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Abstract

In Alzheimer’s Disease (AD) dual-tracer positron emission tomography (PET) studies with

2-[18F]-fluoro-2-deoxy-D-glucose (FDG) and 11C-labelled Pittsburgh Compound B (PIB) are

used to assess metabolism and cerebral amyloid-β deposition, respectively. Regional cere-

bral metabolism and blood flow (rCBF) are closely coupled, both providing an index for neu-

ronal function. The present study compared PIB-derived rCBF, estimated by the ratio of

tracer influx in target regions relative to reference region (R1) and early-stage PIB uptake

(ePIB), to FDG scans. Fifteen PIB positive (+) patients and fifteen PIB negative (-) subjects

underwent both FDG and PIB PET scans to assess the use of R1 and ePIB as a surrogate

for FDG. First, subjects were classified based on visual inspection of the PIB PET images.

Then, discriminative performance (PIB+ versus PIB-) of rCBF methods were compared to

normalized regional FDG uptake. Strong positive correlations were found between analy-

ses, suggesting that PIB-derived rCBF provides information that is closely related to what

can be seen on FDG scans. Yet group related differences between method’s distributions

were seen as well. Also, a better correlation with FDG was found for R1 than for ePIB. Fur-

ther studies are needed to validate the use of R1 as an alternative for FDG studies in clinical

applications.

Introduction

Several clinical studies were performed over the last years to validate biomarkers for evaluating

the pathological mechanisms of Alzheimer’s disease (AD). It is important to consider that dif-

ferent biomarkers may point at abnormality at particular stages of disease progression [1], thus

providing varied information in the discernment between conditions with concomitant AD

pathology, such as dementia with Lewy bodies [2], Parkinson’s disease with dementia [3], and

frontotemporal lobar degeneration [4].
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Two of the main AD biomarkers are those related with the amyloid-β (Aβ) plaques deposi-

tion in the brain, a histopathology hallmark of the AD that has an important role in disease

progression [1], and neurodegeneration biomarkers, which reflect synaptic dysfunction and

degeneration. Moreover, the prodromal phase of AD, known as mild cognitive impairment

(MCI), which is characterized by the onset of the earliest cognitive symptoms that do not meet

dementia criteria, can present abnormal levels of these biomarkers [1].

In this context, positron emission tomography (PET) is becoming part of the clinical rou-

tine in AD, considering its ability to assess a broad range of these biomarkers and, therefore, of

functional processes related to AD pathophysiology. PET imaging allows not only visual inter-

pretation of the results for direct clinical use but, more importantly, provides quantitative

brain data that may be used to further understand the pathophysiology [5].

The glucose analogue PET tracer 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) can be used to

assess alterations in brain glucose metabolism. In this way, clinical symptoms can optimally be

linked to patterns of regionally impaired brain function, particularly when the symptoms can-

not be explained by anatomical magnetic resonance imaging (MRI). This makes FDG PET a

highly useful technique in the differential diagnosis of neurodegenerative diseases characterized

by gradually emerging cognitive and/or motor defects [6]. Being one of the most accessible PET

tracers in clinical routine, FDG PET has been extensively used in the early diagnosis and disease

progression of AD [7]. However, it has become increasingly clear that AD is not expressed by a

unique clinical syndrome [8,9], emphasizing the need for pathophysiological biomarkers, pro-

vided by e.g. 11C labelled Pittsburgh Compound B (PIB), and 18F-florbetaben PET. Classically,

FDG PET studies have revealed that glucose metabolism is reduced in the parietal, temporal,

posterior cingulate, and, less prominently, frontal cortices of AD patients when compared to

healthy controls [5]. At the same time, visual analysis of amyloid PET data, with PET tracers

such as PIB, provides information on the presence or absence of amyloid load in the brain, an

aspect of major relevance in clinical practice in the early stages of AD [10]. When compared to

healthy controls, AD patients showed increased PIB retention in cortical brain regions [11].

While complementary FDG and PIB PET scans might be helpful to improve diagnosis of

AD, the use of different PET tracers increases costs, patient discomfort, scanning time, and

exposure to radiation [12]. Therefore, the use of a single tracer that could provide information

on more than one biomarker at the same time would be ideal. PIB PET is a well-known radio-

tracer for amyloid deposition [11], and due to its high lipophilicity, early-stage distribution in

the brain might also be a good surrogate for brain perfusion [13,14]. These images can be

assessed by making the time weighted average of the first frames of the dynamic PIB PET scan.

The early frames provide an image that shows how the uptake of the tracer starts happening in

the brain, and therefore can be used as a surrogate for brain perfusion. The time interval taken

for PIB specifically has been optimized for the best correlation with FDG scans [15–18], but

not for diagnostic purposes.

Moreover, compartmental models used for PIB PET quantification [19] also provide a good

estimation of the rate constant for ligand transfer from blood to tissue (K1). Thus, K1 is

expected to provide a good estimation of cerebral blood flow. An extensive study of non-inva-

sive reference tissue based parametric methods established that the 2-step simplified reference

tissue model (SRTM2) [20] allows a fast and easy computation of high-quality parametric

images of relative tracer flow (R1) [21]. Since R1 represents the ratio between K1 from the tissue

of interest and the reference region, it is probable that R1 parametric maps generated by the

SRTM2 model provide a good image of relative cerebral blood flow (rCBF). Since regional glu-

cose metabolism assessed with FDG PET and rCBF are closely related [22] in such a way that

both are tightly coupled with regional neuronal activity [23,24], it enables the identification of

regionally impaired brain function [25].
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Therefore, the aim of the present study was to explore the use of R1, derived from dynamic

PIB PET, as a surrogate for brain glucose metabolism, FDG PET, and then to examine if R1

estimates are more accurate than early-stage PIB uptake. To this end, regional R1 estimates

obtained from voxel-based SRTM2 analysis of PIB PET scans were compared to the estimates

of regional relative FDG and PIB early frames uptake in the same subjects.

Material and methods

Subjects

Thirty subjects were selected from a larger on-going study, recruited from 2013 till 2017 at

the memory clinic of the University Medical Centre of Groningen (UMCG), Groningen, The

Netherlands. The subjects included patients with either AD or MCI, and healthy controls. In all

subjects, standard dementia screening was performed. Multimodal neuroimaging was also per-

formed, including PIB and FDG PET scans, as well as T1-3D magnetic resonance imaging

(MRI). Clinical diagnosis was established by consensus in a multidisciplinary team according to

the National Institute on Aging Alzheimer’s Association criteria (NIA-AA) [26] for the AD

patients, and for the MCI, the Petersen criteria [27]. Healthy subjects had no cognitive com-

plaints, and a mini-mental state examination (MMSE) score above 28. Subjects were then classi-

fied into two categories based on visual inspection of the PIB PET images: "PIB+" (i.e. patients

that presented high levels of cortical PIB binding), and "PIB-" (i.e. participants that presented low

levels of cortical PIB). A summary of the demographic characteristics is shown in Table 1. All

subjects provided written informed consent to participate in the study. Patients with a MMSE

score higher than 18 were considered mentally competent to give informed consent. This cohort

of subjects had a minimum MMSE score of 22, therefore all subjects were considered mentally

competent to give informed consent. The study was conducted according to the Declaration of

Helsinki and subsequent revisions. Ethical approval for the whole study, including the informed

consent, was obtained from the Medical Ethical Committee of the UMCG (2014/320).

PET acquisition

All subjects underwent dynamic PIB PET and a static FDG PET examination with either a Sie-

mens Biograph 40mCT or 64mCT PET/CT scanner (Siemens Medical Solutions, USA). A t-

test comparing data provided by the different scanners showed that they yielded no statistically

significant differences between them. Both scans were performed under standard resting con-

ditions with eyes closed. The FDG PET scan was performed on the same day at least 90

Table 1. Demographic summary of subjects.

Group PiB+(n = 15) PiB-(n = 15) p-value

Sex Male 10 10

Female 5 5

Diagnosis AD 8 1

MCI 7 3

HC 0 11

Age (y) 66 ± 6 68 ± 4 0.20

Weight (kg) 78 ± 13 78 ± 13 0.81

MMSE Score 26 ± 3 29 ± 1 < 0.001

Demographic summary of the characteristics of the subjects included in this study. The p-values reported are resulted from a t-test comparing data from the PIB+ and

PIB- groups.

https://doi.org/10.1371/journal.pone.0211000.t001
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minutes after the PIB injection for most subjects, while seven subjects had a delay of up to two

months between scans. All subjects fasted for at least six hours before tracer injection, and

plasma glucose levels were measured before the scan.

The PIB and FDG tracers were manufactured at the radiopharmacy facility at the Depart-

ment of Nuclear Medicine and Molecular Imaging at the UMCG, synthesized accordingly to

the Good Manufacturing Procedure, and administered via venous cannula. The dynamic PIB

PET acquisition started at the moment of tracer injection (384 ± 48 MBq) and lasted for 60

minutes (frames: 7 × 10s, 3 × 30s, 2 × 60s, 2 × 120s, 2 × 180s, 5 × 300s, and 2 × 600s) for 17 of

the 30 subjects, 70 minutes (one extra 600s frame) for 8 subjects, and 90 minutes (three 600s

frames more than the 60 minutes scan) for 5 subjects. 20 minutes static FGD images were

acquired 30 minutes after injection (207 ± 10 MBq). List-mode data from all PET scans were

reconstructed using 3D OSEM (3 iterations and 24 subsets), point spread function correction

and time-of-flight, resulting in images with 400 × 400 × 111 matrix, isotropic 2mm voxels,

smoothed with 2mm Gaussian filter at Full Width and Half Maximum (FWHM).

Image processing

Image registration and data analysis were done using PMOD software package (version 3.8;

PMOD Technologies LLC). First, the T1 3D MRI was normalized to the Montreal Neurologic

Institute space using tissue probability maps [28]. Then, the PET images were corrected for

motion (in case of presence) by using the average of the first 12 frames as reference, and were

aligned to the individual MRI. The Hammers atlas [29] was used to define anatomical brain

volumes of interest (VOI), which were grouped on a total of 40 bilateral regions, with white

matter separated from cortical tissue. Several regions from the original atlas were excluded

from the analysis: cerebellar white matter, corpus callosum, third ventricle, lateral ventricle,

and temporal horn. A list of regions used in this study is presented in S1 Table. Finally, the

PET images were smoothed using a Gaussian filter of 6mm at FWHM, and everything that

was outside of the brain was removed from the image.

Parametric images of rCBF (i.e., R1 images) were generated using the PIB PET images in

the individual space and the SRTM2 [21]. The grey matter of the cerebellum was chosen as the

reference since it is a region without relevant specific PIB binding [11,19,30,31]. To apply the

model, a first estimate of the binding potential (BPND) and efflux rate constant from the refer-

ence region (k’2) was obtained using the simplified reference tissue model (SRTM) [32]. Then,

the k’2 parameter was defined as the median value from all voxels that have a BPnd value

higher than 0.05. After that the k’2 parameter was fixed and the SRTM2 model was applied to

generate the final R1 parametric images.

To compare with the early-stage distribution, data from the early frames of the PIB PET

scans (ePIB) were generated using the time weighted average of the frames corresponding to

different time intervals: 20s to 40s, 20s to 60s, 20s to 100s, 20s to 130s, and from 1min to 8min.

In a previous study, it was shown that the interval from 1 to 8 minutes was the optimal interval

when selecting early frames of PIB data, showing the best correlation with FDG uptake [15].

However, this time interval seems to be too long and might not be a pure measure of flow, but

may already be presenting contributions from amyloid binding. Nonetheless, this interval was

also considered, along with other earlier times that corresponded better with the influx of the

tracer into the brain. After the weighted averages were estimated, standardized uptake values

were calculated and then normalized to the values of the reference region (cerebellum grey

matter) for the same time interval.

To compare PIB derived R1 and ePIB to FDG PET, standardized uptake value ratios

(SUVR) were generated for the FDG PET images by normalizing the uptake to the mean value
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of the cerebellum (grey matter). All images were also transformed to atlas space for further

voxel-based comparison. To better visualize the differences between the images, the FDG

SUVR images were subtracted from the R1 and ePIB for each subject, and the mean image of

all subjects per group was generated. This was done for an easier visual comparison voxel-by-

voxel of the differences between the images.

Finally, the images were also corrected for partial volume effects using the geometric trans-

fer matrix method [33] to explore the possible impact of brain atrophy in the results.

Statistics

A general linear model was used to explore the relationship between R1 or ePIB (dependent

variable) and FDG SUVR (independent variable) estimates of all regions for the subjects of

each group. Additionally, in order to compare how much the suggested methods correlate, the

same analysis was made between ePIB (dependent) and R1 (independent variable). A p-value

of 0.05 was used as significance threshold for all analyses.

A Bland-Altman plot was made to evaluate the agreement between the two measurements

(R1 or ePIB and SUVR). The difference between the two was plotted against the average SUVR

values per region, considering the FDG PET measure as the reference [34]. All statistical analy-

ses were done using Rstudio (R version 3.4.0, [35] Rstudio version 1.0.143).

To compare the capacity of the methods to distinguish between PIB+ and PIB- groups, a

voxel-based comparison was performed using SPM12 (Wellcome Trust Centre for Neuroim-

aging, UK). A two-sample t-test between the groups was done independently for FDG SUVR,

R1, and ePIB images. Interpretation of the resulting T-maps was done using a voxel threshold

of p = 0.005 (uncorrected), and only clusters with p< 0.05 corrected for family-wise error

were considered significant.

Results

Group differences

In general terms, the FDG SUVR images were in agreement with the literature (Fig 1) [5]. In

the images from the PIB+ group, disease patterns of regional hypometabolism corresponded

to those from literature [36]. The PIB- group did not show abnormally decreased cortical

uptake. The resemblance between the R1 and FDG SUVR images was noticeable, with similar

AD specific patterns in the PIB+ group. Better visual similarity between ePIB, SUVR, and R1

was only seen for later intervals of frames. Representative images for all time intervals can be

seen in S1 Fig.

The FDG SUVR values from each region across subjects were (mean ± SD) 0.96 ± 0.15

(range 0.49–1.44) and 1.01 ± 0.15 (0.67–1.42) for the PIB+ and PIB- patients respectively. Typ-

ical regions known for reduced FDG uptake such as the frontal and parietal lobes presented

relative uptake values of 1.01 ± 0.11 (PIB+) and 1.07 ± 0.12 (PIB-) for the frontal cortex, and of

0.99 ± 0.08 and 1.10 ± 0.09 for the parietal cortex (Fig 2). The regions that presented the high-

est FDG SUVR mean values were the putamen (1.23 ± 0.10), for the PIB+ group, and the cin-

gulate gyrus posterior part along with the putamen (1.26 ± 0.09) for the PIB- group.

Meanwhile, the brainstem was the region that presented the lowest values for both groups

(0.72 ± 0.03 and 0.75 ± 0.03 for the PIB+ and PIB- groups respectively).

For the R1 data, the regional values were 0.88 ± 0.13 (range 0.46–1.27) for the PIB+ group,

and 0.90 ± 0.11 (0.58–1.26) for the PIB-. Frontal cortex presented uptake values of 0.90 ± 0.08

(PIB+) and 0.93 ± 0.07 (PIB-), while for the parietal cortex, these values were 0.88 ± 0.07 and

0.93 ± 0.05, respectively (Fig 2). The region that presented the higher values was, for both

groups, the Putamen (1.14 ± 0.07 for the PIB+ group and 1.13 ± 0.05 for the PIB- group). The
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smallest R1 values were found on the caudate nucleus, for both groups (0.66 ± 0.14 and

0.71 ± 0.07 respectively for the PIB+ and PIB- groups).

The values for ePIB(20-130s) across all subjects were 0.91 ± 0.13 (range 0.38–1.29) and

0.93 ± 0.11 (0.53–1.24) for the PIB+ and PIB- groups respectively. Frontal cortex presented val-

ues of 0.96 ± 0.09 (0.65–1.23) for PIB+ patients, and 0.96 ± 0.07 (0.72–1.17) for PIB- subjects.

Meanwhile, the parietal cortex had values of 0.89 ± 0.08 (0.73–1.09), and 0.93 ± 0.05 (0.83–

1.02) for PIB+ and PIB- subjects respectively. The putamen was the region that presented the

highest values of ePIB(20-130s) (1.14 ± 0.08 for the PIB+ group and 1.12 ± 0.06 for the PIB-).

Meanwhile, the caudate nucleus presented the lowest values (0.64 ± 0.17 and 0.69 ± 0.07 for

the PIB+ group and for the PIB- group respectively).

Fig 1. Mean images per group. Mean normalized FDG uptake images (first row), parametric images of PiB rCBF (R1; second row), and time weighted average of early

PIB frames (20 to 130 seconds, and 1 to 8 minutes; third and fourth row, respectively) of the PIB+ group (left), and the PIB- group (right). Shown are corresponding

transaxial, and sagittal slices of the brain. All colour scales were adjusted to the same range.

https://doi.org/10.1371/journal.pone.0211000.g001
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With the exception of the hippocampus, brainstem, and white matter, all other regions in

all methods presented higher average values after the partial volume effect correction was

applied. For the FDG SUVR and the R1 methods, the thalamus also yielded lower values than

the other regions. In general, the number of regions that presented a statistically significant dif-

ference between groups was reduced. Moreover, the standard deviations of the data increased

after partial volume correction.

A summary of all results for each region of both groups can be found in S2–S8 Tables, and

the results from the partial volume corrected data for the FDG SUVR, R1, ePIB(20-130s)m and

ePIB(1-8min) methods are shown in S9–S12 Tables.

Difference images

When exploring the mean difference images per group (Fig 3), a clear difference was observed

between PIB+ and PIB- groups. Overall, higher FDG SUVR values were found than those of

R1 and ePIB (blue colour, Fig 3) especially at the parietal and frontal lobes of the PIB- subjects.

Structures such as the thalamus, brainstem, and the cerebellum showed the opposite pattern,

with higher R1 or ePIB values than FDG SUVR (red colour, Fig 3). The difference images for

all time intervals included in this study can be seen in S2 Fig.

Correlation between methods and SUVR

The scatter plots of rCBF estimates from R1 and FDG SUVR uptake (Fig 4) suggest a strong

correlation between R1 and FDG SUVR values, 0.86 for the PIB+ group and 0.84 for the PIB-.

In addition, FDG SUVR estimates were highly predictive of R1, accounting for 72% (R2 = 0.72,

p< 0.001, slope = 0.73, intercept = 0.18) and 67% (R2 = 0.67, p< 0.001, slope = 0.62, inter-

cept = 0.27) of its variability, for PIB+ and PIB- respectively. While ePIB(20-130s) also pre-

sented a good correlation when compared to FDG SUVR, of 0.79 (PIB+) and 0.73 (PIB-), this

method was not as predictive as R1, accounting for 62% (R2 = 0.62, p< 0.001, slope = 0.73,

intercept = 0.21) for the PIB+ patients, and 54% (R2 = 0.54, p< 0.001, slope = 0.56, inter-

cept = 0.36) for the PIB- subjects. S3 Fig depicts the same data but with subjects divided by

diagnosis instead of PIB uptake.

Bias assessment

Moreover, the mean bias between R1 and FDG SUVR (Fig 5) was of -0.08 ± 0.08 (range -0.34–

0.13) and -0.11 ± 0.09 (-0.39–0.13) for the PIB+ and PIB- groups, respectively. A moderate neg-

ative trend, proportional to the magnitude of the SUVR estimate was also observed. A linear

regression from this data showed a bias of 27% for the PIB+ group (R2 = 0.27, p< 0.001, slope =

-0.27, intercept = 0.18), and of 43% for the PIB- group (R2 = 0.43, p< 0.001, slope = -0.38, inter-

cept = 0.27). Furthermore, ePIB(20-130s) presented a similar negative trend, with a mean of

-0.05 ± 0.09 (range -0.31–0.32) for the PIB+ group, and -0.09 ± 0.10 (-0.39–0.30) for the PIB-.

For the PIB+ patients, a bias of 19% (R2 = 0.19, p< 0.001, slope = -0.27, intercept = 0.19) was

Fig 2. Distribution of R1 and FDG SUVR values per region. Distribution of individual subject’s FDG SUVR (first

and fourth rows), R1 (second and fifth rows), and ePIB(20-130s) (third and sixth rows) values per group in all VOIs.

First three rows contain the values from the PIB+ group while the last three, from the PIB- group. Filled boxes

represent regions that showed a statistical significant difference between PIB+ and PIB- groups. The filling of the

background was made to differentiate between brain areas: frontal lobe, occipital lobe, temporal lobe, parietal lobe,

central structures, insula and cingulate gyri, posterior fossa, white matter, and grey matter of the cerebellum (reference

region), in this order.

https://doi.org/10.1371/journal.pone.0211000.g002
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found, while the PIB- subjects presented a bias of 42% (R2 = 0.42, p< 0.001, slope = -0.44,

intercept = 0.36).

Correlation between ePIB and R1

When comparing ePIB with R1, later time frames (20s to 100s, 20s to 130s, and 1min to 8 min)

presented the best correlations and predictability. Results are shown in Table 2. While those

intervals showed no significant bias for the PIB+ group, for the PIB- subjects, there was a slight

negative bias of 4%, 3%, and 22% respectively.

Voxel-based comparison between groups

Voxel-based analysis showed statistically significant differences between subject groups in

FDG SUVR and R1 images. The main discrepancies between tracers were the size of the clus-

ters: while FDG SUVR had larger clusters, their main core could also be seen in R1 (Fig 6).

When exploring the differences between groups where PIB- subjects showed a higher flux than

PIB+ subjects, the clusters were present in frontal, temporal, and parietal regions of both trac-

ers. Meanwhile, when exploring the opposite differences, the brainstem and part of the cere-

bellum were the only visible region.

The same analysis was done for all ePIB intervals. The shorter intervals (20s to 40s, and 20s

to 60s) showed no statistically significant clusters. Meanwhile, the 20s to 130s interval pre-

sented similar results as R1 and FDG SUVR analysis also being able to display cluster that

showed regions of PIB+ patients that had a larger perfusion than PIB- subjects. Later intervals

(1 to 8 minutes) were not able to produce the same pattern of distinction between groups

(Fig 6).

Fig 3. Mean difference images per group. Mean difference images per groups comparing normalized FDG uptake and R1 parametric maps (R1 –FDG SUVR; first row),

and FDG SUVR and ePIB(20 to 130 seconds) images (ePIB–FDG SUVR; second row). On the left, the mean difference image for the PIB+ group can be seen, and on the

right, the PIB-. The closer the R1 or ePIB and FDG SUVR estimates, the more white the voxel appears. Negative values correspond to voxels where the FDG SUVR voxel

presented a higher value than the R1 or ePIB. Bar plots representing the mean values of brain areas for each group are on the right of the respective images.

https://doi.org/10.1371/journal.pone.0211000.g003
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Fig 4. Linear regression analysis for R1 and ePIB(20-130s) estimates. Scatter plot showing regional CBF estimates

from R1 parametric images (top) and ePIB(20-130s; bottom) (y-axis), and normalized FDG FDG uptake (x-axis). Data

are arranged according to patient group: circles represent PIB+ group, and triangles PIB-. Lines resulting from the

linear regression applied to the data are also shown: a full line for the PIB+ group, and a dashed one for PIB-. Results of

the linear regression are given in boxes at the bottom right corner.

https://doi.org/10.1371/journal.pone.0211000.g004
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Discussion

In this study, the possibility of using PIB R1 and ePIB as surrogates for FDG SUVR was

explored. The good agreement between measures and the resemblance of the images indicate

that rCBF estimates from pharmacokinetic analysis of PIB might be a good alternative to an

additional FDG scan. Therefore, a single PIB PET study might suffice to observe amyloid

deposition and assess rCBF, as a surrogate for the FDG. This approach bypasses some limita-

tions associated with PET studies and facilitates dual biomarker imaging, as subjects only need

to undergo one scan, thus reducing radiation exposure and costs. For the estimation of the R1

in the present study, the SRTM2 model was used since it has been previously validated as the

most suitable reference tissue model for PIB [21]. Although earlier studies indicate that PIB tis-

sue kinetics are best represented by a two-tissue compartment [11], the resulting bias on the

BPND using SRTM is small [37]. Optimization of k’2 estimation has also been made [20,38],

but it has been observed that R1 is insensitive to minor inaccuracies of that estimation [32].

Taken together, this strongly suggests that SRTM2 might be a suitable choice for the R1

estimation.

The results presented in the previous section showed a high correlation between R1 esti-

mates and FDG SUVR values. This response was already anticipated, as R1 has been found to

be a valid marker of rCBF [39], and there is an established coupling between blood flow deliv-

ery and metabolic demand [23]. The high predictability of FDG SUVR by R1 (about 72%) also

indicates that R1 might be a good surrogate for FDG PET imaging.

Several studies have presented early frames from PIB [2,15,16,40] and other Aβ tracers

[18,41–43] as a proxy to FDG. But while their choice of time interval was solely done

Fig 5. Bland-Altman plot. Bland-Altman plot showing the difference between the values of rCBF assessed by different methods (by

R1, on the top row, and by ePIB(20 to 130 seconds), on the bottom, estimations and from the normalized FDG uptake). Circles

represent data from the PIB+ group, while triangles represent PIB-. The full line is at the mean difference value for all data (not

classified in groups), and the dashed lines delimit the 95% agreement interval (at mean ± 1.96 × standard deviation).

https://doi.org/10.1371/journal.pone.0211000.g005

Table 2. Linear regression results of the analysis between ePIB and R1.

PIB+ PIB-

20-40s R2 0.00 0.00

Intercept 0.33 1.01�

Slope 1.13 -0.07

20-60s R2 0.03� 0.01�

Intercept 0.56� 0.83�

Slope 0.61� 0.33�

20-100s R2 0.65� 0.55�

Intercept 0.11� 0.21�

Slope 0.95� 0.84�

20-130s R2 0.87� 0.87�

Intercept 0.03� 0.08�

Slope 1.00� 0.93�

1-8min R2 0.94� 0.96�

Intercept 0.04� 0.12�

Slope 0.90� 0.90�

Results from the linear regression comparing the data from the R1 parametric maps and the early frames images.

�p<0.05

https://doi.org/10.1371/journal.pone.0211000.t002
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considering the best correlation with FDG SUVR values, this study also considered the bias

between measurements and how well the method could differentiate between the PIB+ and

PIB- groups on a voxel level. The recommended time interval of 1 to 8 minutes [15] was not

able to distinguish between the PIB+ and PIB- groups, and showed a similar bias to the mea-

sure when compared to FDG SUVR. This was of interest considering that, in a previous study

[15], this time frame showed the best correlation with the FDG SUVR values. This time

Fig 6. SPM analysis. Maximum Intensity Projections derived from the voxel based analysis. First row contains the

images from FDG SUVR, second row shows R1, third, ePIB(20 to 130 seconds), and fourth, ePIB(1 to 8 minutes). On

the left, statistically significant regions where PIB+ group shows higher rCBF than the PIB- group, and, on the right,

statistically significant regions where the PIB- group showed higher flow than the PIB+ group.

https://doi.org/10.1371/journal.pone.0211000.g006
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interval might be too long and thus picking up some amyloid binding. This would affect the

results since it might not be a pure flow image. Considering these results, the early frames from

1 to 8 minutes may not be the best time interval to estimate regional flow distributions. There-

fore, the preferred time interval taken here was from 20 to 130 seconds. Although the good

resemblance of the images and the good correlation with both R1 and FDG SUVR measures, R1

still presented better correlation with FDG SUVR than ePIB. This might be due to the non-uni-

form distribution of the tracer, small sampling window, and noise [15]. Therefore, the use of a

full kinetic modelling approach might be a better approach, since it not only provides an estima-

tion of amyloid deposition through BPND [2], but also an estimation of rCBF through R1.

Moreover, the voxel-based group comparison demonstrated that R1 allows identification of

regions with reduced rCBF in the PIB+ group, as compared with PIB-. This pattern coincided

with the distribution of reduced in glucose metabolism, although cluster sizes appear to be

smaller with R1 than with FDG SUVR (Fig 6). Again, these results suggest that changes in R1

distribution between subject groups seem to approximate those of FDG SUVR reasonably

well, but possibly at the cost of lower sensitivity. Therefore, the diagnostic performance of

using R1 parametric maps as a surrogate of FDG SUVR for diagnosis of AD will be further

explored, although it can already be said that it might not be the best option for longitudinal

studies due to its lower sensitivity to small changes. This sensitivity to differences between

groups was also reduced when performing partial volume correction which is caused by an

increment in data variance. This increased variance might be due to a higher noise, as conse-

quence of the correction; an increased variability between subjects due to errors in the segmen-

tation of tissues; or it might be a real larger spread in values. Moreover, previous studies have

found that partial volume correction might lead to bigger bias on results[44,45], and there is

not clear consensus about its use.

Despite the fact that these findings showed a good correlation between R1 and SUVR values,

some differences were also observed in the data. The slopes of the linear regressions were

smaller than one, suggesting that R1 might be less sensitive than FDG SUVR. Moreover, the

bias between R1 and FDG SUVR seems to increase with higher FDG SUVR values (Fig 5). In

addition, FDG SUVR values were higher than those of R1 for most of the brain regions, with

the exception of the cerebellum, brainstem, and thalamus (Fig 3). These regions are known to

be hyperperfused due to their “potential need for precipitous and rapid activation” [46]. There-

fore, R1 should not be used for studies of changes in metabolism and pathophysiology, since it

is not a true surrogate of FDG, but it can be considered for (differential) diagnosis.

Interestingly, the degree of agreement between R1 and FDG SUVR values seems to be dif-

ferent for the PIB+ and the PIB- groups. Deposition of Aβ induces profound changes in the

neurons’ metabolic phenotype [24] and it is known to relate with neurovascular decoupling,

resulting in a cerebrovascular dysfunction with a reduction of the rCBF [47]. For this study, it

was hypothesized that the agreement between R1 and FDG SUVR images would be worse in

the PIB+ group, where FDG will capture not only alterations in perfusion, but also in metabo-

lism. However, what was found seems to be in contradiction with this initial hypothesis. The

fact that PIB+ group presented a better correlation than the PIB-, a lower bias, and a higher

predictability of FDG SUVR values might suggest that the R1 (i.e. PIB PET) could more accu-

rately replace FDG PET in PIB+ subjects than in the PIB-.

Conclusion

Phamacokinetic analysis of dynamic PIB PET studies provides high-quality rCBF images com-

parable with those obtained by FDG SUVR. The high correlation between R1 and normalized

FDG uptake suggests that PIB PET parametric maps might be used as an alternative to FDG
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PET, and also R1 outperformed ePIB in this analysis. However, despite the good correlation

between R1 and SUVR, there is still a need for further prospective studies to validate the use of

R1 as an alternative of FDG SUVR for diagnostic purposes, and to monitor the progression of

AD, since the observed differences between R1 and FDG SUVR might be of importance in lon-

gitudinal studies, for example, where small effect sizes are relevant. Nevertheless, the results

presented in this study suggest that R1 might be used as a surrogate for FDG and preferred

over ePIB for (differential) diagnosis in neurodegenerative diseases with PET imaging.
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