patient, which evaluates
the main cognitive domains (orientation, language,
memory, praxis, abstract thinking, attention, perception).
The cognitive profile obtained by the CAMCOG-DS
complements the diagnosis obtained by the CAMDEX-
DS. The assessment consists of three parts: clinical
interview, neuropsychological assessment and interviewer
observations.

- Cambridge Examination for Mental Disorders of Older
People with Down’s Syndrome and Others with Intellectual
Disabilities (CAMDEX-DS) (Ball et al., 2006), Spanish
version (Esteba-Castillo et al., 2013). Test adapted and
validated for people with DS and other intellectual
disabilities. The CAMDEX-DS assesses and diagnoses
mental disorders and the impairment caused by AD
disease, in our case we used the version adapted to Spanish.
It consists of a structured interview administered to
the informant/family member (CAMDEX-DS interview)
and carried out in the absence of the patient. Its aim
is to facilitate the systematic collection of the relevant
symptomatology. It consists of four parts: best level
of functioning of the patient/participant, cognitive and
functional impairment, mental health and physical health.

- Barcelona Test-Intellectual Disability (BT-ID) (Esteba-
Castillo et al., 2017). Neuropsychological test designed
and validated in the Spanish population for adults with
intellectual disabilities. This test is not diagnostic, it
provides the complete cognitive profile of the person, and
like the CAMCOG-DS, it is an excellent complement to
the diagnosis provided by the CAMDEX-DS. The BT-ID is
composed of 67 subtests related to eight cognitive domains:
orientation, attention, working memory, language, praxis,
memory, executive functions and visuoconstruction.

- Behavior Rating Inventory of Executive Function-
Parents (BRIEF-P) (Gioia et al., 2010). We also included
informant’s reports from the BRIEF-Informant’s Report.
The BRIEF-P measures seven different aspects of executive
function grouped into two indexes: The Behavioral
Regulation Index is composed of inhibit, shift and
emotional control; the Metacognitive Index is composed
of initiate, working memory, planification, organization
and monitor. We use this test as an extension of the BT-ID
for the behavioral assessment of executive functions.

All the tests present a quantitative assessment method,
however, and especially in the CAMDEX-DS, CAMCOG-DS,
and BT-ID tests, it is very important to observe how the
patient responds to each of the subtests (response times,
perception of errors, etc.). From the tests aforementioned,
only a few variables were selected for the statistical analyses:
BRIEF-GEC (global executive composite index of the BRIEF);
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working memory, verbal short-term memory-learning, verbal
short-term memory-learning_delayed and constructive praxis
(BT-ID); praxis total (CAMCOG-DS). The CAMDEX-DS was
only used as a diagnostic tool.

The diagnosis of MCI was based on expert clinical judgment,
as it is recommended in the standard practice for DS (Sheehan
et al., 2015; Fenoll et al., 2017; Pujol et al., 2018; Esteba-Castillo
et al., 2022). For an MCI diagnosis, patients should present:
(1) a report of cognitive impairment by the patient (confirmed
by a reliable informant), or a report of cognitive impairment
by a reliable informant implying a change from previous
capacities; paired with (2) no clinically relevant deterioration
in adaptive skills according to CAMDEX-DS informant section,
were required (García-Alba et al., 2019; Ramírez-Toraño et al.,
2021).

All participants were clinically assessed three times over a 3-
year follow-up period. Initiation of the study (L0), 1 year after
the start of the study (L1), and 2 years after the start of the study
(L2). On each assessment, CAMDEX-DS was applied for follow-
up diagnosis purposes. In L0 a clinical/neuropsychological study
and MEG were performed, in L1 a clinical/neuropsychological
study was conducted and in L2 the assessment included a
clinical/neuropsychological study and MEG recording. Only
results from L0 are presented in this article. The longitudinal
nature of the study is mentioned, as in L0 the baseline condition
of the patient was established and the follow-up served to
confirm the diagnosis over time. Establishing the patient’s
baseline status in patients with DS is fundamental given the
cognitive deficit inherent to this syndrome; this allows us to
differentiate between these cognitive deficits and those due
to MCI impairment.

Magnetoencephalography recordings
and preprocessing

We acquired 4 min of eyes-closed resting-state activity
at the Center for Biomedical Technology (Madrid, Spain)
using an Elekta Vectorview system (102 magnetometers and
204 planar gradiometers). We used four head positioning
coils to continuously determine the head position, and two
electrodes to record the ocular activity. The coil position and
the participant’s head shape were digitalized using a Fastrack
Polhemus system. During the recordings, participants sat inside
a shielded room and were instructed to keep still and relax. DS
patients’ recordings were performed by an expert on intellectual
disabilities (JGA) and were well tolerated by all patients.

Data were anti-alias filtered (0.1–330 Hz) and digitized with
a sampling frequency of 1,000 Hz. The spatio-temporal signal
space separation (tSSS) method (Taulu and Simola, 2006), as
implemented by MaxFilter (version 2.2, correlation 0.90, time
window 10s), was used to remove external noise and compensate
for head movements inside the MEG scanner. The recordings

were inspected automatically for artifacts using the FieldTrip
(Oostenveld et al., 2011), and the result was confirmed by an
MEG expert (FRT). Data were segmented in non-overlapping 4-
s epochs of continuous artifact-free data and at least 20 epochs
were obtained from each recording. Finally, as the information
contained in the MEG data is highly redundant after tSSS
(Garcés et al., 2017), only magnetometers’ information was
selected for analysis.

Source reconstruction

We defined the source model based on a 1 cm homogeneous
grid in MNI space and labeled each source according to
the Harvard-Oxford atlas. The source model was linearly
transformed into individual space using the individual head
shape, and a lead field was estimated using a realistic single
shell model based on the transformed MNI template (Nolte,
2003). We reconstructed the source-space time series using a
Linearly Constrained Minimum Variance (LCMV) beamformer
using the epoch-averaged covariance matrix.

Lempel-Ziv complexity

LZC calculates the complexity of a signal in Kolmogorov’s
sense after it has been coarse-grained into a finite symbol
sequence. To this end, first we concatenated all the 4-s epochs
from each source position i, resulting in a time series xi(n). Then,
xi(n) was converted into a binary sequence [si(n)] using the
median as a threshold (Td) (Fernández et al., 2012; Abásolo et al.,
2015). This coarse-graining process improves the robustness to
arbitrary outliers and ensures an equal number of zeros and
ones, thus reducing the possible bias in LZC (Aboy et al., 2006).
This binary string was then scanned from left to right, and a
complexity counter ci was increased by one unit every time a
new subsequence of consecutive characters was encountered.
Last, we normalized ci using its upper bound bi (Aboy et al.,
2006; Fernández et al., 2012), to obtain the LZC Ci:

Ci = LZC =
ci
bi

(1)

Normalized LZC values are in the range 0 ≤ LZC ≤ 1,
where a value of 0 shows a stationary signal with no varying
dynamics, and 1 shows a very complex signal with multiple
complex dynamics (Aboy et al., 2006). LZC values were obtained
for each source position xi(n). Since this investigation followed
a source-based approach, the LZC values of the corresponding
time series were averaged in anatomical areas of interest
according to the Harvard-Oxford atlas, namely: left and right
frontal lobe (LF_LZC and RF_LZC), left and right parietal lobes
(LP_LZC and RP_LZC), left and right temporal lobes (LT_LZC
and RT_LZC), and left and right occipital lobe (LO_LZC and
RO_LZC).
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Statistical analyses

The demographic characteristics of the sample were
compared by means of ANOVA for age and chi-square for sex.
The results of each test are presented in Table 1.

Regarding LZC, first, we examined the difference in LZC
scores across groups by means of ANOVA test and the post-
hoc comparisons were addressed using the Dunnett’s post-hoc
test. Variables showing significant differences among groups
were submitted as “candidate variables” to logistic regression
analyses. In addition, we examined if demographic variables
such as age and sex modulate the LZC values within the
groups. Sex was addressed by two-sample t-test and the Levene’s
test to assess the homogeneity of variance. The possible age
effect on LZC scores was addressed by estimating the Pearson
correlation coefficient of these two variables for each group
to avoid false correlations led by inter-groups differences
(Makin and de Xivry, 2019). Furthermore, a linear regression
analysis between age and LZC scores was performed and
the equality of regression slopes between groups was tested
by means of F-tests. The purpose of the analyses regarding
the “ag was: (1) to assess the distinctive developmental
patterns of the LZCs with age between groups, and (2) to
confirm the need to include age in the logistic regression
analyses.

Secondly, we evaluated the potential capability of LZC to
assist in the discrimination of MCI cases in DS. For this purpose,
multivariate logistic regression analyses were applied to discover
which candidate variables (see above) may discriminate between
groups (CN-DS vs. CN-no-DS and CN-DS vs. MCI-DS). The
model’s performance was assessed by means of classification
tables, along with Hosmer and-Lemeshow goodness of fit tests
and Nagelkerke R2 coefficient. Hosmer-Lemeshow’s model-
building procedure (Hosmer et al., 2013) was followed to obtain
the final multivariate models. In this procedure, the selection
process should begin with a careful univariate analysis of each
variable. Upon completion of univariate analyses, variables for

multivariate analysis are selected. Any variable whose univariate
test is significant should be considered as a candidate for
the multivariate model along with all variables of known
biological importance. All candidate variables are submitted
to a Forward Likelihood ratio method to select variables that
should be included in the final model. Following the fit of
the multivariate model, the interaction terms are tested. In
addition, Receiver Operating Characteristic (ROC) curves and
the goodness-of-fit tests are used to evaluate the precision of the
final models.

Finally, the relationship between the LZC values and
neuropsychological performance was assessed using the
Spearman’s correlation coefficient due to the characteristics
of neuropsychological scores. SPSS Statistics version 27.0 and
Statgraphics version 19 were used for the statistical analyses, and
a significance level of p < 0.05 was adopted for all comparisons.
All p-values were two-tailed.

Results

Lempel-Ziv complexity differences
between groups

The analysis showed significant differences between CN-
no-DS and CN-DS groups in both LP_LZC (p = 0.037) and
RP_LZC (p = 0.024), with smaller values in the CN-DS group.
Moreover, a significant difference was found between CN-DS
and MCI-DS groups in LF_LZC (p = 0.009) and RF_LZC
(p = 0.014), with smaller values in the MCI-DS group. Results
are presented in Table 2 and in Figure 1. Based on these results,
LP_LZC, RP_LZC, LF_LZC, and RF_LZC scores were selected
as candidate variables for the logistic regression models (see
below). Additionally, regardless of the diagnostic group, frontal
regions displayed the highest mean values as compared with the
other anatomical regions.

TABLE 2 LZC values across groups and areas.

CN-no-DS CN-DS MCI-DS ANOVA CN-DS vs. CN-no-DS CN-DS vs. MCI-DS

Mean (SD) Mean (SD) Mean (SD) P-value P-value P-value

LF_LZC 0.394 (0.005) 0.387 (0.007) 0.380 (0.012) <0.001 0.314 0.009

RF_LZC 0.393 (0.006) 0.390 (0.007) 0.382 (0.010) 0.001 0.380 0.014

LP_LZC 0.383 (0.011) 0.373 (0.009) 0.366 (0.014) 0.002 0.037 0.270

RP_LZC 0.384 (0.012) 0.372 (0.010) 0.368 (0.011) 0.003 0.024 0.541

LT_LZC 0.382 (0.011) 0.376 (0.008) 0.368 (0.017) 0.027 0.436 0.176

RT_LZC 0.383 (0.011) 0.376 (0.010) 0.369 (0.009) 0.009 0.243 0.147

LO_LZC 0.369 (0.015) 0.363 (0.014) 0.362 (0.016) 0.423 0.486 0.971

RO_LZC 0.368 (0.016) 0.363 (0.015) 0.360 (0.016) 0.420 0.595 0.869

P-value for ANOVA and post-hoc (Dunnett’s test) resulting from the comparison between groups. CN, control; DS, Down syndrome; LF, left frontal; LO, left occipital; LP, left parietal; LT,
left temporal; LZC, Lempel-Ziv complexity; MCI, mild cognitive impairment; RF, right frontal; RO, right occipital; RP, right parietal; RT, right temporal; SD, standard deviation.
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FIGURE 1

LZC distribution across groups and lobes. The top panel presents the lobes that presented significant differences in complexity among the
groups. The bottom panel details these differences, showing the groups with significant differences in each lobe. The MCI-DS group showed
the lowest complexity values, while the CN-DS group exhibited intermediate scores when compared with the CN-no-DS group. CN, control;
DS, Down syndrome; LZC, Lempel-Ziv complexity; MCI, mild cognitive impairment. **Statistically significant difference between two groups.

Demographic variables that modulate
Lempel-Ziv complexity values

Overall, the analyses demonstrated a pattern of positive

correlations between age and LZC values in CN-no-DS and CN-

DS groups, and negative correlations in the MCI-DS group.

Such pattern was significant in the CN-no-DS group for LF_LZC

(p = 0.014), RF_LZC (p = 0.009), LP_LZC (p = 0.048), and

RP_LZC (p = 0.049) regions. Significant negative correlations
were found in the MCI-DS group for LP_LZC (p = 0.017)
and RP_LZC (p = 0.035). No significant correlations emerged
in the CN-DS group. Moreover, significant differences were
found when the slopes of the regression lines between age and
LZC values were compared (p < 0.05 for all regions except
for LT_LZC, see Table 3 and Figure 2). These results indicate
that at least the slope of one group is significantly different
from the rest. This tendency is reinforced by the previously
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TABLE 3 F-test for differences among regression slopes (p-value), Correlation coefficients (r), slopes (b), and p-values between Age and LZC
variables by groups.

Slope test CN-no-DS CN-DS MCI-DS

P-value r (b) P-value r (b) P-value r (b) P-value

LF_LZC 0.033 0.638 (0.0007) 0.014 0.151 (0.0003) 0.608 −0.424 (−0.0012) 0.131

RF_LZC 0.025 0.667 (0.0008) 0.009 0.229 (0.0005) 0.431 −0.417 (−0.0010) 0.138

LP_LZC 0.003 0.536 (0.0014) 0.048 0.004 (<0.0001) 0.988 −0.626 (−0.0022) 0.017

RP_LZC 0.008 0.535 (0.0014) 0.049 0.087 (0.0002) 0.767 −0.566 (−0.0019) 0.035

LT_LZC 0.061 0.432 (0.0011) 0.123 0.036 (<0.0001) 0.903 −0.402 (−0.0017) −0.424

RT_LZC 0.004 0.509 (0.0012) 0.063 0.047 (0.0001) 0.872 −0.424 (−0.0014) 0.131

LO_LZC 0.038 0.438 (0.0015) 0.117 0.204 (0.0008) 0.483 −0.494 (−0.0020) 0.072

RO_LZC 0.047 0.494 (0.0017) 0.072 0.227 (0.0010) 0.436 −0.434 (−0.0017) 0.121

CN, control; DS, Down syndrome; LF, left frontal; LO, left occipital; LP, left parietal; LT, left temporal; MCI, mild cognitive impairment; RF, right frontal; RO, right occipital; RP, right
parietal; RT, right temporal; SD, standard deviation.

described negative correlation between age and LZC in the
MCI-DS group, and the significantly higher mean of age in the
MCI-DS group (p < 0.01). Consequently, age will be included
in all the classificatory logistic regression analyses to control its
effect.

The analyses showed no relationship between sex and LZC
values in any of the anatomical regions: (CN-no-DS group:
p> 0.120 for all regions; CN-DS group: p> 0.578 for all regions;
MCI-DS group: p > 0.519 for all regions).

Logistic regression analyses

Two independent logistic regression models were estimated
to discriminate between CN-DS and CN-no-DS groups, and
between CN-DS and MCI-DS groups. In both models, the CN-
DS group was defined as the reference category. As demographic
analyses evidenced a group-dependent relationship between
age and LZC values in certain regions and following Hosmer-
Lemeshow’s suggestions (Hosmer et al., 2013) on “clinically
relevant” variables, we considered age as a “fixed” variable to be
included in all the multivariate models (see Table 4).

Control DS group vs. CN-no-DS
The final multivariate regression model, controlled for age,

only contained the RP_LZC values (Likelihood ratio test = 7.309;
p = 0.007). The Hosmer-Lemeshow goodness-of-fit statistic was
9.433 (p = 0.223) and the Nagelkerke-coefficient R2 was 0.312.
The area under the ROC curve (AUC) was 0.786 (p = 0.010, 95%
CI = [0.610; 0.962]). Both the sensitivity and specificity of the
model were 71.4%, when a 0.50 cut-off point is adopted. The
ROC curve is displayed in Figure 3.

Control DS group vs. MCI group
The final multivariate regression model, controlled for age,

only contained the RF_LZC values (Likelihood ratio test = 5.248;

p = 0.022). The Hosmer and Lemeshow goodness-of-fit statistic
was 5.388 (p = 0.613), and the Nagelkerke-coefficient R2 was
0.826. The AUC was 0.974 (p < 0.001, 95% CI = [0.920; 1.000]).
The sensitivity and specificity of the model were 92.9 and 85.7%,
respectively, when a 0.50 cut-off point is adopted. The ROC
curve is shown in Figure 3.

Lempel-Ziv complexity and
neuropsychological performance

Significant variables in the final logistic regression models
were submitted to correlation analyses. Within the MCI-DS
group, a significant positive correlation was found between
RF_LZC values and short-term verbal memory-learning_delayed,
working memory and short-term verbal memory-learning, while
marginal correlations were observed with praxis total (Table 5).
Similarly, RP_LZC exhibited a significant correlation with
short-term verbal memory-learning_delayed; while short-term
verbal memory-learning and constructive praxis showed slightly
weaker but also significant correlations (Table 5). No significant
correlations were found within the CN-DS group.

Discussion

To the best of our knowledge, this is the first study using
brain signal complexity to assist in the detection of MCI in
DS. Overall, LZC mean values indicated that the MCI-DS
group showed the lowest complexity scores, while the CN-DS
group exhibited intermediate scores as the CN-no-DS group
exhibited the highest values. However, results indicated that
such a tendency had a regional specificity, as parietal scores
differentiated CN-DS from CN-no-DS groups and frontal scores
differentiated CN-DS from MCI-DS groups. The CN-no-DS
group exhibited the expected pattern of significant increase of
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FIGURE 2

Relationship between Age and LZC. These plots use regression lines to show the evolution of the brain signals complexity with the age of the
participant. The CN-no-DS group exhibited the expected pattern of significant increase of LZC as a function of age, while that pattern was
“broken” in CN-DS and especially in MCI-DS. CN, control; DS, Down syndrome; LZC, Lempel-Ziv complexity; MCI, mild cognitive impairment.

LZC as a function of age, while that pattern was “broken” in
CN-DS and, especially, in MCI-DS. The combination of reduced
LZC scores and a divergent trajectory of complexity evolution
with age allowed the discrimination of MCI-DS patients with a
high sensitivity and specificity.

The present results are not in disagreement with the fact that
DS and AD share some basic pathophysiological signs with the
AD-spectrum. Particularly, amyloid plaques and neurofibrillary
tangles are present in almost all patients with DS by the age of
40 (Ballard et al., 2016), leading to a lifetime risk of developing
dementia greater than 90% (Bittles et al., 2007; McCarron et al.,
2017; Fortea et al., 2020). Regarding the incidence of MCI in

DS, a very recent investigation (Oliver et al., 2022) reported
that MCI was evident in approximately 20% of adults aged
40 and under, 40% aged 41–50, and 45% aged 51 and over.
Considering the proved existence of AD neuropathology, most
patients with DS and MCI aged above 40 might be labeled as
“MCI due to AD” (Albert et al., 2011), and their associated
neurophysiological features should resemble those observed in
the general population. EEG studies using conventional analysis
techniques indicated that DS patients with dementia show the
typical features of AD, including increased power in delta and
theta bands (Medaglini et al., 1997; Velikova et al., 2011; Salem
et al., 2015). With respect to MCI, a recent MEG investigation
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TABLE 4 P-values of the univariate regression models (LR for
likelihood-ratio test).

CN-DS vs. CN-no-DS CN-DS vs. MCI-DS

LR test P-value LR test P-value

LF_LZC 0.068 0.010

RF_LZC 0.096 0.017

LP_LZC 0.009 0.148

RP_LZC 0.007 0.326

LT_LZC 0.139 0.108

RT_LZC 0.098 0.081

LO_LZC 0.272 0.835

RO_LZC 0.368 0.646

(García-Alba et al., 2019) showed a widespread increase of theta
activity in DS that was replaced by an augmented delta in the
MCI stage. As these results mirrored the evidence observed
in populations with typical development, we assumed that
complexity changes in the MCI-DS group should follow the
same logic.

Brain signal complexity in MCI cases without DS has been
extensively investigated in EEG and MEG studies in recent
years (Bruña et al., 2012; Maturana-Candelas et al., 2019;
Shumbayawonda et al., 2020; Şeker et al., 2021; Ding et al., 2022).
Most of these studies showed that patients with MCI had lower
complexity than controls, but higher values than AD patients.
Notably, none of these investigations explored the influence of
age on complexity scores or its potential interaction with the
neuropathological process. Age exerts a well-known influence
on brain complexity (Anokhin et al., 1996; Meyer-Lindenberg,
1996; Yao et al., 2013), with a brisk increase from infancy to
adolescence and a sustained linear increase at least until the sixth
decade of life. This “normative” profile was complemented by
Goldberger’s (Goldberger et al., 2002) approach to physiological
complexity that assumes a breakdown with “aging and disease.”
Fernández et al. (2012) demonstrated that the linear increase
of complexity scores reaches a maximum by the age of 60,
and after that, values slowly decrease until late senescence.
Also, complexity tends to decrease in most of the investigated
pathologies, but some examples exist of increased scores (for a
review see Fernández et al., 2013a). This indicates that “disease”

FIGURE 3

ROC curves of multivariate logistic regression models including AUC and Nagelkerke coefficient (R2). R2 represents that about 31% of the
“variability” in the CN-DS vs. CN-no-DS comparison, and about 80% of the variability in the CN-DS vs. MCI-DS comparison is explained by the
logistic models. AUC, Area Under the ROC Curve; CN, control; DS, Down syndrome; LZC, Lempel-Ziv complexity; MCI, mild cognitive
impairment.
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TABLE 5 Spearman correlation coefficients (r) and p-values between
neuropsychological variables and LZC values within
the MCI-DS group.

RF_LZC RP_LZC

r P-value r P-value

Short-term verbal
memory-
learning_delayed
(BT-ID)

0.757 0.003 0.779 0.002

Working memory
(BT-ID)

0.588 0.039 0.437 NS

Short-term verbal
memory-learning
(BT-ID)

0.583 0.036 0.561 0.046

Constructive praxis
(BT-ID)

0.131 NS 0.606 0.048

Praxis total
(CAMCOG-DS)

0.532 0.061 0.440 NS

BT-ID, Barcelona Test-Intellectual Disability; CAMCOG-DS, Cambridge Cognitive
Examination for older adults with Down’s Syndrome; DS, Down syndrome; RF, right
frontal; LZC, Lempel-Ziv complexity; NS, not significant; RP, right parietal.

does not produce a mere reduction of the different markers of
physiological complexity, but rather a disruption of its normal
evolution with aging.

For instance, such disruption was demonstrated in attention
deficit-hyperactivity disorder (Fernández et al., 2009), major
depression (Méndez et al., 2012), and schizophrenia (Fernández
et al., 2011a). When this approach was applied to patients
with MCI (Fernández et al., 2010), complexity scores were
not only lower as compared with controls, but also their
evolution as a function of age failed to follow the expected
trend. In addition, results evidenced the crucial role of reduced
complexity values in parieto-occipital and frontal regions,
accompanied by age effects to discriminate among groups.
Current findings confirmed that the CN-DS, and especially
the MCI-DS group, show abnormal patterns of complexity
evolution with age, as well. According to the age-intervals of
the sample, the scores of both groups should display a linear
increase, but CN-DS cases exhibited an almost flat regression
line, and MCI-DS patients displayed a clear negative association
between age and complexity. Here it is important to note that the
profile seen in MCI-DS patients is not identical to the observed
in population with typical development. In Fernández et al.
(2010), MCIs showed the “flat line” now detected in CN-DSs,
while the negative correlation with age now detected in the MCI-
DS group was seen in ADs. At that time results were justified
by an abnormally accelerated aging process, a perspective that
is controversial for AD in the general population but well-
supported in DS. In fact, DS has been defined as a “progeroid”
syndrome since patients with DS suffer from several age-
associated disorders (particularly of the central nervous system)
much earlier than euploid persons (Martin, 1978; Franceschi

et al., 2019). This is a crucial aspect, as DS cases in our sample
seemed to exhibit neurophysiological features that usually
correspond to later stages of the neurodegenerative process.
Such a perspective was also adopted by Babiloni et al. (2009) in
a study performed in adolescents with DS. The spectral profile
displayed by DS cases virtually paralleled the observed in early
AD, although the sample included very young non-demented
adults.

These facts might be partially explained by recent results
reported by Nakamura et al. (2018). Most patients with DS
aged above 40 show significant levels of amyloid deposition
and this feature exerts a definite effect on the oscillatory
activity of the brain. Nakamura et al. (2018) demonstrated
that the typical profile of increased low-frequency activity
in posterior regions, which was previously considered to be
a signature of the AD-spectrum in EEG/MEG studies, was
associated with general cognitive decline but is not specific
because these changes could be observed in the absence of
amyloid deposition. MCI individuals with confirmed amyloid
positivity that progress to AD showed a pattern of increased
delta activity in frontal regions. This key finding supports
the classical notion of a posterior-to-anterior tendency of
neurophysiological abnormalities observed with the progression
of the disease (Jeong, 2004). Such posterior-to-anterior tendency
also appears in our sample, as parietal sources discriminated
CN-no-DS individuals from CN-DS cases, while frontal sources
discriminated CN-DS from MCI-DS cases.

The next issue to be discussed is how these features are
related to the complexity profiles detected in our DS patients,
and to the abnormal evolution of the LZC values with age.
A pattern of predominant delta activity, as it has been described
in MCI-DS cases, reduces the frequency components of the
brain signals, and therefore produces a significant decrease of
complexity scores (Aboy et al., 2006). Of note, such increase of
delta activity has been related to a cholinergic deficit. Classical
studies revealed that AD patients showed a significant negative
correlation between cholinergic activity in the CSF and delta
power (Riekkinen et al., 1991), that can be experimentally
reproduced by means of scopolamine infusions or lesion to the
nucleus basalis of Meynert (Neufeld et al., 1994; Holschneider
et al., 1997, 1999). This cholinergic deficit is also present in
adults with DS, leading to the therapeutic use of cholinesterase
inhibitors (Godridge et al., 1987; Sinai et al., 2017). An
additional factor that has been associated with a reduction of
brain signal complexity with aging and disease is the loss of
connections (Sporns et al., 2000), especially of the excitatory
type (Yao et al., 2013). AD was defined as a “disconnection
syndrome,” and this characteristic is also present in DS. Recent
investigations reported significant alterations in white matter
integrity that were considered a core feature of the disease
(Lee et al., 2016; Rosas et al., 2020). Fernández et al. (2011b)
demonstrated that complexity and fractional anisotropy show a
positive correlation, thus implying that the loss of white matter

Frontiers in Aging Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnagi.2022.988540
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-988540 October 15, 2022 Time: 16:10 # 11

Fernández et al. 10.3389/fnagi.2022.988540

integrity due to a pathological process or to the effects of age is
associated with a reduction of complexity values.

When analyzing the relationship of regional complexity
values and neuropsychological variables, a significant
association was observed in the MCI-DS group between
RF_LZC, short-term verbal memory-learning, verbal short-term
memory-learning_delayed and working memory; total praxis
showed a marginal significance. RP_LZC values also showed
a significant correlation with short-term verbal memory-
learning_delayed; and a weaker but also significant correlation
with short-term verbal memory-learning and praxis constructive.
At the clinical level, executive dysfunction is characteristic of
the prodromal stage of cognitive decline in DS (Rubenstein
et al., 2020; Esteba-Castillo et al., 2022), which should be
considered in the possible diagnosis of MCI in DS. In line with
our results, previous neuroimaging and MCI-characterization
research showed that the prefrontal lobe appears selectively
affected in patients with DS before dementia (Pujol et al., 2018;
García-Alba et al., 2019).

However, the correlations between memory-learning
variables with frontal and parietal regions were less expected.
In this regard, studies of recognition memory revealed that
the parietal lobe plays a key function in memory processes
(Berryhill and Olson, 2009; Gonzalez et al., 2015). More
concretely, Krumm et al. (2017) found that the parietal lobe
critically supports successful immediate and delayed target
recognition memory, and that the ventral aspect of the parietal
cortex and the medial temporal lobe may have complementary
preferences for identifying targets and rejecting distractors,
respectively, during recognition memory. In fact, a mnestic
pattern in the MCI in DS is characteristic (Firth et al., 2018;
García-Alba et al., 2019; Ramírez-Toraño et al., 2021; Esteba-
Castillo et al., 2022). The third group of neuropsychological
variables related to changes in complexity are praxis. The
parietal lobes play a determining role in praxis (Kawai et al.,
2013), providing the sensory maps that facilitate movement
execution. More specifically, visuospatial functions have been
associated with damage in the right temporo-parietal region and
in the posterior occipital areas (Moore and Demeyere, 2022).
In DS, the decline in visuospatial skills and motor coordination
has been related in the years prior to clinical AD (Firth et al.,
2018; Rubenstein et al., 2020).

It is worth noting several limitations of this study. First,
the sample size of 42 individuals is relatively small. Also, age
had a different distribution among groups, with the MCI-DS
group showing an average older age when compared with the
other two groups. Therefore, age effects were controlled in all
the classification analyses. Additionally, due to the behavioral
characteristics of the DS sample that prevented the evaluation
with MRI, a T1-MRI template was used instead of the individual
structural data, and this could diminish the spatial resolution in
the source reconstruction process. Nevertheless, this procedure
has been used successfully in previous works (García-Alba et al.,

2019; Ramírez-Toraño et al., 2021). Despite these limitations,
the present study still offers relevant information on the changes
in brain signal complexity in adults with DS and their possible
influence on cognitive performance. More importantly, results
suggest that DS is a new example of a disease that breaks the
normal evolution of complexity with age, and such basic feature
might assist in the detection of MCI within this population.
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