Quantitative evaluation to efficacy and safety of therapies for psoriasis: A network meta-analysis

Jingjing Lv', Dongmei Zhou², Yan Wang', Jingxia Zhao', Zhaoxia Chen ${ }^{\prime}$, Jinchao Zhang ${ }^{\prime}$, Tingting Di^{\prime}, Jing Hu', Bo Li' ${ }^{1}$, Ping Li ${ }^{1}$ (1) and Feng Huang ${ }^{1}$

Abstract

Therapies treating psoriasis can be categorized into five classes according to their mechanism: anti-metabolites (AM), anti-interleukin-I2/23 agents (anti-ILI2/23), anti-interleukin-I7 agents (anti-ILI7), anti-T-cell agent (ANT), and anti-tumor necrosis factor- α agent (anti-TNF- α). This network meta-analysis (NMA) aimed to give a quantitative and systemic evaluation of safety and efficacy for the five kinds of therapies mentioned above. Odds ratios and mean differences were calculated to evaluate binary and continuous outcomes, respectively. Forest plots were conducted to show the performance of pair-wise comparison of above therapies in each outcome, and surface under the cumulative ranking curves was given to evaluate the relative ranking of above therapies in each outcome. Node splitting was conducted to evaluate the consistency between direct and indirect evidence. Direct comparisons from 65 studies (32,352 patients) were included in this NMA. Our results showed an excellent efficacy of anti-ILI2/23 and anti-ILI7. However, these two therapies and anti-TNF- α were revealed to have a high possibility to cause adverse effects (AEs) such as infections. Additionally, node splitting showed that no inconsistency appeared between the direct and indirect comparisons. Anti-ILI2/23 was the most recommended therapy according to this NMA. Anti-ILI7 had similar efficacy to anti-ILI2/23 but should be applied with caution since it has poor performance in safety outcomes.

Keywords

Psoriasis, network meta-analysis, efficacy, safety
Date Received: 23 December 2017; accepted: 24 January 2018

Introduction

Psoriasis, characterized by quick and excessive growth of the skin's epidermal layer, ${ }^{1}$ is a common, chronic, and systemic disease, affecting $1-3 \%$ of the world population. It is widely considered as a genetic disease and could be affected by some environmental factors. ${ }^{2}$ Up to now, various therapies are available for psoriasis, including phototherapy, topical treatment, systemic therapies, and biologic drugs. ${ }^{3}$

The biologic drugs can be classified into five classes based on their mechanism: anti-metabolites (AM), antitumor necrosis factor- α agent (anti-TNF- α), anti-T-cell agent (ANT), anti-interleukin-12/23 agents (anti-IL12/ 23), and anti-interleukin-17 agents (anti-IL17). It is reported that methotrexate, an AM, has been applied
as a valid systemic treatment for psoriasis patients over 48 years. ${ }^{4}$ However, it is relevant to hepatotoxicity and

[^0]myelosuppression. ${ }^{5}$ Besides, the TNF is widely regarded as an important cytokine involved in the pathophysiology of psoriasis. Therefore, monoclonal antibodies, such as adalimumab and infliximab, which antagonized TNF, were applied in the treatment of psoriasis. ${ }^{6,7}$

Relevant studies showed that psoriasis was possibly an autoimmune disease where the activation of skindirected T-cells performed an important role. ${ }^{8}$ Alefacept, a recombinant protein, has the ability to block T-cell's proliferation and activation by combining with CD2 on the surface of T-cells. Alefacept can also induce selective CD45RO+ T-cell apoptosis by interacting with the immunoglobulin receptors Fc γ RIII on the accessory cells. ${ }^{9}$ Other drugs, such as efalizumab and itolizumab, are humanized monoclonal antibodies which could directly deal with the pathogenic T-cells by binding to CD11a or CD6 and inhibit T-cell functions, such as activation, trafficking, and migration. ${ }^{10-12}$

Meanwhile, it has been discovered that TNF is produced by the immune pathways stimulated by two interleukins, interleukin-12 (IL-12) and interleukin-23 (IL-23). ${ }^{13}$ This discovery indicates that both IL12 and IL23 play a pivotal role in the psoriasis development. In addition, IL-17A and IL-17RA were also found related to the disease severity because of the elevated levels of IL-17A in the diseased skin and blood of patients with psoriasis. ${ }^{14}$ Etanercept, a human fusion TNF soluble receptor, is used to prevent the TNF-mediated inflammatory response and applied for the therapy of psoriatic arthritis and chronic plaque. ${ }^{15}$

To make an effective and safe decision in treatment of psoriasis, it is necessary to conduct reliable evidences of comparison among these drugs. A number of traditional meta-analysis studies had been done to make comparison between two therapies, which indicated that all the therapies are more effective than placebo (PBO). But they cannot compare several therapies simultaneously. Therefore, the network meta-analysis (NMA) is required to synthesize all valuable evidences from randomized control trials (RCTs), combining both direct and indirect evidences, to convincingly draw the conclusions about competitive efficacy and safety information.

Woolacott et al. made the comparisons among three biological therapies, efalizumab, infliximab, and etanercept, and two nonbiological therapies. ${ }^{16}$ Adalimumab was taken into consideration in the work of Bansback et al. ${ }^{17}$ After then, with the development of biological treatment, more NMA were conducted, such as the works of Reich et al. ${ }^{18}$ and Lin et al., ${ }^{19}$ who added the ustekinumab, which antagonizes IL-12/23p40. Besides, Nast et al. ${ }^{20}$ assessed the efficacy and safety of treatments of systemic long-term treatments. Recently, Gomez-Garcia et al. ${ }^{21}$ used the new 2015 PRISMA statement for the NMA and evaluated the comparative short-term efficacy and tolerance of the agents. Jabbar-

Lopez et al. established the relative efficacy and tolerability of six monoclonal antibodies. None of them compared the biotics from the level of large classes.

The primary objective of our study was to give an extension to the existing NMAs to evaluate the efficacy and safety of different treatment agents. More agents were taken in account to provide more reliable conclusion. Moreover, the ranking possibility in specific efficacy and safety were also presented to help making optimal decision in clinical drug using. Besides, no NMA similar to this study, with sufficient samples and consideration of all therapies, had been done yet.

Materials and methods

Search strategy

To get the relevant studies, the following three electronic databases were taken into our retrieval: Chinese National Knowledge Infrastructure, PubMed, and Embase. Regardless of the limitation of language, key terms "psoriasis," "antimetabolites," "macrolides," "antibodies, monoclonal," "etanercept" as well as their acronyms were searched in this work. Besides, the reference lists were examined to identify the potentially available studies.

Inclusion and exclusion criteria

All included trials must satisfy the following criteria: (i) the studies must be RCTs; (ii) the patients involved in the studies must be diagnosed as psoriasis; and (iii) relevant outcomes should be contained. Besides, duplicate RCTs or the studies with isolated comparison were excluded.

Outcome measure and data extraction

Data extraction was conducted by two reviewers independently, and following characteristics of each study were extracted from the original documents: (i) the basic information, including the first author, country, published year, and blinding; (ii) the patients characteristics, including ages, gender ratio, and disease duration; (iii) efficacy outcomes, including the Psoriasis Area and Severity Index (PASI), Dermatology Life Quality Index (DLQI), and Physician's Global Assessment (PGA); (iv) safety outcomes, including the incidence of all AEs, infection, nasopharyngitis, headache, and upper respiratory tract infection (URTI).

Statistical analysis

Odds ratio (OR) with corresponding 95% credible interval (CrI) were used to evaluate the binary outcomes. Mean difference with corresponding 95% CrI were applied to assess the continuous outcomes. Meanwhile,
forest plots were drawn to visually present the relative efficacy and safety of different comparisons for each outcome. Consistency between direct and indirect comparison was analyzed by the node-splitting method. $p<0.05$ indicated a significant inconsistency for a specific comparison. Moreover, surface under the cumulative ranking curves (SUCRAs) were calculated to present the ranking probability of each treatment to find the relatively optimal treatment to improve the efficacy and decrease the incidence of adverse events. Software R (version 3.2.3) and STATA (version 13.0) were used to implement the NMA.

Results

Included studies

In the retrieval, 1562 records were identified at the beginning, and 17 records were added manually. Among them, 573 duplicates were removed, and 989 records were left. After 242 records excluded during screening, 432 records were full-text assessed. Finally, 75 studies and 25,108 patients were included in our NMA. ${ }^{4-6,9-}$ ${ }^{14,22-87}$ The flow chart was shown in Figure 1. The details of specific treatment, the characteristics of patients, and outcomes of each trail were provided in Table 1. The study sample sizes ranged from 33 to 1831. The followup period ranged from six weeks to 120 weeks. Among 58 trails, five trails failed to provide age range of the patients, ${ }^{27,29,49,59,62,70}$ while six trails failed to provide gender ratios of the patients. ${ }^{14,27,49,59,70,86}$ The mean disease duration was 17.5 years (range 5.6-22.8). Besides, disease severity was assessed containing all the trails with a baseline PASI score of 19.9 (range 5.5-33.1) and a
body surface area (BSA) of 28.8% (range 5.1-49.8). Jadad score of included RCTs was shown in Table S1. Meanwhile, the network diagram was shown in Figure 2. The area of dots represents the number of patients in the therapy, and the width of lines stands for the number of references including the comparison.

NMA results for PASI reduction

Table 2 showed the network comparison of different treatments for PASI reduction. In terms of PASI 75, it shows that anti-IL12/23 and anti-IL17 are significantly superior compared with $\mathrm{PBO}(\mathrm{OR}=43.0,95 \% \mathrm{CrI}$: 27.9-66.7; OR $=62.2,95 \% \mathrm{CrI}: 36.6-104.6$, respectively). ($\mathrm{OR}=5.9,95 \% \mathrm{CrI}: 2.5-13.7$) and $\mathrm{ANT}(\mathrm{OR}=2.44$, 95\% CrI: 1.3-4.8).

According to PASI 75, all the therapies had significantly higher ORs compared with PBO. Furthermore, anti-IL12/23, anti-IL17, and anti-TNF- α were estimated to be more effective than $\mathrm{AM}(\mathrm{OR}=13.6,95 \% \mathrm{CrI}: 5.2-$ 35.2; $\mathrm{OR}=19.5,95 \% \mathrm{CrI}: 7.0-53.0 ; \mathrm{OR}=5.9,95 \% \mathrm{CrI}$: 2.5-13.7, respectively) and ANT considering PASI 75 (OR $=5.6,95 \%$ CrI: 2.7-11.6; OR $=8.0$, 95% CrI: $3.6-$ 17.5; $\mathrm{OR}=2.44,95 \% \mathrm{CrI}: 1.3-4.8$, respectively).

For the comparison of treatments under PASI 90 reduction, all treatments were statistically more effective than PBO. Moreover, anti-IL17 was significantly better than other treatments. Meanwhile, it was revealed that anti-IL12/23 had significantly higher ORs than AM ($\mathrm{OR}=11.0, \quad 95 \% \mathrm{CrI}: 3.3-35.5$) and anti-TNF- α ($\mathrm{OR}=2.39,95 \%$ CrI: 1.19-4.62). Besides, anti-TNF- α had a better performance than AM (OR $=2.2,95 \%$ CrI: 1.2-3.9). The visualized result was also provided in Figure 3.

Figure I. PRISMA flow chart.
RCTs: randomized control trials.
Table I. Baseline population characteristics of included studies.

Author	Year	Country	Follow-up	Type	Intervention	N	Age	Male (\%)	Disease Duration (years)	HPA	Affected BSA (\%)	PASI
Papp	2008	Canada	12 weeks	anti-ILI2/23	Ustekinumab	820	45.1 ± 12.1	69.2	19.3 ± 11.7	26.2	25.9 ± 15.5	19.4 ± 6.8
				PBO	Placebo	410	47.0 ± 12.5	69	20.8 ± 12.2	25.6	26.1 ± 17.4	19.4 ± 7.5
Revicki	2008	USA	16 weeks	anti-TNF- α	Adalimumab	103	42.8 ± 12.3	64.1	17.6 ± 10.0	22.3	33.7 ± 20.0	20.1 ± 7.4
				AM	Methotrexate	108	41.9 ± 11.9	66.7	19.0 ± 10.3	17.6	32.6 ± 20.7	19.5 ± 7.4
				PBO	Placebo	53	40.7 ± 11.4	67	18.9 ± 8.71	20.8	28.4 ± 16.1	19.2 ± 6.9
Blauvelt	2015	USA	12 weeks	anti-ILI7	Secukinumab	118	45.1 ± 12.6	64.4	18.0 ± 11.9	-	33.3 ± 17.9	20.7 ± 7.9
				PBO	Placebo	59	46.5 ± 14.1	66.1	20.2 ± 14.2	-	32.2 ± 17.4	21.1 ± 8.5
Dubertret	2006	Germany	12 weeks	ANT	Efalizumab	529	44.0 ± 12.0	67.3	19.3 ± 11.5	-	37.1 ± 20.2	23.6 ± 6.7
				PBO	Placebo	264	45.3 ± 12.1	67.4	21.0 ± 10.2	-	36.2 ± 20.7	23.0 ± 9.6
Barker	2011	UK	16 weeks	anti-TNF- α	Infliximab	653	44.1 ± 33.9	67	18.8 ± 11.6	-	31.9 ± 16.5	21.4 ± 8.0
				AM	Methotrexate	215	41.9 ± 27.1	69	17.0 ± 10.3	-	31.0 ± 15.0	21.1 ± 7.6
Asahina	2010	Japan	16 weeks	anti-TNF- α	Adalimumab	123	47.7 ± 12.8	84.2	14.2 ± 9.29	-	43.3 ± 19.4	25.4 ± 8.9
				PBO	Placebo	46	43.9 ± 10.7	89.1	15.5 ± 8.83	-	46.7 ± 19.9	29.1 ± 11.8
Chaudhari	2001	USA	10 weeks	anti-TNF- α	Infliximab	22	35.1 ± 11.2	72.7	-	-	-	26.6 ± 10.3
				PBO	Placebo	11	45.0 ± 12.0	72.7	-	-	-	20.3 ± 5.5
Gordon	2003	USA	12 weeks	ANT	Efalizumab	369	45.2 ± 14.3	68	19.1 ± 15.2	-	28.0 ± 21.2	19 ± 6.9
				PBO	Placebo	187	45.7 ± 13.7	71	19.0 ± 13.0	-	27.0 ± 20.0	19 ± 6.7
Gottlieb	2004	USA	10 weeks	anti-TNF- α	Infliximab	198	44.1 ± 14.1	73.7	16.0 ± 11.1	29.3	-	-
				PBO	Placebo	51	45.0 ± 16.3	60.8	16.0 ± 11.8	33.3	-	-
Gottlieb	2011	USA	12 weeks	anti-ILI2/23	Briakinumab	138	43.6 ± 14.3	64.5	16.1 ± 12.5	19.6	23.6 ± 16.6	18.4 ± 7.2
				anti-TNF- α	Etanercept	141	43.1 ± 12.5	69.5	17.0 ± 12.7	22.7	24.1 ± 15.0	19.4 ± 8.0
				PBO	Placebo	68	44.0 ± 13.6	69.1	19.1 ± 13.2	20.6	23.8 ± 15.5	18.5 ± 6.9
Gottlieb	2003	USA	24 weeks	anti-TNF- α	Etanercept	57	48.2 ± 11.7	58	-	28	-	-
				PBO	Placebo	55	46.5 ± 14.7	67	-	35	-	-
Menter	2008	USA	12 weeks	anti-TNF- α	Adalimumab	814	44.1 ± 13.2	67.1	18.1 ± 11.9	27.5	25.8 ± 15.5	19.0 ± 7.1
				PBO	Placebo	398	45.4 ± 13.4	64.6	18.4 ± 11.9	28.4	25.6 ± 14.8	18.8 ± 7.1
Ohtsuki	2014	Japan	12 weeks	anti-ILI7	Secukinumab	58	51.9 ± 11.8	89.7	15.6 ± 10.3	13.8	42.0 ± 23.4	26.7 ± 10.5
				PBO	Placebo	29	50.2 ± 13.6	79.3	14.1 ± 10.9	13.8	32.7 ± 16.9	21.4 ± 10.3
Ortonne	2003	France	24 weeks	ANT	Alefacept	339	-	-	19.0 ± 17.0	-	20.0 ± 19.7	13.0 ± 12.2
				PBO	Placebo	168	-	-	20.0 ± 18.5	-	23.5 ± 20.7	14.0 ± 9.7
Leonardi	2003	USA	12 weeks	anti-TNF- α	Etanercept	486	44.8 ± 0.8	65	18.6 ± 10.9	-	29.9 ± 10.6	18.4 ± 6.7
				PBO	Placebo	166	45.6 ± 1.0	63	18.4 ± 10.9	-	28.8 ± 10.4	18.3 ± 6.6
Paul	2015	France	12 weeks	anti-ILI7	Secukinumab	121	46.6 ± 14.2	76.7	21.0 ± 13.5	23.3	26.4 ± 12.8	18.9 ± 6.4
				PBO	Placebo	61	43.7 ± 12.7	62.3	19.9 ± 12.2	19.7	25.7 ± 14.7	19.4 ± 6.7
Krueger	2002	USA	12 weeks	ANT	Alefacept	367	45.4 ± 15.8	71	-	-	-	-
				PBO	Placebo	186	45 ± 14.5	68	-	-	-	-
Mease	2000	USA	12 weeks	anti-TNF- α	Etanercept	30	46.0 ± 10.0	53	19.0 ± 7.5	100	-	-
				PBO	Placebo	30	43.5 ± 9.7	60	17.5 ± 7.2	100	-	-
Feldman	2005	USA	10 weeks	anti-TNF- α	Infliximab	198	-	-	-	-	-	-
				PBO	Placebo	51	-	-	-	-	-	-

Table I. Continued.

Author	Year	Country	Follow-up	Type	Intervention	N	Age	Male (\%)	Disease Duration (years)	HPA	Affected BSA (\%)	PASI
Menter	2005	USA	12 weeks	ANT	Efalizumab	369	45.3 ± 14.2	68	19.3 ± 15.2	-	-	-
				PBO	Placebo	187	44.9 ± 11.4	70.6	19.3 ± 13.0	-	-	-
Leonardi	2005	USA	12 weeks	ANT	Efalizumab	328	45.5 ± 13.5	71.1	16.7 ± 14.7	-	29.9 ± 18.2	18.9 ± 11.4
				PBO	Placebo	170	41.7 ± 12.5	72.9	18.5 ± 13.7	-	29.4 ± 18.7	19.0 ± 12.0
Papp	2006	Canada	12 weeks	ANT	Efalizumab	450	45.6 ± 12.5	67.3	18.4 ± 12.1	-	27.7 ± 15.8	19.14 ± 7.5
				PBO	Placebo	236	46.3 ± 12.1	59.3	17.5 ± 11.1	-	26.8 ± 15.2	18.69 ± 7.0
Kimball	2008	USA	12 weeks	anti-ILI $2 / 23$	Briakinumab	150	46.0 ± 15.0	77	18.0 ± 10.9	30	23.0 ± 12.6	19.0 ± 6.3
				PBO	Placebo	30	49.0 ± 14.4	73	21.0 ± 12.4	30	21.0 ± 9.21	16.0 ± 2.9
Reich	2005	Germany	10 weeks	anti-TNF- α	Infliximab	301	42.6 ± 11.7	69	19.1 ± 11.0	31	34.1 ± 19.0	22.9 ± 9.3
				PBO	Placebo	77	43.8 ± 12.6	79	17.3 ± 11.1	29	33.5 ± 18.0	22.8 ± 8.7
Tyring	2006	USA	12 weeks	anti-TNF- α	Etanercept	311	45.8 ± 12.8	65	20.1 ± 12.3	35	27.2 ± 18.2	18.3 ± 7.6
				PBO	Placebo	307	45.6 ± 12.1	70	19.7 ± 11.4	33	27.2 ± 17.2	18.1 ± 7.4
Lebwohl	2003	USA		ANT	Alefacept	339	45.3 ± 14.7	62	19.0 ± 17.0	-	20.0 ± 19.7	13.2 ± 12.3
				PBO	Placebo	168	46.5 ± 15.0	65	20.0 ± 18.5	-	23.5 ± 20.7	14.3 ± 9.9
Papp	2005	Canada	12 weeks	anti-TNF- α	Etanercept	390	44.5 ± 14.7	67	18.1 ± 14.9	26	25.0 ± 17.5	16.1 ± 12.6
				PBO	Placebo	193	44.0 ± 15.5	64	17.5 ± 12.4	26	20.0 ± 21.2	16.0 ± 13.8
Torii	2010	Japan	10 weeks	anti-TNF- α	Infliximab	35	46.9 ± 13.0	62.9	14.2 ± 8.91	28.6	-	31.9 ± 12.8
				PBO	Placebo	19	43.3 ± 12.3	73.7	11.1 ± 6.51	36.8	-	33.1 ± 15.6
Menter	2007	USA		anti-TNF- α	Infliximab	627	44.5 ± 13.0	65	19.1 ± 11.7	28.3	28.7 ± 16.4	20.4 ± 7.5
				PBO	Placebo	208	44.4 ± 12.5	69.2	17.8 ± 10.8	26	28.4 ± 17.6	19.8 ± 7.7
Igarashi	2012	Japan	12 weeks	anti-ILI2/23	Ustekinumab	126	-	75.8	17.3 ± 10.7	11.3	46.6 ± 19.7	28.7 ± 11.2
				PBO	Placebo	32	-	83.9	16.0 ± 11.2	3.1	49.8 ± 22.5	30.3 ± 11.8
Gordon	2006	USA	12 weeks	anti-TNF- α	Adalimumab	95	44.0 ± 15.5	66	18.0 ± 11.5	24	25.0 ± 19.5	14.5 ± 10.0
				PBO	Placebo	52	43.0 ± 12.5	65	19.0 ± 9.72	31	28.0 ± 17.0	16.0 ± 8.725
Krueger	2007	USA	12 weeks	anti-ILI $2 / 23$	-	256	44.0 ± 13.0	81	17.3 ± 13.5	20	27.4 ± 18.1	19.0 ± 7.9
				PBO	Placebo	64	44.0 ± 14.0	72	16.9 ± 11.0	19	26.6 ± 18.4	19.9 ± 8.3
Saurat	2008	Switzerland	16 weeks	anti-TNF- α	Adalimumab	108	42.9 ± 12.6	64.8	17.9 ± 10.1	21.3	-	20.2 ± 7.5
				AM	Methotrexate	110	41.6 ± 12.0	66.4	18.9 ± 10.2	17.3	-	19.4 ± 7.4
				PBO	Placebo	53	40.7 ± 11.4	66	18.8 ± 8.70	20.8	-	19.2 ± 6.9
van de Kerkhof	2008	Netherlands	12 weeks	anti-TNF- α	Etanercept	96	45.9 ± 12.8	61.5	19.3 ± 11.3	15.6	26.5 ± 15.0	21.4 ± 9.3
				PBO	Placebo	46	43.6 ± 12.6	54.4	17.3 ± 8.20	10.9	30.3 ± 17.8	21.0 ± 8.7
Landells	2015	Multi	12 weeks	anti-ILI $2 / 23$	Ustekinumab	73	14.8 ± 1.7	44.4	5.60 ± 3.80	-	31.9 ± 23.2	21.7 ± 10.4
				PBO	Placebo	37	15.6 ± 1.5	54.1	6.20 ± 5.00	-	27.4 ± 16.4	20.8 ± 8.0
Poulin	2014	Canada	16 weeks	anti-TNF- α	Adalimumab	49	49.0 ± 11.4	42.9	14.9 ± 16.3	14.3	8.90 ± 11.9	8.8 ± 8.2
				PBO	Placebo	23	54.8 ± 11.4	34.8	11.5 ± 9.94	4.3	5.10 ± 6.96	5.7 ± 4.5
Langley	2014	Canada	12 weeks	anti-ILI7	Secukinumab	490	44.9 ± 13.5	69	17.4 ± 11.1	23.3	32.8 ± 19.3	22.5 ± 9.2
				PBO	Placebo	248	45.4 ± 12.6	69.4	17.3 ± 12.4	27.4	29.7 ± 15.9	21.4 ± 9.1
Ellis	2001	USA	12 weeks	ANT	Alefacept	170	44.0 ± 11.5	72.4	18.0 ± 15.0	-	25.0 ± 18.75	20.0 ± 11.5
				PBO	Placebo	59	42.0 ± 12.2	59.3	18.0 ± 9.75	-	20.0 ± 17.5	15.0 ± 17.2

Table I. Continued.

Author	Year	Country	Follow-up	Type	Intervention	N	Age	Male (\%)	Disease Duration (years)	HPA	Affected BSA (\%)	PASI
Papp	2001	Canada	8 weeks	ANT	hull 24	97	44.5 ± 12.9	63	22.8 ± 12.6	-	29.4 ± 13.9	19.1 ± 7.3
				PBO	Placebo	48	42.3 ± 12.3	67	17.8 ± 10.0	-	21.5 ± 10.4	16.2 ± 4.4
Nakagawa	2016	Multi	12 weeks	anti-ILI7	Brodalumab	113	46.4 ± 11.8	78.4	14.9 ± 10.9	13.5	43.7 ± 25.9	27.9 ± 14.3
				PBO	Placebo	38	46.6 ± 10.8	71.1	16.8 ± 11.4	18.4	37.8 ± 21.4	23.9 ± 8.9
Gordon	2014	USA	16 weeks	anti-TNF- α	Adalimumab	43	-	70	19.3 ± 12.8	26	26.8 ± 16.8	20.2 ± 7.6
				anti-ILI $2 / 23$	Guselkumab	208	-	72	18.5 ± 12.2	25	24.6 ± 14.5	20.9 ± 8.0
				PBO	Placebo	42	-	67	18.0 ± 13.3	29	27.5 ± 19.3	21.8 ± 9.9
Griffiths	2015	UK	12 weeks	anti-ILI7	Ixekizumab	771	46.0 ± 13.0	66	18.0 ± 12.0	-	28.0 ± 17.0	21.0 ± 8.0
				anti-TNF- α	Etanercept	382	46.0 ± 14.0	70	18.0 ± 12.0	-	28.0 ± 17.0	21.0 ± 8.0
				PBO	Placebo	193	46.0 ± 12.0	71	18.0 ± 13.0	-	29.0 ± 17.0	21.0 ± 8.0
Lebwohl	2015	USA	12 weeks	anti-ILI7	Brodalumab	1222	45.0 ± 13.0	69	19.0 ± 12.0	19	27.0 ± 17.0	20.3 ± 8.2
				anti-ILI2/23	Ustekinumab	300	-	-	-	-	-	-
				PBO	Placebo	309	-	-	-	-	-	-
Thaçi	2015	Germany	16 weeks	anti-ILI7	Secukinumab	337	45.2 ± 13.9	68	19.6 ± 12.9	20.5	32.6 ± 17.8	21.7 ± 8.5
				anti-ILI2/23	Ustekinumab	339	44.6 ± 13.6	74.3	16.1 ± 11.2	15.9	32.0 ± 16.8	21.5 ± 8.1
Youn	2010	South Korea	12 weeks	anti-ILI2/23	Ustekinumab	61	40.9 ± 12.7	82	11.9 ± 7.50	16.4	41.8 ± 24.4	25.2 ± 11.9
				PBO	Placebo	60	40.4 ± 10.1	88.3	13.9 ± 7.30	11.7	35.8 ± 21.4	22.9 ± 8.6
Zhu	2013	China	12 weeks	anti-ILI2/23	Ustekinumab	160	40.1 ± 12.4	78.1	14.6 ± 8.90	8.8	35.1 ± 18.5	23.2 ± 9.5
				PBO	Placebo	162	39.2 ± 12.2	75.9	14.2 ± 8.60	8.6	35.1 ± 19.6	22.7 ± 9.5
Gordon	2010	USA	12 weeks	anti-ILI2/23	Briakinumab	139	44.9 ± 12.9	66.9	16.3 ± 12.0	23.7	24.9 ± 17.8	19.4 ± 7.9
				anti-TNF- α	Etanercept	139	45.2 ± 14.8	61.2	15.2 ± 2.10	33.1	24.7 ± 13.9	18.5 ± 6.0
				PBO	Placebo	72	45.0 ± 13.9	63.9	15.5 ± 11.7	20.8	22.1 ± 13.4	18.3 ± 6.4
Papp	2014	Canada	12 weeks	anti-ILI2/23	Briakinumab	981	45.7 ± 13.2	67.9	18.9 ± 12.3	29.6	24.8 ± 16.3	19.1 ± 7.5
				PBO	Placebo	484	45.1 ± 13.5	70.9	19.2 ± 11.9	31	25.7 ± 16.9	19.3 ± 7.3
Papp	2015	Canada	16 weeks	anti-ILI2/23	Tildrakizumab	309	43.2 ± 12.9	74	-	-	-	-
				PBO	Placebo	46	45.9 ± 11.7	83	-	-	-	-
Papp	2014	Multi	120 weeks	anti-ILI7	Brodalumab	148	-	-	-	-	-	-
				PBO	Placebo	33	-	-	-	-	-	-
Krupashankar	2014	Multi	12 weeks	ANT	Itolizumab	180	40.7 ± 11.0	76.7	-	-	-	21.3 ± 8.5
				PBO	Placebo	43	43.3 ± 13.0	74.4	-	-	-	21.9 ± 8.9
Bachelez	2015	France	12 weeks	anti-TNF- α	Etanercept	335	42.0 ± 14.0	70	18.0 ± 15.2	21	25.0 ± 20.9	19.4 ± 12.9
				PBO	Placebo	107	46.0 ± 15.0	66	17.0 ± 14.0	24	26.0 ± 17.0	19.5 ± 10.5
Micali	2015	Italy	6 weeks	anti-TNF- α	Etanercept	58	41.8 ± 13.0	65.5	-	-	-	20.2 ± 13.7
				PBO	Placebo	62	41.5 ± 16.7	72.6	-	-	-	19.4 ± 12.6
Papp	2013	Canada	12 weeks	anti-ILI7	Secukinumab	103	46.1 ± 12.6	69	19.8 ± 12.6	31	26.0 ± 19.3	21.6 ± 11.5
				PBO	Placebo	22	45.9 ± 10.8	63.6	21.4 ± 14.8	27.3	26.0 ± 18.8	21.7 ± 8.5
Reich	2013	Germany	10 weeks	anti-TNF- α	Infliximab	222	45.7 ± 13.5	68	20.5 ± 12.0	-	-	21.5 ± 8.7
				PBO	Placebo	219	43.3 ± 13.0	71	17.5 ± 11.0	-	-	21.2 ± 7.7

Table I. Continued.

Author	Year	Country	Follow-up	Type	Intervention	N	Age	Male (\%)	Disease Duration (years)	HPA	Affected BSA (\%)	PASI
Mease	2016	USA	24 weeks	PBO	Placebo	106	50.6 ± 12.3	45.3	16.0 ± 13.8	-	-	6.2 ± 7.5
				anti-TNF- α	Adalimumab	101	48.6 ± 12.4	50.5	15.7 ± 12.7	-	-	5.5 ± 6.5
Kavanaugh	2016	USA	24 weeks	PBO	Placebo	92	47.4 ± 12.8	48.9	16.0 ± 12.6	-	28.4 ± 26.1	13.9 ± 12.5
				anti-ILI2/23	Ustekinumab	164	45.7 ± 11.7	57.9	15.9 ± 11.5	-	30.1 ± 25.6	14.8 ± 12.4
Blauvelt	2016	Portland	52 weeks	anti-ILI7	Secukinumab	337	45.2 ± 13.9	68	19.7 ± 12.8	20.5	-	21.7 ± 8.5
				anti-ILI2/23	Ustekinumab	339	44.6 ± 13.7	74.3	16.1 ± 11.2	15.9	-	21.5 ± 8.1
Blauvelt	2017	Multi	16 weeks	anti-ILI2/23	Guselkumab	329	43.9 ± 12.74	72.9	17.9 ± 6.22	-	28.3 ± 17.1	22.1 ± 9.49
				anti-TNF- α	Adalimumab	334	42.9 ± 12.58	82.9	29.8 ± 6.48	-	28.6 ± 16.66	22.4 ± 8.97
				PBO	Placebo	174	44.9 ± 12.9	83.3	28.9 ± 6.89	-	25.8 ± 15.93	20.4 ± 8.74
Kavanaugh	2017	USA	24 weeks	anti-TNF- α	Golimumab	241	45.7 ± 11.3	53.1	6.2 ± 6	-	196 ± 81.3	11 ± 9.9
				PBO	Placebo	239	46.7 ± 12.5	50.6	5.3 ± 5.9	-	198 ± 82.8	8.9 ± 9
Lacour	2017	Multi	12 weeks	anti-ILI 7	Secukinumab	121	43.9 ± 14.41	71	20.6 ± 14.54	-	30.1 ± 16.66	22 ± 8.85
				PBO	Placebo	60	43.7 ± 12.74	62.3	19.9 ± 12.2	-	25.7 ± 19.7	19.4 ± 6.7
Nash	2017	Multi	24 weeks	anti-ILI7	\|xekizumab	245	52.6 ± 13.6	52	15.7 ± 12.3	-	12.5	6.4 ± 7.9
				PBO	Placebo	118	51.5 ± 10.4	47	15.3 ± 12.6	-	9	5.2 ± 6.3
Papp	2017	Multi	16 weeks	anti-TNF- α	Adalimumab	77	13 ± 3.3	45	5 ± 3.8	-	17.7 ± 20.4	18.9 ± 10
				AM	MTX	37	13.4 ± 3.5	30	5.1 ± 3.8	-	30.3 ± 21.2	19.2 ± 10
Papp	2016	Multi	12 weeks	anti-ILI7	Brodalumab	351	46 ± 12	73	20 ± 13	-	25.1 ± 15.3	19.4 ± 6.6
				PBO	Placebo	220	47 ± 13	73	21 ± 12	-	26.9 ± 17.1	19.7 ± 7.7
Reich	2017	USA	16 weeks	anti-ILI2/23	Guselkumab	496	43.7 ± 12.2	70.4	17.9 ± 12	-	28.5 ± 16.4	21.9 ± 8.8
				anti-TNF- α	Adalimumab	284	43.2 ± 11.9	68.5	17.6 ± 11.7	-	19.1 ± 16.5	21.7 ± 9
				PBO	Placebo	284	43.3 ± 12.4	69.8	17.9 ± 11.9	-	28 ± 16.5	21.5 ± 8
Reich	2017	Germany	16 weeks	anti-TNF- α	Etanercept	83	40 ± 14.1	59	18.1 ± 1.7	-	29.9 ± 6.8	18.1 ± 11.7
				PBO	Placebo	84	43.4 ± 14.9	70.2	16.6 ± 12.1	-	29.5 ± 6.6	16.6 ± 12.1
Reich	2017	Germany	16 weeks	anti-ILI2/23	Tildrakizumab	617	46.4 ± 13.1	67	-	-	29.7 ± 17.44	20 ± 7.85
				PBO	Placebo	155	47.9 ± 13.5	65	-	-	29.6 ± 17.28	19.3 ± 7.07
			16 weeks	anti-ILI $2 / 23$	Tildrakizumab	621	44.6 ± 13.6	72	-	-	34.2 ± 18.44	20.5 ± 7.63
				anti-TNF- α	Etanercept	313	46.4 ± 12.2	72	-	-	31.3 ± 14.75	20 ± 7.57
				PBO	Placebo	156	45.8 ± 14	71	-	-	31.6 ± 16.58	20.2 ± 7.36
Reich	2017	Germany	12 weeks	anti-ILI2/23	Ustekinumab	166	44 ± 13.33	67.5	18.2 ± 12	-	27.5 ± 16.7	39.4 ± 30.8
				anti-ILI7	\|xekizumab	136	42.7 ± 12.7	66.2	18 ± 11.1	-	26.7 ± 16.5	42.9 ± 33.3
Paller	2008	Multi	12 weeks	anti-TNF- α	Etanercept	106	14 ± 3.25	52	-	-	-	16.7 ± 9.9
				PBO	Placebo	105	13 ± 3.25	50	-	-	-	16.4 ± 11.175
Bachelez	2015	Multi	12 weeks	anti-TNF- α	Etanercept	335	42 ± 14	70	18 ± 15.25	21	25 ± 20.875	19.4 ± 12.9
				PBO	Placebo	107	46 ± 15	66	17 ± 14	24	26 ± 17	19.5 ± 10.55
Cai	2016	China	12 weeks	anti-TNF- α	Adalimumab	338	43.1 ± 11.91	75.1	14.8 ± 10.15	12.7	24.4 ± 3.48	28.2 ± 12
				PBO	Placebo	87	43.8 ± 12.45	66.7	15.8 ± 10.31	12.5	23.6 ± 2.86	25.6 ± 10.98
Gordon	2016	Multi	12 weeks	anti-ILI7	\|xekizumab	875	46 ± 13	66.9	19 ± 12	-	-	20 ± 7
				PBO	Placebo	431	46 ± 13	70.3	20 ± 12	-	-	20 ± 9

Table I. Continued.

Author	Year	Country	Follow-up	Type	Intervention	N	Age	Male (\%)	Disease Duration (years)	HPA	Affected BSA (\%)	PASI
Gordon	2015	Multi	16 weeks	anti-TNF- α	Adalimumab	43	50	70	91.6 ± 19.88	-	-	20.2 ± 7.58
				PBO	Placebo	42	46.5	67	93.6 ± 22.62	-	-	21.8 ± 9.98
				anti-ILI $2 / 23$	Guselkumab	208	-	70	-	-	-	-
Gottlieb	2016	Multi	16 weeks	anti-ILI7	Secukinumab	137	52.4 ± 12.6	58.8	7.5 ± 8.8	-	28.8 ± 5.7	8.7 ± 10.4
				PBO	Placebo	68	50.9 ± 13	50	11.8 ± 10.4	-	28.8 ± 5.7	7.7 ± 7.3
Leonardi	2012	Multi	12 weeks	anti-ILI7	Ixekizumab	58	48 ± 11	57	21 ± 12	-	22 ± 18	19.2 ± 8
				PBO	Placebo	27	45 ± 13	52	15 ± 11	-	19 ± 12	16.5 ± 5.3

 anti-ILI2/23: anti-interleukin-I2/23 agents; anti-ILI7: anti-interleukin-I7agents; PBO: placebo; MTX: methotrexate.

Figure 2. Network diagram of all included studies. Each node represents a medicine type; the diameters of circles represent the number of people involved, and the widths of lines between two nodes represent the number of study involved in the head-to-head comparison.
AM: anti-metabolites; anti-ILI2/23: anti-interleukin-I $2 / 23$ agents; anti-ILI7: anti-interleukin-I7 agents; ANT: anti-T-cell agent; anti-TNF- α : anti-tumor necrosis factor- α agent.

NMA result for DLQI and PGA

Table 3 showed the network comparison of different treatments for DLQI and PGA. In view of DQLI, only two drugs, anti-IL12/23 and anti-TNF- α were superior compared with PBO (OR =13.8, CrI: 4.6-23.3; $\mathrm{OR}=9.6$, CrI: 1.2-18.1, respectively). Considering PGA, all drugs were superior compared with PBO, and anti-IL12/23, anti-IL17, and anti-TNF- α had better PGA compared with AM (OR = 6.62, 95% CrI: $1.68-$ 25.79; OR=21.54, 95% CrI: 4.57-101.49; OR = 4.06, 95% CrI: 1.20-13.60, respectively) and ANT ($\mathrm{OR}=11.94,95 \% \mathrm{CrI}: 4.48-31.82 ; \mathrm{OR}=38.36,95 \%$ CrI: 11.47-134.29; OR=7.32, 95\% CrI: 2.8-18.73, respectively). In addition, anti-IL17 was estimated to be superior to anti-TNF- α (OR=5.31, 95% CrI: 1.9314.88). The forest plots were presented in Figure 4.

NMA result for AEs

Table 4 showed the network comparison of different treatments for adverse events. According to all adverse events (AAE), only anti-IL17 showed a significant result that it had more AAE than $\mathrm{PBO}(\mathrm{OR}=0.68,95 \% \mathrm{CrI}$: $0.48-0.97$). In view of incidence of infection, anti-IL12/ 23, anti-IL17, and anti-TNF- α showed more infection cases than PBO ($\mathrm{OR}=1.28,95 \% \mathrm{CrI}: 1.11-1.48$; $\mathrm{OR}=1.32,95 \%$ CrI: $1.05-1.68 ; \mathrm{OR}=1.28,95 \% \mathrm{CrI}$: $1.12-1.48$, respectively). Besides, anti-TNF- α was associated with statistically significant increased odds of
Table 2. Network comparison of different treatments for PASI reduction in psoriasis patients.

	PBO	AM	ANT	Anti-ILI $2 / 23$	Anti-ILI7	Anti-TNF- α
PASI 50						
PBO	1	3.16 (1.31, 7.69)	4.31 (2.86, 6.49)	49.4 (27.1 I, 90.02)	5.64 (1.11, 32.79)	18.36 (12.68, 26.84)
AM	0.32 (0.13, 0.76)	1	1.36 (0.51, 3.63)	15.64 (5.37, 45.60)	1.79 (0.28, I2.8।)	5.81 (2.5 I, 13.74)
ANT	0.23 (0.15, 0.35)	0.73 (0.28, 1.97)	1	11.47 (5.58, 23.81)	1.31 (0.24, 7.92)	4.26 (2.46, 7.46)
Anti-ILI2/23	0.02 (0.01, 0.04)	0.06 (0.02, 0.19)	0.09 (0.04, 0.18)	1	0.12 (0.02, 0.73)	0.37 (0.18, 0.75)
Anti-ILI7	0.18 (0.03, 0.90)	0.56 (0.08, 3.60)	0.76 (0.13, 4.14)	8.67 (1.36, 49.40)	1	3.25 (0.53, 17.64)
Anti-TNF- α	0.05 (0.04, 0.08)	0.17 (0.07, 0.40)	0.23 (0.13, 0.41)	2.69 (1.34, 5.42)	0.31 (0.06, I.88)	I
PASI 75						
PBO	1	3.19 (1.32, 7.69)	7.69 (4.3 I, 14.01)	42.95 (27.94, 66.69)	62.18 (36.6, 104.58)	18.73 (13.46, 26.58)
AM	0.31 (0.13, 0.76)	1	2.41 (0.85, 7.03)	13.60 (5.2 1, 35.16)	19.49 (7.03, 52.98)	5.93 (2.53, 13.74)
ANT	0.13 (0.07, 0.23)	0.41 (0.14, I.I7)	1	5.58 (2.69, I I.59)	8.00 (3.63, 17.46)	2.44 (1.25, 4.81$)$
Anti-ILI2/23	0.02 (0.01, 0.04)	0.07 (0.03, 0.19)	0.18 (0.09, 0.37)	1	1.43 (0.77, 2.64)	0.44 (0.27, 0.71$)$
Anti-ILI7	0.02 (0.01, 0.03)	0.05 (0.02, 0.14)	$0.12(0.06,0.28)$	0.70 (0.38, 1.30)	1	0.30 (0.17, 0.56)
Anti-TNF- α	0.05 (0.04, 0.07)	0.17 (0.07, 0.39)	0.41 (0.21, 0.80)	2.29 (1.40, 3.71)	3.29 (1.79, 5.99)	I
PASI 90						
PBO	1	3.78 (1.26, I I.47)	10.07 (2.44, 49.40)	41.68 (24.78, 70.11)	90.02 (46.53, 179.47)	18.92 (12.43, 29.08)
AM	0.26 (0.09, 0.79)	1	2.66 (0.43, 18.17)	11.02 (3.35, 35.52)	24.05 (6.69, 84.77)	5.00 (1.75, 14.30)
ANT	0.10 (0.02, 0.41)	0.38 (0.06, 2.32)	1	4.14 (0.77, I8.73)	9.03 (1.62, 42.52)	1.88 (0.36, 8.25)
Anti-ILI2/23	0.02 (0.01, 0.04)	0.09 (0.03, 0.30)	0.24 (0.05, I.30)	1	2.18 (1.03, 4.62)	0.45 (0.26, 0.80)
Anti-ILI7	0.01 (0.01, 0.02)	0.04 (0.01, 0.15)	0.11 (0.02, 0.62)	0.46 (0.22, 0.97)	1	0.21 (0.10, 0.44)
Anti-TNF- α	0.05 (0.03, 0.08)	0.20 (0.07, 0.57)	0.53 (0.12, 2.75)	2.20 (1.25, 3.90)	4.81 (2.27, 10.07)	1

Bold: data with statistically significant difference, which is highlighted in the upper region of each outcome. PASI $50: \geq 50 \%$ reduction in psoriasis area and severity index; PASI 75: $\geq 75 \%$ reduction in psoriasis area and severity index; PASI $90: \geq 90 \%$ reduction in psoriasis area and severity index; AM: anti-metabolites; anti-TNF- α : anti-tumor necrosis factor- α agents; ANT: anti-T-cell agents; anti-ILI2/23: anti-interleukin-I2/23 agents; anti-ILI7: anti-interleukin-17 agents; PBO: placebo.

Figure 3. Forest plots for different treatment effects in psoriasis area and severity index reduction in psoriasis patients. AM: anti-metabolites; anti-ILI 2/23: anti-interleukin- I2/23agents; anti-ILI7: anti-interleukin-I7 agents; ANT: anti-T-cell agent; anti-TNF- α : anti-tumor necrosis factor- α agent; PBO: placebo; PASI $50: \geq 50 \%$ reduction in psoriasis area and severity index; PASI $75: \geq 75 \%$ reduction in psoriasis area and severity index; PASI 90: $\geq \mathbf{9 0 \%}$ reduction in psoriasis area and severity index.
nasopharyngitis compared with $\mathrm{PBO}(\mathrm{OR}=0.64,95 \%$ CrI: 0.42-0.94). In view of headache, few of them demonstrated a significant difference. ANT, anti-IL17, and anti-TNF- α was assessed to be worse compared with PBO (OR $=1.54,95 \% \mathrm{CrI}: 1.14-2.10 ; \mathrm{OR}=1.77,95 \%$ CrI: 1.12-2.83; OR $=1.40,95 \%$ CrI: $1.06-1.88$, respectively). As for URTI, only AM was associated with statistically stronger URTI compared with PBO and all the other inventions. Meanwhile, the network comparisons for incidence of withdrawal due to the AE showed that compared with patients using PBO, patients using IL12/ 23 or TNF- α had statistically higher possibility to keep on ($\mathrm{OR}=0.64,95 \% \mathrm{CrI}$: $0.42-0.98 ; \mathrm{OR}=0.64,95 \% \mathrm{CrI}$: $0.46-0.92$, respectively). In addition, AM was associated with higher withdrawal probability than other inventions. The forest plots of the random-effects model were shown in Figure 5.

Ranking of treatments

The SUCRA values for different treatments for all outcomes was calculated in order to determine the best method for curing psoriasis, and the calculated numbers
Table 3. Network comparison of different treatments for Dermatology Life Quality Index and Physician's Global Assessment in psoriasis patients.
-

	PBO	AM	ANT	Anti-ILI 2/23	Anti-ILI 7	Anti-TNF- α
Dermatology Life Quality Index						
PBO	I	3.34 (-18.48, 24.82)	2.75 (-29.15, 34.17)	13.75 (4.6\|, 23.03)	7.59 (-13.44, 28.50)	9.61 (1.15, 18.11)
AM	-3.34 (-24.82, 18.48)	1	-0.55 (-39.1, 37.58)	10.44 (-I $2.65,33.71)$	4.29 (-25.36, 33.83)	6.25 (-14.6, 27.26)
ANT	-2.75 (-34.17, 29.15)	0.55 (-37.58, 39.10)	1	10.98 (-21.69, 44.20)	4.80 (-33.03, 42.39)	6.83 (-25.58, 39.77)
Anti-ILI2/23	-13.75 (-23.03, -4.61)	-10.44 (-33.71, 12.65)	-10.98 (-44.2, 21.69)	1	-6.15 (-29.1, 16.45)	-4.13 (-15.66, 7.49)
Anti-ILI7	-7.59 (-28.5, 13.44)	-4.29 (-33.83, 25.36)	-4.80 (-42.39, 33.03)	6.15 (-16.45, 29.10)	1	2.02 (-19.49, 23.74)
Anti-TNF- α	-9.61 (-18.11, -I.15)	-6.25 (-27.26, 14.60)	-6.83 (-39.77, 25.58)	4.13 (-7.49, 15.66)	-2.02 (-23.74, 19.49)	I
Physician's Global Assessment						
PBO	1	4.48 (1.25, 16.28)	2.48 (1.14, 5.53)	29.67 (16.78, 52.98)	95.58 (38.09, 252.14$)$	18.17 (10.80, 30.88)
AM	0.22 (0.06, 0.80)	I	0.55 (0.12, 2.51)	6.62 (1.68, 25.79)	21.54 (4.57, 101.49)	4.06 (1.20, 13.60)
ANT	0.40 (0.18, 0.88)	I. 80 (0.40, 8.17)	1	I 1.94 (4.48, 3 I.82)	38.86 (11.47, 134.29)	7.32 (2.80, 18.73)
Anti-ILI2/23	0.03 (0.02, 0.06)	0.15 (0.04, 0.59)	0.08 (0.03, 0.22)	1	3.25 (1.2I, 8.94)	0.61 (0.32, 1.20)
Anti-ILI7	0.01 (0.00, 0.03)	0.05 (0.01, 0.22)	0.03 (0.01, 0.09)	0.31 (0.11, 0.83)	1	0.19 (0.07, 0.52)
Anti-TNF- α	0.06 (0.03, 0.09)	0.25 (0.07, 0.84)	0.14 (0.05, 0.36)	1.63 (0.84, 3.16)	5.31 (1.93, 14.88)	I

[^1]

Figure 4. Forest plots for different treatment effects of Dermatology Life Quality Index and Physician's Global Assessment in psoriasis patients.
AM: anti-metabolites; anti-ILI 2/23: anti-interleukin-I2/23 agents; anti-ILI7: anti-interleukin-I7 agents; ANT: anti-T-cell agent; anti-TNF- α : anti-tumor necrosis factor- α agent; PBO: placebo; DLQI: Dermatology Life Quality Index; PGA: Physician's Global
Assessment - minimal or cleared.
were listed in Table 5. The result showed that anti-IL12/ 23 had better efficacy in $\geq 50 \%$ reduction in PASI (0.997) and led to better Dermatology Life Quality (0.842), but for better efficacy in PASI, it is indicated that anti-IL17 had the most possibility to rank the first among all six drugs (PASI 75: 0.980, PASI 90: 0.995 , PGA: 0.998). Meanwhile, anti-TNF- α had good performance in PASI 50, 75, and 90. However, AM and ANT showed less efficacy. As for ranking of incidence of AE, it showed that none of the interventions were better than PBO except for ANT in AAE outcome. And anti-IL17 showed worse effect in both AAE and infection (AAE: 0.281 , infection: 0.352).

Inconsistency analysis

The direct and indirect evidences for each comparison under all outcomes, as well as network results, were presented in Table 6. $p<0.05$ suggested a significant inconsistency between direct and indirect evidence. Overall, no inconsistency was found for each comparison under all outcomes (all $p>0.05$), which indicated reliable results of the current NMA.

Discussion

Undoubtedly, as the NMA results revealed, all included therapies showed significant efficacy when compared with PBO in terms of all the efficacy outcomes except for DLQI, which in general corresponded to the results
of previous RCTs. Meanwhile, the efficacy and safety of these therapies were certainly different from each other.

First of all, as was shown in the NMA results, antiIL12/23 was proved to be the most ideal therapy among the included therapies. Its excellent efficacy as well as mild AEs was revealed. Additionally, its extraordinary efficacy and safety were also proved by previous RCTs, which corresponded with the results of previous RCT studies. ${ }^{25,29}$ Ustekinumab, an antibody agent binding to the shared p40 subunit of IL $12 / 23$, was the most widely researched agent among the therapies mentioned above. It bound to the interleukins specifically and prevented their binding with respective receptors, thus blocked the downstream signaling cascades. ${ }^{25}$ Meanwhile, briakinumab, another research focus with analogous structure and function with ustekinumab, also showed an excellent performance clinically. Tildrakizumab and guselkumab are also experimental monoclonal antibodies (Statement on a Nonproprietary Name Adopted by the USAN Council-Tildrakizumab; Statement on A Nonproprietary Name Adopted by the USAN Council-Guselkumab) designed to block IL-23. However, such agents still required more research to promote its clinical appliance.

Second, anti-IL17 showed a satisfactory efficacy performance in this NMA. It was revealed that this therapy had a similar efficacy with anti-IL12/23. These anti-IL17 monoclonal antibody agents including ixekizumab, brodalumab, and secukinumab selectively bind to the IL 17 and neutralize the bioactivity of this cytokine. ${ }^{22}$ Though its efficacy was excellent, the safety of this therapy was not very good.

Third, ANT showed a weaker efficacy; however, its total AE ranked the first among the relevant therapy, and as a result, it can be regarded as a milder treatment in the clinical appliance.

Fourth, anti-TNF- α showed weaker efficacy than anti-IL-17 or anti-IL12/23 accompanied with a stronger AE; as a result, it was not recommended in this NMA research. As revealed in the introduction part, interleukins stimulate T-cells to produce TNF causing psoriasis. These biological agents work on the stimulation interleukins, the producer T-cells, and the final production TNF, respectively. The selectivity of these therapies gave them totally different mechanism and excellent efficacy. However, infection, the major AE of the abovementioned biological agents according to the NMA results and previous studies, ${ }^{88,89}$ was still a severe problem to be solved. Additionally, a number of relevant biological agents were still at the stage of laboratory research, requiring more clinical studies and appliances.

Finally, AM did not work well in both efficacy and AE outcomes, which made is the least satisfactory therapy.
Table 4. Network comparison of different treatments for adverse events in psoriasis patients.

	PBO	AM	ANT	Anti-ILI2/23	Anti-ILI7	Anti-TNF- α	
All adverse events							
PBO	I	1.02(0.63, I.67)	1.15 (0.96, 1.36)	1.28 (1.11, 1.48)	1.32 (1.05, 1.68)	1.28 (1.12, 1.48)	Infection
AM	0.79 (0.39, 1.55)	,	1.12 (0.66, 1.90)	1.25 (0.76, 2.05)	1.30 (0.75, 2.20)	1.25 (0.78, 2.03)	
ANT	1.21 (0.76, 1.90)	1.54 (0.67, 3.53)	1	I.II (0.89, I.40)	1.15 (0.86, 1.57)	1.12 (0.89, I.40)	
Anti-ILI2/23	0.88 (0.67, I.15)	1.12 (0.55, 2.29)	0.73 (0.43, 1.23)	1	1.04 (0.84, 1.27)	1.01 (0.84, 1.19)	
Anti-ILI7	0.68 (0.48, 0.97)	0.87 (0.40, 1.86)	0.57 (0.32, 1.00)	0.77 (0.53, I. I3)	1	0.97 (0.75, I.26)	
Anti-TNF- α	0.82 (0.63, I.08)	1.05 (0.55, 2.01)	0.68 (0.40, 1.16)	0.93 (0.68, 1.30)	I.2I (0.79, I.86)	1	
Nasopharyngitis							
PBO	1	1.58 (0.73, 3.32)	1.54 (1.14, 2.10)	1.48 (0.97, 2.27)	1.77 (1.12, 2.83)	1.40 (1.06, 1.88)	Headache
AM	0.81 (0.31, 2.12)	1	0.98 (0.44, 2.23)	0.94 (0.41, 2.23)	1.12 (0.47, 2.75)	0.90 (0.44, I.84)	
ANT	0.76 (0.18, 3.13)	0.93 (0.17, 5.26)	,	0.96 (0.57, I.63)	1.14 (0.66, 2.01)	0.91 (0.61, I.38)	
Anti-ILI2/23	0.66 (0.43, 0.98)	0.81 (0.29, 2.25)	0.86 (0.2, 3.82)	1	I. 19 (0.72, 2.01)	0.95 (0.58, 1.54)	
Anti-ILI7	0.70 (0.44, l. 07)	0.85 (0.30, 2.44)	0.91 (0.21, 4.10)	1.06 (0.64, I.77)	1	0.8 (0.46, I.35)	
Anti-TNF- α	0.64 (0.42, 0.94)	0.79 (0.31, 1.95)	0.84 (0.19, 3.71)	0.97 (0.59, I.60)	0.91 (0.52, 1.62)	1	
Upper respiratory tract infection							
PBO	1	2.25 (0.91, 5.8I)	0.70 (0.44, I. 13)	0.64 (0.42, 0.98)	0.73 (0.45, I.19)	0.64 (0.46, 0.92)	Withdrawal
AM	0.11 (0.02, 0.48)	,	0.31 (0.11, 0.86)	0.28 (0.10, 0.75)	0.32 (0.11, 0.89)	0.29 (0.12, 0.67)	
ANT	I. 01 (0.39, 2.51)	9.12 (1.63, 62.18)	1	0.90 (0.49, I.70)	1.03 (0.53, 1.99)	0.91 (0.52, 1.65)	
Anti-ILI2/23	0.83 (0.61, I. I2)	7.46 (1.70, 41.26)	0.82 (0.31, 2.18)	1	1.14 (0.66, 1.97)	1.01 (0.62, 1.67)	
Anti-ILI7	0.66 (0.41, 1.00)	5.93 (1.31, 39.25)	0.66 (0.23, 1.82)	0.80 (0.49, 1.26)	1	0.89 (0.51, I.58)	
Anti-TNF- α	0.90 (0.71, I. 15)	8.17 (1.95, 45.60)	0.90 (0.34, 2.39)	1.09 (0.77, I.57)	1.38 (0.86, 2.29)	1	

[^2]

Figure 5. Forest plots for different treatment effects of adverse events in psoriasis patients.
AM: anti-metabolites; anti-ILI2/23: anti-interleukin-I2/23 agents; anti-ILI7: anti-interleukin-I7 agents; ANT: anti-T-cell agent; anti-TNF- α : anti-tumor necrosis factor- α agent; PBO: placebo.

Table 5. Surface under the cumulative ranking curve (SUCRA) values for different treatments for all outcomes in psoriasis patients.

Outcomes	PBO	AM	ANT	Anti-ILI 2/23	Anti-ILI7	Anti-TNF- α
PASI 50	0.171	0.421	0.520	0.997	0.571	0.819
PASI 75	0.167	0.341	0.493	0.854	0.980	0.666
PASI 90	0.168	0.356	0.518	0.829	0.995	0.632
DLQI	0.342	0.495	0.506	0.842	0.617	0.699
PGA	0.171	0.465	0.368	0.823	0.998	0.676
AAE	0.782	0.474	0.904	0.580	0.281	0.480
Infection	0.910	0.761	0.643	0.427	0.352	0.407
Nasopharyngitis	0.874	0.643	0.588	0.454	0.517	0.423
Headache	0.972	0.501	0.495	0.554	0.363	0.615
URTI	0.861	0.171	0.745	0.602	0.415	0.706
Withdrawal	0.359	0.179	0.702	0.800	0.669	0.791

PASI 50: $\geq 50 \%$ reduction in psoriasis area and severity index; PASI $75: \geq 75 \%$ reduction in psoriasis area and severity index; PASI $90: \geq 90 \%$ reduction in psoriasis area and severity index; DLQI: Dermatology Life Quality Index; PGA: Physician's Global Assessment - minimal or cleared; AAE: all adverse events; URTI: upper respiratory tract infection; AM: anti-metabolites; anti-TNF- α : anti-tumor necrosis factor- α agents; ANT: anti-T-cell agents; anti-ILI2/23: anti-interleukin-I2/23 agents; anti-ILI7: anti-interleukin-I7 agents; PBO: placebo.

In this NMA research, there also existed some limitations. First of all, most of included studies reported the latest biological agents comparing with PBO or traditional therapy AM. However, direct RCT studies between these different treatments were still required for the unchallengeable authority of clinical experimental data. Besides, this NMA did not evaluate the treatment of mild psoriasis and topical therapies indicated for patients whose affected area is less than 10% of the BSA. ${ }^{90,91}$ The majority of this research and relevant works focused on severe psoriasis, and little attention
was paid to the topical therapies like vitamin D and emollient. Finally, in this NMA, we divided the drugs treating psoriasis into five classes and regarded each whole class as a therapy; the efficacy and safety performance of interclass drug was not revealed in this NMA.

In conclusion, the efficacy and safety of some therapies of psoriasis were evaluated comprehensively and quantitatively in this NMA; monoclonal antibody agents of IL 12/23 and IL 17 were two recommended agents according to the results, while anti-IL17 should be used in caution since it has severe side effects.
Table 6. Comparison of direct and indirect evidences of treatments for psoriasis.

Study	PASI 75		PGA		AAE		Nasopharyngitis		Headache		URTI		Withdrawal	
	p value	OR												
AM vs. PBO														
Direct		2.50 (0.70, 9.80)		3.70 (0.35, 36.0)		1.10 (0.33, 4.00)		1.20 (0.28, 5.90)		1.20 (0.32, 5.00)		-		4.30 (0.45200)
Indirect	0.544	4.50 (1.20, 17.0)	0.756	5.50 (1.00, 30.0)	0.988	1.10 (0.48, 2.70)	0.989	1.20 (0.27, 5.20)	0.555	2.10 (0.72, 5.60)	-	-	0.538	2.00 (0.73, 5.90)
Network		3.10 (1.30, 7.40)		4.40 (1.02, 17.0)		1.30 (0.65, 2.60)		1.20 (0.47, 3.20)		1.60 (0.69, 3.30)		-		2.30 (0.89, 5.90)
Anti-LILI/23 vs. PBO														
Direct		51.0 (30.0, 86.0)		-		1.10 (0.76, 1.50)		1.30 (0.82, 2.50)		1.10 (0.69, 2.00)		1.10 (0.81, 1.60)		0.65 (0.40, 1.10)
Indirect	0.146	16.0 (3.70, 71.0)	-	-	0.403	1.60 (0.68, 3.80)	0.604	1.40 (0.66, 5.20)	0.246	2.10 (0.86, 5.10)	0.433	1.60 (0.69, 4.00)	0.642	0.89 (0.26, 2.90)
Network		43.0 (27.0, 67.0)		-		1.10 (0.87, 1.50)		1.50 (1.00, 2.30)		1.50 (0.99, 2.20)		1.20 (0.89, 1.70)		0.65 (0.42, 0.99)
Anti-lLI 7 vs. PBO														
Direct		50.0 (28.0, 86.0)		-		1.60 (1.10, 2.50)		1.60 (0.96, 2.50)		2.00 (1.20, 3.50)		1.70 (1.00, 3.00)		0.83 (0.47, 1.50)
Indirect	0.101	140 (42.0, 960)	-	-	0.356	1.10 (0.55, 2.30)	0.558	1.20 (0.49, 2.70)	0.396	1.30 (0.52, 3.10)	0.494	1.20 (0.54, 2.70)	0.394	0.49 (0.17, 1.50)
Network		62.0 (37.0, 130)		-		1.50 (1.00, 2.10)		1.40 (0.94, 2.20)		1.80 (1.10, 2.80)		1.50 (1.00, 2.50)		0.73 (0.45, I.20)
Anti-LII 7 vs. Anti-LIL $2 / 23$														
Direct		2.30 (0.85, 6.50)		2.10 (0.43, 11.0)		1.10 (0.62, 1.80)		0.82 (0.39, 1.80)		0.96 (0.46, 2.00)		1.00 (0.49, 2.30)		0.82 (0.36, 1.90)
Indirect	0.224	1.10 (0.51, 2.30)	0.463	4.60 (1.20, 20.0)	0.266	1.60 (0.94, 2.80)	0.568	0.87 (0.54, 2.20)	0.399	1.50 (0.72, 3.30)	0.500	1.50 (0.80, 2.80)	0.387	1.30 (0.65, 2.60)
Network		1.40 (0.76, 2.60)		3.30 (1.20, 9.10)		1.30 (0.88, 1.90)		0.93 (0.57, 1.60)		1.20 (0.60, 1.50)		1.30 (0.79, 2.10)		1.10 (0.64, 2.00)
Anti-TNF- ${ }^{\text {vs. }}$ Anti-LIL $/ 2 / 23$														
Direct		0.40 (0.21, 0.79)		0.51 (0.22, 1.10)		1.10 (0.69, 1.80)		1.00 (0.47, 2.20)		-		0.77 (0.45, 1.30)		1.10 (0.50, 2.30)
Indirect	0.588	0.53 (0.25, 1.10)	0.511	0.73 (0.29, 1.80)	0.840	1.00 (0.54, 1.90)	0.916	1.00 (0.48, 2.10)	-	-	0.470	1.00 (0.63, 1.60)	0.871	1.00 (0.54, 2.10)
Network		0.44 (0.27, 0.73)		0.62 (0.31, 1.20)		1.10 (0.77, 1.50)		1.00 (0.62, 1.70)		-		0.91 (0.62, 1.30)		1.00 (0.63, 1.60)
Anti-TNF- α vs. Anti-LI 7														
Direct		0.19 (0.03, 1.00)		0.19 (0.02, 1.60)		-		-		-		-		0.51 (0.13, 1.90)
Indirect	0.568	0.33 (0.18, 0.65)	0.931	0.17 (0.05, 0.54)	-	-	-	-	-	-	-	-	0.368	1.00 (0.56, 1.90)
Network		0.30 (0.17, 0.55)		0.18 (0.06, 0.54)		-		-		-		-		0.89 (0.52, 1.60)

URTI: upper respiratory tract infection; PASI 75: $\geq 75 \%$ reduction in psoriasis area and severity index; PGA: Physician's Global Assessment - minimal or cleared; AAE: all adverse events; AM: antimetabolites; anti-TNF- α : anti-tumor necrosis factor- α agents; ANT: anti-T-cell agents; anti-ILI2/23: anti-interleukin-I2/23 agents; anti-ILI7: anti-interleukin-I7 agents; PBO: placebo.

Author Contributions

Research conception and design: DZ, YW, and JZ. Data analysis and interpretation: ZC, JZ, and BL. Statistical analysis: TD and JH. Drafting of the manuscript: PL. Critical revision of the manuscript: JL. All authors approved the final manuscript.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study was supported by Beijing Financial Research Institute Project: Clinical and Biological Studies of Eczema and Psoriasis (No.PXM2017_026273_000001).

ORCID iD

Ping Li (D) http://orcid.org/0000-0002-6657-9807

References

1. Wang J, Zhan Q and Zhang L. A systematic review on the efficacy and safety of infliximab in patients with psoriasis. Hum Vaccin Immunother 2016; 12: 431-437.
2. Xiong HZ, Gu JY, He ZG, Chen WJ, Zhang X, Wang JY and Shi YL. Efficacy and safety of secukinumab in the treatment of moderate to severe plaque psoriasis: a metaanalysis of randomized controlled trials. Int J Clin Exp Med 2015; 8: 3156-3172.
3. Jabbar-Lopez ZK, Yiu ZZN, Ward V, Exton LS, Mohd Mustapa MF, Samarasekera E, Burden AD, Murphy R, Owen CM, Parslew R, Venning V, Warren RB and Smith CH. Quantitative evaluation of biologic therapy options for psoriasis: a systematic review and network meta-analysis. J Investig Dermatol 2017; 137: 1646-1654.
4. Saurat JH, Stingl G, Dubertret L, Papp K, Langley RG, Ortonne JP, Unnebrink K, Kaul M, Camez A and CHAMPION Study investigators. Efficacy and safety results from the randomized controlled comparative study of adalimumab vs. methotrexate vs. placebo in patients with psoriasis (CHAMPION). Br J Dermatol 2008; 158: 558-566.
5. Bachelez H, Pc VDK, Strohal R, Kubanov A, Valenzuela F, Lee JH, Yakusevich V, Chimenti S, Papacharalambous J and Proulx J. Tofacitinib versus etanercept or placebo in moderate-to-severe chronic plaque psoriasis: a phase 3 randomised non-inferiority trial. Lancet 2015; 386: 552.
6. Poulin Y, Crowley JJ, Langley RG, Unnebrink K, Goldblum OM and Valdecantos WC. Efficacy of adalimumab across subgroups of patients with moderate-to-severe chronic plaque psoriasis of the hands and/or feet: post hoc analysis of REACH. J Eur Acad Dermatol Venereol 2014; 28: 882-890.
7. Reich K, Wozel G, Zheng H, van Hoogstraten HJ, Flint L and Barker J. Efficacy and safety of infliximab as continuous or intermittent therapy in patients with moderate-tosevere plaque psoriasis: results of a randomized, long-term extension trial (RESTORE2). Br J Dermatol 2013; 168: 1325-1334.
8. Feldman SR, Gottlieb AB, Bala M, Wu Y, Eisenberg D, Guzzo C, Li S, Dooley LT and Menter A. Infliximab improves health-related quality of life in the presence of comorbidities among patients with moderate-to-severe psoriasis. Br J Dermatol 2008; 159: 704-710.
9. Gordon KB, Duffin KC, Bissonnette R, Prinz JC, Wasfi Y, Li S, Shen YK, Szapary P, Randazzo B and Reich K. A phase 2 trial of guselkumab versus adalimumab for plaque psoriasis. N Engl J Med 2015; 373: 136-144.
10. Gordon KB, Blauvelt A, Papp KA, Langley RG, Luger T, Ohtsuki M, Reich K, Amato D, Ball SG and Braun DK. Phase 3 trials of ixekizumab in moderate-to-severe plaque psoriasis. N Engl J Med 2016; 375: 345-356.
11. Gottlieb A, Sullivan J, Van DM, Kubanov A, You R, Parneix A, Hugot S and Milutinovic M. Secukinumab shows significant efficacy in palmoplantar psoriasis: results from GESTURE, a randomized controlled trial. J Am Acad Dermatol 2017; 76: 70.
12. Krupashankar DS, Dogra S, Kura M, Saraswat A, Budamakuntla L, Sumathy TK, Shah R, Gopal MG, Narayana Rao T, Srinivas CR, Bhat R, Shetty N, Manmohan G, Sai Krishna K, Padmaja D, Pratap DV, Garg V, Gupta S, Pandey N, Khopkar U, Montero E, Ramakrishnan MS, Nair P and Ganapathi PC. Efficacy and safety of itolizumab, a novel anti-CD6 monoclonal antibody, in patients with moderate to severe chronic plaque psoriasis: results of a double-blind, randomized, placebo-controlled, phase-III study. J Am Acad Dermatol 2014; 71: 484-492.
13. Leonardi C, Matheson R, Zachariae C, Cameron G, Li L, Edsonheredia E, Braun D and Banerjee S. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N Engl J Med 2012; 367: 274.
14. Paller AS, Siegfried EC, Langley RG, Gottlieb AB, Pariser D, Landells I, Hebert AA, Eichenfield LF, Patel V, Creamer K and Jahreis A. Etanercept treatment for children and adolescents with plaque psoriasis. N Engl J Med 2008; 358: 241-251.
15. Reich K, Nestle FO, Papp K, Ortonne JP, Wu Y, Bala M, Evans R, Guzzo C, Li S and Dooley LT. Improvement in quality of life with infliximab induction and maintenance therapy in patients with moderate-to-severe psoriasis: a randomized controlled trial. Br J Dermatol 2006; 154: 1161.
16. Woolacott N, Hawkins N, Mason A, Kainth A, Khadjesari Z, Vergel YB, Misso K, Light K, Chalmers R, Sculpher M, Riemsma R. Etanercept and efalizumab for the treatment of psoriasis: a systematic review. Health Technol Assess 2006; 10: 1-233.
17. Bansback N, Sizto S, Sun H, Feldman S, Willian MK, Anis A. Efficacy of systemic treatments for moderate to severe plaque psoriasis: systematic review and meta-analysis. Dermatology 2009; 219: 209-218.
18. Reich K, Burden AD, Eaton JN, Hawkins NS. Efficacy of biologics in the treatment of moderate to severe psoriasis: a network meta-analysis of randomized controlled trials. Br J Dermatol 2012; 166: 179-188.
19. Lin VW, Ringold S and Devine EB. Comparison of ustekinumab with other biological agents for the treatment of moderate to severe plaque psoriasis: a Bayesian network meta-analysis. Arch Dermatol 2012; 148: 1403-1410.
20. Nast A, Jacobs A, Rosumeck S and Werner RN. Efficacy and safety of systemic long-term treatments for moderate-to-severe psoriasis: a systematic review and meta-analysis. J Investig Dermatol 2015; 135: 2641-2648.
21. Gomez-Garcia F, Epstein D, Isla-Tejera B, Lorente A, Velez Garcia-Nieto A and Ruano J. Short-term efficacy and safety of new biological agents targeting the interleukin-23-T helper 17 pathway for moderate-tosevere plaque psoriasis: a systematic review and network meta-analysis. Br J Dermatol 2017; 176: 594-603.
22. Blauvelt A, Prinz JC, Gottlieb AB, Kingo K, Sofen H, Ruer-Mulard M, Singh V, Pathan R, Papavassilis C and Cooper S. Secukinumab administration by pre-filled syringe: efficacy, safety and usability results from a randomized controlled trial in psoriasis (FEATURE). $\mathrm{Br} J$ Dermatol 2015; 172: 484-493.
23. Menter A, Feldman SR, Weinstein GD, Papp K, Evans R, Guzzo C, Li S, Dooley LT, Arnold C and Gottlieb AB. A randomized comparison of continuous vs. intermittent infliximab maintenance regimens over 1 year in the treatment of moderate-to-severe plaque psoriasis. J Am Acad Dermatol 2007; 56: 31.e31-e15.
24. Papp K, Thaçi D, Reich K, Riedl E, Langley RG, Krueger JG, Gottlieb AB, Nakagawa H, Bowman EP, Mehta A, Li Q, Zhou Y and Shames R. Tildrakizumab (MK-3222), an anti-interleukin-23p19 monoclonal antibody, improves psoriasis in a phase IIb randomized placebo-controlled trial. Br J Dermatol 2015; 173: 930-939.
25. Papp KA, Langley RG, Lebwohl M, Krueger GG, Szapary P, Yeilding N, Guzzo C, Hsu MC, Wang Y, Li S, Dooley LT and Reich K. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 2008; 371: 1675-1684.
26. Reich K, Wozel G, Zheng H, Van Hoogstraten HJF, Flint L and Barker J. Efficacy and safety of infliximab as continuous or intermittent therapy in patients with moderate-to-severe plaque psoriasis: results of a randomized, longterm extension trial (RESTORE2). Br J Dermatol 2013; 168: 1325-1334.
27. Feldman SR, Gordon KB, Bala M, Evans R, Li S, Dooley LT, Guzzo C, Patel K, Menter A and Gottlieb AB. Infliximab treatment results in significant improvement in the quality of life of patients with severe psoriasis: a double-blind placebo-controlled trial. $\mathrm{Br} \quad \mathrm{J}$ Dermatol 2005; 152: 954-960.
28. Krueger GG, Langley RG, Leonardi C, Yeilding N, Guzzo C, Wang Y, Dooley LT and Lebwohl M. A human interleukin-12/23 monoclonal antibody for the treatment of psoriasis. N Engl J Med 2007; 356: 580-592.
29. Igarashi A, Kato T, Kato M, Song M and Nakagawa H. Efficacy and safety of ustekinumab in Japanese patients with moderate-to-severe plaque-type psoriasis: long-term results from a phase $2 / 3$ clinical trial. J Dermatol 2012; 39: 242-252.
30. Kimball AB , Gordon KB , Langley RG, Menter A, Chartash EK and Valdes J. Safety and efficacy of ABT874, a fully human interleukin 12/23 monoclonal antibody, in the treatment of moderate to severe chronic plaque psoriasis: results of a randomized, placebo-controlled, phase 2 trial. Arch Dermatol 2008; 144: 200-207.
31. Krueger GG, Papp KA, Stough DB, Loven KH, Gulliver WP and Ellis CN. A randomized, double-blind, placebocontrolled phase III study evaluating efficacy and tolerability of 2 courses of alefacept in patients with chronic plaque psoriasis. J Am Acad Dermatol 2002; 47: 821-833.
32. Akcali C, Guven EH, Kirtak N, Inaloz HS, Ozgoztasi O and Guvenc U. Serum concentrations of interleukin-2 and tumour necrosis factor-alpha under cyclosporine versus acitretin treatment in plaque-type psoriasis. J Int Med Res 2014; 42: 1118-1122.
33. Ohtsuki M, Morita A, Abe M, Takahashi H, Seko N, Karpov A, Shima T, Papavassilis C and Nakagawa H. Secukinumab efficacy and safety in Japanese patients with moderate-to-severe plaque psoriasis: subanalysis from ERASURE, a randomized, placebo-controlled, phase 3 study. J Dermatol 2014; 41: 1039-1046.
34. Gottlieb AB, Evans R, Li S, Dooley LT, Guzzo CA, Baker D, Bala M, Marano CW and Menter A. Infliximab induction therapy for patients with severe plaque-type psoriasis: a randomized, double-blind, placebo-controlled trial. J Am Acad Dermatol 2004; 51: 534-542.
35. Leonardi CL, Powers JL, Matheson RT, Goffe BS, Zitnik R, Wang A and Gottlieb AB. Etanercept as monotherapy in patients with psoriasis. N Engl J Med 2003; 349: 2014-2022.
36. Gottlieb AB, Leonardi C, Kerdel F, Mehlis S, Olds M and Williams DA. Efficacy and safety of briakinumab vs. etanercept and placebo in patients with moderate to severe chronic plaque psoriasis. $\mathrm{Br} J$ Dermatol 2011; 165: 652-660.
37. Gordon KB, Langley RG, Leonardi C, Toth D, Menter MA, Kang S, Heffernan M, Miller B, Hamlin R, Lim L, Zhong J, Hoffman R and Okun MM. Clinical response to adalimumab treatment in patients with moderate to severe psoriasis: double-blind, randomized controlled trial and open-label extension study. J Am Acad Dermatol 2006; 55: 598-606.
38. Nakagawa H, Niiro H and Ootaki K. Brodalumab, a human anti-interleukin-17-receptor antibody in the treatment of Japanese patients with moderate-to-severe plaque psoriasis: efficacy and safety results from a phase II randomized controlled study. J Dermatol Sci 2016; 81: 44-52.
39. Menter A, Gordon K, Carey W, Hamilton T, Glazer S, Caro I, Li N and Gulliver W. Efficacy and safety observed during 24 weeks of efalizumab therapy in patients with moderate to severe plaque psoriasis. Arch Dermatol 2005; 141: 31-38.
40. Papp KA, Tyring S, Lahfa M, Prinz J, Griffiths CEM, Nakanishi AM, Zitnik R and Van De Kerkhof PCM. A global phase III randomized controlled trial of etanercept in psoriasis: safety, efficacy, and effect of dose reduction. Br J Dermatol 2005; 152: 1304-1312.
41. Chaudhari U, Romano P, Mulcahy LD, Dooley LT, Baker DG and Gottlieb AB. Efficacy and safety of infliximab monotherapy for plaque-type psoriasis: a randomised trial. Lancet 2001; 357: 1842-1847.
42. Dubertret L, Sterry W, Bos JD, Chimenti S, Shumack S, Larsen CG, Shear NH and Papp KA. Clinical experience acquired with the efalizumab (Raptiva) (CLEAR) trial in patients with moderate-to-severe plaque psoriasis: results from a phase III international randomized, placebocontrolled trial. Br J Dermatol 2006; 155: 170-181.
43. Asahina A, Nakagawa H, Etoh T and Ohtsuki M. Adalimumab in Japanese patients with moderate to severe chronic plaque psoriasis: efficacy and safety results from a phase II/III randomized controlled study. J Dermatol 2010; 37: 299-310.
44. Leonardi CL, Papp KA, Gordon KB, Menter A, Feldman SR, Caro I, Walicke PA, Compton PG and Gottlieb AB. Extended efalizumab therapy improves chronic plaque psoriasis: results from a randomized phase III trial. J Am Acad Dermatol 2005; 52: 425-433.
45. Lebwohl M, Christophers E, Langley R, Ortonne JP, Roberts J and Griffiths CE. An international, randomized, double-blind, placebo-controlled phase 3 trial of intramuscular alefacept in patients with chronic plaque psoriasis. Arch Dermatol 2003; 139: 719-727.
46. Griffiths CEM, Reich K, Lebwohl M, Van De Kerkhof P, Paul C, Menter A, Cameron GS, Erickson J, Zhang L, Secrest RJ, Ball S, Braun DK, Osuntokun OO, Heffernan MP, Nickoloff BJ and Papp K. Comparison of ixekizumab with etanercept or placebo in moderate-tosevere psoriasis (UNCOVER-2 and UNCOVER-3): results from two phase 3 randomised trials. Lancet 2015; 386: 541-551.
47. Tyring S, Gottlieb A, Papp K, Gordon K, Leonardi C, Wang A, Lalla D, Woolley M, Jahreis A, Zitnik R, Cella D and Krishnan R. Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-blind place-bo-controlled randomised phase III trial. Lancet 2006; 367: 29-35.
48. Paul C, Lacour JP, Tedremets L, Kreutzer K, Jazayeri S, Adams S, Guindon C, You R and Papavassilis C. Efficacy, safety and usability of secukinumab administration by autoinjector/pen in psoriasis: a randomized, controlled trial (JUNCTURE). J Eur Acad Dermatol Venereol 2015; 29: 1082-1090.
49. Ortonne JP. Clinical response to alefacept: results of a phase 3 study of intramuscular administration of alefacept in patients with chronic plaque psoriasis. J Eur Acad Dermatol Venerol 2003; 17: 12-16.
50. Youn JI, Tsai TF, Song M, Shen YK, Li S, Choi JH, Kim KJ and Ho JC. Efficacy and safety of ustekinumab for the treatment of moderate-to-severe psoriasis: results of a phase 3 trial in Taiwanese and Korean patients. J Dermatol 2010; 37: 121-122.
51. Reich K, Nestle FO, Papp K, Ortonne JP, Evans R, Guzzo C, Li S, Dooley LT and Griffiths CE. Infliximab induction and maintenance therapy for moderate-to-severe psoriasis: a phase III, multicentre, double-blind trial. Lancet 2005; 366: 1367-1374.
52. Micali G, Wilsmann-Theis D, Mallbris L, Gallo G, Marino V, Brault Y and Germain JM. Etanercept reduces symptoms and severity of psoriasis after cessation of cyclosporine therapy: results of the SCORE study. Acta Derm Venerol 2015; 95: 57-61.
53. Barker J, Hoffmann M, Wozel G, Ortonne JP, Zheng H, van Hoogstraten H and Reich K. Efficacy and safety of infliximab vs. methotrexate in patients with moderate-tosevere plaque psoriasis: results of an open-label, activecontrolled, randomized trial (RESTORE1). $B r \quad J$ Dermatol 2011; 165: 1109-1117.
54. Papp KA, Bressinck R, Fretzin S, Goffe B, Kempers S, Gordon KB, Caro I, Walicke PA, Wang X and Menter A. Safety of efalizumab in adults with chronic moderate to severe plaque psoriasis: a phase IIIb, randomized, controlled trial. Int J Dermatol 2006; 45: 605-614.
55. Mease PJ, Goffe BS, Metz J, VanderStoep A, Finck B and Burge DJ. Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial. Lancet 2000; 356: 385-390.
56. van de Kerkhof PC, Segaert S, Lahfa M, Luger TA, Karolyi Z, Kaszuba A, Leigheb G, Camacho FM, Forsea D, Zang C, Boussuge MP, Paolozzi L and Wajdula J. Once weekly administration of etanercept 50 mg is efficacious and well tolerated in patients with moderate-to-severe plaque psoriasis: a randomized controlled trial with open-label extension. Br J Dermatol 2008; 159: 1177-1185.
57. Gordon K, Langley R, Gottlieb A, Papp K, Menter A, Krueger G, Strober B, Gu Y and Valdes J. Efficacy and safety results from a phase III, randomized controlled trial comparing two dosing regimens of ABT-874 to placebo in patients with moderate to severe psoriasis. J Eur Acad Dermatol Venereol 2010; 24: 30-31.
58. Gordon KB, Papp KA, Hamilton TK, Walicke PA, Dummer W, Li N, Bresnahan BW and Menter A. Efalizumab for patients with moderate to severe plaque psoriasis: a randomized controlled trial. JAMA 2003; 290: 3073-3080.
59. Lebwohl M, Strober B, Menter A, Gordon K, Weglowska J, Puig L, Papp K, Spelman L, Toth D, Kerdel F, Armstrong AW, Stingl G, Kimball AB, Bachelez H, Wu JJ, Crowley J, Langley RG, Blicharski T, Paul C, Lacour JP, Tyring S, Kircik L, Chimenti S, Callis Duffin K, Bagel J, Koo J, Aras G, Li J, Song W, Milmont CE, Shi Y, Erondu N, Klekotka P, Kotzin B and Nirula A. Phase 3 studies comparing brodalumab with ustekinumab in psoriasis. N Engl J Med 2015; 373: 1318-1328.
60. Gottlieb AB, Matheson RT, Lowe N, Krueger GG, Kang S, Goffe BS, Gaspari AA, Ling M, Weinstein GD, Nayak A, Gordon KB and Zitnik R. A randomized trial of etanercept as monotherapy for psoriasis. Arch Dermatol 2003; 139: 1627-1632; discussion 1632.
61. Torii H and Nakagawa H . Infliximab monotherapy in Japanese patients with moderate-to-severe plaque psoriasis and psoriatic arthritis. A randomized, double-blind, place-bo-controlled multicenter trial. J Dermatol Sci 2010; 59: 40-49.
62. Gordon KB, Kimball AB, Chau D, Viswanathan HN, Li J, Revicki DA, Kricorian G and Ortmeier BG. Impact of brodalumab treatment on psoriasis symptoms and health-related quality of life: use of a novel patientreported outcome measure, the Psoriasis Symptom Inventory. Br J Dermatol 2014; 170: 705-715.
63. Langley RG, Elewski BE, Lebwohl M, Reich K, Griffiths CEM, Papp K, Puig L, Nakagawa H, Spelman L, Sigurgeirsson B, Rivas E, Tsai TF, Wasel N, Tyring S, Salko T, Hampele I, Notter M, Karpov A, Helou S and Papavassilis C. Secukinumab in plaque psoriasis - results of two phase 3 trials. N Engl J Med 2014; 371: 326-338.
64. Papp KA, Sundaram M, Bao Y, Williams DA, Gu Y, Signorovitch JE, Wang Y, Valdes JM and Mulani PM. Effects of briakinumab treatment for moderate to severe psoriasis on health-related quality of life and work productivity and activity impairment: results from a randomized phase III study. J Eur Acad Dermatol Venereol 2014; 28: 790-798.
65. Zhu X, Zheng M, Song M, Shen YK, Chan D, Szapary PO and Wang B. Efficacy and safety of ustekinumab in Chinese patients with moderate to severe plaque-type psoriasis: results from a phase 3 clinical trial (LOTUS). J Drugs Dermatol 2013; 12: 166-174.
66. Ellis CN and Krueger GG. Treatment of chronic plaque psoriasis by selective targeting of memory effector T lymphocytes. N Engl J Med 2001; 345: 248-255.
67. Papp K, Bissonnette R, Krueger JG, Carey W, Gratton D, Gulliver WP, Lui H, Lynde CW, Magee A, Minier D, Ouellet JP, Patel P, Shapiro J, Shear NH, Kramer S, Walicke P, Bauer R, Dedrick RL, Kim SS, White M and Garovoy MR. The treatment of moderate to severe psoriasis with a new anti-CD11a monoclonal antibody. J Am Acad Dermatol 2001; 45: 665-674.
68. Thaçi D, Blauvelt A, Reich K, Tsai TF, Vanaclocha F, Kingo K, Ziv M, Pinter A, Hugot S, You R and Milutinovic M. Secukinumab is superior to ustekinumab in clearing skin of subjects with moderate to severe plaque psoriasis: CLEAR, a randomized controlled trial. J Am Acad Dermatol 2015; 73: 400-409.
69. Menter A, Tyring SK, Gordon K, Kimball AB, Leonardi CL, Langley RG, Strober BE, Kaul M, Gu Y, Okun M and Papp K. Adalimumab therapy for moderate to severe psoriasis: a randomized, controlled phase III trial. J Am Acad Dermatol 2008; 58: 106-115.
70. Papp K, Leonardi C, Menter A, Thompson EH, Milmont CE, Kricorian G, Nirula A and Klekotka P. Safety and efficacy of brodalumab for psoriasis after 120 weeks of treatment. J Am Acad Dermatol 2014; 71: 1183-1190.
71. Papp KA, Langley RG, Sigurgeirsson B, Abe M, Baker DR, Konno P, Haemmerle S, Thurston HJ, Papavassilis C and Richards HB. Efficacy and safety of secukinumab in the treatment of moderate-to-severe plaque psoriasis: a
randomized, double-blind, placebo-controlled phase II dose-ranging study. Br J Dermatol 2013; 168: 412-421.
72. Revicki D, Willian MK, Saurat JH, Papp KA, Ortonne JP, Sexton C and Camez A. Impact of adalimumab treatment on health-related quality of life and other patient-reported outcomes: results from a 16 -week randomized controlled trial in patients with moderate to severe plaque psoriasis. Br J Dermatol 2008; 158: 549-557.
73. Blauvelt A, Reich K, Tsai TF, Tyring S, Vanaclocha F, Kingo K, Ziv M, Pinter A, Vender R, Hugot S, You R, Milutinovic M and Thaci D. Secukinumab is superior to ustekinumab in clearing skin of subjects with moderate-tosevere plaque psoriasis up to 1 year: results from the CLEAR study. J Am Acad Dermatol 2017; 76: 60-69.e9.
74. Kavanaugh A, Puig L, Gottlieb AB, Ritchlin C, You Y, Li S, Song M, Randazzo B, Rahman P and McInnes IB. Efficacy and safety of ustekinumab in psoriatic arthritis patients with peripheral arthritis and physician-reported spondylitis: post-hoc analyses from two phase III, multicentre, double-blind, placebo-controlled studies (PSUMMIT-1/PSUMMIT-2). Ann Rheum Dis 2016; 75: 1984-1988.
75. Landells I, Marano C, Hsu MC, Li S, Zhu Y, Eichenfield LF, Hoeger PH, Menter A, Paller AS, Taieb A, Philipp S, Szapary P and Randazzo B. Ustekinumab in adolescent patients age 12 to 17 years with moderate-to-severe plaque psoriasis: results of the randomized phase 3 CADMUS study. J Am Acad Dermatol 2015; 73: 594-603.
76. Mease PJ, van der Heijde D, Ritchlin CT, Okada M, Cuchacovich RS, Shuler CL, Lin CY, Braun DK, Lee CH and Gladman DD. Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis: results from the 24 -week randomised, double-blind, place-bo-controlled and active (adalimumab)-controlled period of the phase III trial SPIRIT-P1. Ann Rheum Dis 2017; 76: 79-87.
77. Blauvelt A, Papp KA, Griffiths CE, Randazzo B, Wasfi Y, Shen YK, Li S and Kimball AB. Efficacy and safety of guselkumab, an anti-interleukin- 23 monoclonal antibody, compared with adalimumab for the continuous treatment of patients with moderate to severe psoriasis: results from the phase III, double-blinded, placebo- and active comparator-controlled VOYAGE 1 trial. J Am Acad Dermatol 2017; 76: 405-417.
78. Cai L, Gu J, Zheng J, Zheng M, Wang G, Xi LY, Hao F, Liu XM, Sun QN, Wang Y, Lai W, Fang H, Tu YT, Sun Q, Chen J, Gao XH, Gu Y, Teixeira HD, Zhang JZ and Okun MM. Efficacy and safety of adalimumab in Chinese patients with moderate-to-severe plaque psoriasis: results from a phase 3, randomized, placebo-controlled, doubleblind study. J Eur Acad Dermatol Venereol 2017; 31: 89-95.
79. Kavanaugh A, Husni ME, Harrison DD, Kim L, Lo KH, Leu JH and Hsia EC. Safety and efficacy of intravenous golimumab in patients with active psoriatic arthritis: results through week 24 of the GO-VIBRANT study. Arthritis Rheumatol 2017; 69: 2151-2161.
80. Lacour JP, Paul C, Jazayeri S, Papanastasiou P, Xu C, Nyirady J, Fox T and Papavassilis C. Secukinumab administration by autoinjector maintains reduction of plaque psoriasis severity over 52 weeks: results of the randomized controlled JUNCTURE trial. J Eur Acad Dermatol Venereol 2017; 31: 847-856.
81. Nash P, Kirkham B, Okada M, Rahman P, Combe B, Burmester GR, Adams DH, Kerr L, Lee C, Shuler CL and Genovese M. Ixekizumab for the treatment of patients with active psoriatic arthritis and an inadequate response to tumour necrosis factor inhibitors: results from the $24-$ week randomised, double-blind, placebo-controlled period of the SPIRIT-P2 phase 3 trial. Lancet 2017; 389: 2317-2327.
82. Papp K, Thaci D, Marcoux D, Weibel L, Philipp S, Ghislain PD, Landells I, Hoeger P, Kotkin C, Unnebrink K, Seyger M and Williams D. Efficacy and safety of adalimumab every other week versus methotrexate once weekly in children and adolescents with severe chronic plaque psoriasis: a randomised, double-blind, phase 3 trial. Lancet 2017; 390: 40-49.
83. Papp KA, Reich K, Paul C, Blauvelt A, Baran W, Bolduc C, Toth D, Langley RG, Cather J, Gottlieb AB, Thaci D, Krueger JG, Russell CB, Milmont CE, Li J, Klekotka PA, Kricorian G and Nirula A. A prospective phase III, randomized, double-blind, placebo-controlled study of brodalumab in patients with moderate-to-severe plaque psoriasis. Br J Dermatol 2016; 175: 273-286.
84. Reich K, Armstrong AW, Foley P, Song M, Wasfi Y, Randazzo B, Li S, Shen YK and Gordon KB. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the treatment of patients with moderate to severe psoriasis with randomized withdrawal and retreatment: results from the phase III, double-blind, placebo- and active comparatorcontrolled VOYAGE 2 trial. J Am Acad Dermatol 2017; 76: 418-431.
85. Reich K, Gooderham M, Green L, Bewley A, Zhang Z, Khanskaya I, Day RM, Goncalves J, Shah K, Piguet V and Soung J. The efficacy and safety of apremilast, etanercept and placebo in patients with moderate-to-severe plaque psoriasis: 52-week results from a phase IIIb,
randomized, placebo-controlled trial (LIBERATE). J Eur Acad Dermatol Venereol 2017; 31: 507-517.
86. Reich K, Papp KA, Blauvelt A, Tyring SK, Sinclair R, Thaci D, Nograles K, Mehta A, Cichanowitz N, Li Q, Liu K, La Rosa C, Green S and Kimball AB. Tildrakizumab versus placebo or etanercept for chronic plaque psoriasis (reSURFACE 1 and reSURFACE 2): results from two randomised controlled, phase 3 trials. Lancet 2017; 390: 276-288.
87. Reich K, Pinter A, Lacour JP, Ferrandiz C, Micali G, French LE, Lomaga M, Dutronc Y, Henneges C, Wilhelm S, Hartz S and Paul C. Comparison of ixekizumab with ustekinumab in moderate-to-severe psoriasis: 24week results from IXORA-S, a phase III study. Br J Dermatol 2017; 177: 1014-1023.
88. Dommasch ED, Abuabara K, Shin DB, Nguyen J, Troxel AB and Gelfand JM. The risk of infection and malignancy with tumor necrosis factor antagonists in adults with psoriatic disease: a systematic review and meta-analysis of randomized controlled trials. J Am Acad Dermatol 2011; 64: 1035-1050.
89. de Vries AC, Thio HB, de Kort WJ, Opmeer BC, van der Stok HM, de Jong EM, Horvath B, Busschbach JJ, Nijsten TE and Spuls PI. A prospective randomized controlled trial comparing infliximab and etanercept in patients with moderate-to-severe chronic plaque-type psoriasis: the Psoriasis Infliximab vs. Etanercept Comparison Evaluation (PIECE) study. Br J Dermatol 2017; 176: 624-633.
90. Hong CH, Papp KA, Lophaven KW, Skallerup P and Philipp S. Patients with psoriasis have different preferences for topical therapy, highlighting the importance of individualized treatment approaches: randomized phase IIIb PSO-INSIGHTFUL study. J Eur Acad Dermatol Venereol 2017; 31: 1876-1883.
91. Bagel J, Duffin KC, Moore A, Ferris LK, Siu K, Steadman J, Kianifard F, Nyirady J and Lebwohl M. The effect of secukinumab on moderate-to-severe scalp psoriasis: results of a 24 -week, randomized, double-blind, placebo-controlled phase 3b study. J Am Acad Dermatol 2017; 77: 667-674.

[^0]: 'Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beiijing Key Laboratory of Clinic and Basic Research with TCM on Psoriasis, Beijing, China
 ${ }^{2}$ Department of Dermatology, Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, China

 ## Corresponding Author:

 Ping Li, Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with TCM on Psoriasis, Beijing IOOOIO, China.
 Email: li_ping4|l@|26.com

[^1]: ILI2/23: anti-interleukin-I2/23 agents; anti-ILI7: anti-interleukin-I7 agents; PBO: placebo.

[^2]: Bold: data with statically significant difference; in the upper regions, columns are compared with rows, while lower regions are opposite. AM: anti-metabolites; anti-TNF- α : anti-tumor necrosis factor- α agents; ANT: anti-T-cell agents; anti-ILI2/23: anti-interleukin-12/23 agents; anti-ILI7: anti-interleukin-I7 agents; PBO: placebo.

