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ABSTRACT Genomic prediction is a useful tool to accelerate genetic gain in selection using DNA marker
information. However, this technology typically relies on standard prediction procedures, such as genomic
BLUP, that are not designed to accommodate population heterogeneity resulting from differences in
marker effects across populations. In this study, we assayed different prediction procedures to capture
marker-by-population interactions in genomic prediction models. Prediction procedures included genomic
BLUP and two kernel-based extensions of genomic BLUP which explicitly accounted for population
heterogeneity. To model population heterogeneity, dissemblance between populations was either
depicted by a unique coefficient (as previously reported), or a more flexible function of genetic distance
between populations (proposed herein). Models under investigation were applied in a diverse switchgrass
sample under two validation schemes: whole-sample calibration, where all individuals except selection
candidates are included in the calibration set, and cross-population calibration, where the target population
is entirely excluded from the calibration set. First, we showed that using fixed effects, from principal
components or putative population groups, appeared detrimental to prediction accuracy, especially in
cross-population calibration. Then we showed that modeling population heterogeneity by our proposed
procedure resulted in highly significant improvements in model fit. In such cases, gains in accuracy were
often positive. These results suggest that population heterogeneity may be parsimoniously captured by
kernel methods. However, in cases where improvement in model fit by our proposed procedure is null-to-
moderate, ignoring heterogeneity should probably be preferred due to the robustness and simplicity of the
standard genomic BLUP model.
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Genomic prediction has proved a useful tool to predict genetic merit in
plant and animal breeding (Hayes et al. 2009a, Lorenz et al. 2011). This
technology consists of learning relationships between DNA markers

and phenotypes, which arise from the non-random association
(linkage disequilibrium; LD) between DNA markers and causal ge-
netic variants having direct effects on the trait studied (Meuwissen
et al. 2001). Standard genomic prediction models, including geno-
mic BLUP (GBLUP; VanRaden 2008, Hayes et al. 2009b) or Bayes-
ian linear regression (BLR) models (Meuwissen et al. 2001, Gianola
et al. 2009), assume that the effects of causal variants are linear and
purely additive, so estimated effects do not capture any dependence
on context, arising for example from interactions of causal variants
with environmental or genetic backgrounds. Initially, genomic pre-
diction models have been proposed for applications in populations
that are relatively homogeneous with respect to LD patterns and
interactions involving causal variants (Meuwissen et al. 2001). In
such situations, increasing the size of the calibration set (CS) – the
set of individuals used to estimate the model’s parameters – would
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typically benefit accuracy of the models (Lorenzana & Bernardo
2009, VanRaden et al. 2009). However, in practice, increasing the
CS size may often involve calibrating prediction models on individ-
uals with inconsistent LD patterns and/or backgrounds, which may
result in reduced accuracy (Wientjes et al. 2016). This issue will arise
in the typical situation where an initially homogeneous CS is
augmented with individuals from extraneous populations, that
is, multi-population – or (in the animal literature) multi-breed –
calibration (Lund et al. 2014). Recently, studies in both plant and
animal breeding have assessed the usefulness of combining popu-
lations from different genetic backgrounds in genomic prediction.

Under standard genomic prediction models (where population
heterogeneity is ignored), the simulation study of de Roos et al.
(2009) suggested that adding an extraneous population to a CS may
benefit prediction accuracy if the added population is not too dissimilar
(in terms of divergence time) from the initial CS. These authors also
suggested that high enough marker density could prevent prediction
accuracy from decreasing, even in cases of strong divergence between
populations. Consistently, most empirical studies of multi-population
calibration with high marker density, based on standard GBLUP and/
or BLR, have reported little or no gain in accuracy under strong pop-
ulation structure (Lehermeier et al. 2015, Jarquin et al. 2016, Hayes et al.
2009c, Erbe et al. 2012). In contrast, only a few studies have reported
substantial increases in accuracy from multi-population calibration in
similar conditions (Technow et al. 2013, Daetwyler et al. 2012).

Inmulti-population predictionmodels (wheremarker-by-population
interactions are explicitly accounted for), studies have proposed to fit,
to the whole set of available individuals, models that were capable
of accommodating population heterogeneity explicitly. This type of
models includes multi-trait GBLUPmodels, with “traits” correspond-
ing to population backgrounds (Karoui et al. 2012, Carillier et al.
2014, Lehermeier et al. 2015), and random regression models based
on markers interacting with discrete population cluster coefficients
(de Los Campos et al. 2015, with an extension of a standard BLR
model). To our knowledge, the implementation of these methods
has not been adapted to contexts of admixture, where population
structure variables are continuous. Furthermore, when calibration
involves many populations, the increase in model complexity of these
methods will make them computationally intractable and statistically
inefficient. Parsimonious multi-population models, based on only a
few parameters to capture population heterogeneity, have also been
proposed (Zhou et al. 2014, Heslot and Jannink 2015). In the presence
of many populations, such models are more practical and potentially
more useful than multi-trait and random interaction models. Also,
since they generally assume some underlying basis for population
heterogeneity (e.g., inconsistency in LD patterns), they may generate
insight about the causes of marker-by-population interactions.

In this study, we first considered a standard GBLUP model and
evaluated different types of fixed effects to reflect population structure,
thenwe investigated the usefulness of standardGBLUP and two kernel-
based extensions for coping with population heterogeneity. These
procedures were compared to a standard GBLUP model under two
validation schemes: whole-sample calibration, where all individuals
except selection candidates are included in the calibration set, and
cross-population calibration, where the target population is excluded
from the calibration set. The two multi-population GBLUP extensions
are one previously-reported model, derived from Heslot and Jannink
(2015), and one proposed model, based on a flexible kernel function of
population principal components. We applied the procedures to the
analysis of three traits (plant height, heading date, and standability) in
switchgrass (Panicum virgatum L.), an herbaceous biomass crop

showing good promise for bioenergy production (Sanderson et al.
1996, Langholtz et al. 2016). This species is characterized by an exten-
sive diversity which makes it particularly suitable for studying popula-
tion heterogeneity (Casler 2012). The sample under study comprised
seven population clusters from two diverse panels, assayed in the Mid-
western region of the United States, which represent differentiation by
ecotype (upland or lowland), geographical origin (latitudinal and lon-
gitudinal gradients) and ploidy level (tetraploid or octoploid). This
sample exemplified the heterogeneity of data available for practical ap-
plications of genomic prediction, which pose both opportunities (by in-
creased sample sizes) and challenges (by inconsistencies inmarker effects
across populations) for breeding based on DNA markers.

In this study,wedidnotfitBLRmodels (usuallybasedonMarkovchain
Monte Carlo optimizations), since we focused on deterministic methods
for model fit and considered only models based on computationally
efficient best linear unbiased predictors (BLUP). Further research would
be needed to develop kernel-based extensions of this type of models.

MATERIAL AND METHODS

Panels and populations
In this study, two multi-population panels were assayed and con-
sidered together in one sample. Thefirst panel was the breeding panel
(BP) described in Ramstein et al. (2016), comprising two tetraploid
breeding populations of half-sib families: WS4U-C2, which con-
sisted of 137 half-sib families derived from a diverse upland-ecotype
pool of 162 plants (Casler et al. 2006), and Liberty-C2, which con-
sisted of 110 half-sib families derived from the lowland-upland
cultivar Liberty (Casler and Vogel 2014). The second panel was
the association panel (AP) described in Lu et al. (2013) and Evans
et al. (2015), comprising six putative populations of clonally prop-
agated genotypes of different ecotypes (U: upland; L: lowland),
ploidy levels (4X: tetraploid; 8X: octoploid) and geographical origins
(S: South; W: West; N: North; E: East): U4X-N (135 plants), U8X-W
(129 plants), U8X-E (97 plants), U8X-S (10 plants), L4X-NE
(106 plants) and L4X-S (37 plants). These populations corre-
sponded to 66 diverse accessions (Lu et al. 2013, Evans et al.
2015) with up to 10 individuals per accession.

InWS4U-C2,one individualwasdiscarded soas toavoidassigning it to
apopulation inAP, since itwas toodistantly related to theother individuals
in BP (based on principal component analysis). In total, n ¼ 760 indi-
viduals were considered in this analysis. Themain goal of this studywas to
assess different methods for accommodating genetic heterogeneity when
predicting phenotypic means in a given target population. Four targets
were chosen, with a defined focus on tetraploid populations with at least
100 relatively homogeneous individuals:WS4U-C2 and Liberty-C2 (from
BP), and U4X-N and L4X-NE (from AP).

Marker data
Exome capture sequencing of individuals (parents in BP and clonally
propagated plants in AP) was performed using the Roche-Nimblegen
protocol for preparation of SeqCap EZ Developer libraries using the
Roche-Nimblegen probeset ‘120911_Switchrass_GLBRC_R_EZ_HX1’
as described previously (Evans et al. 2014, 2015). Reads from sequenc-
ing were aligned to the hardmasked P. virgatum v1.1 reference genome
(http://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Pvirgatum).
Counts of reads corresponding to alternate and reference alleles
for each individual were then determined as described previously
(for BP, Ramstein et al. 2016; for AP, Evans et al. 2014, 2015) at
2,179,164 single nucleotide polymorphism (SNP) loci, which were
identified as polymorphic in two diversity panels: the Northern
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Switchgrass Panel, corresponding to AP (Evans et al. 2014, 2015),
and a southern switchgrass panel (E. C. Brummer, unpublished
data). The numbers of alternate allele at the SNP loci were then
called by using the expectation-maximization algorithm of Martin
et al. (2010) fitted in each population (in BP) or accession (in AP)
separately, under the assumption of disomic inheritance. Although
this assumption is supported in switchgrass for tetraploid genotypes
(Okada et al. 2010; Li et al. 2014), it does not hold for octoploid
genotypes, which would presumably exhibit tetrasomic inheritance.
However, we did not adapt the algorithm of Martin et al. (2010) to
accommodate possible tetrasomic inheritance, as the sequencing
depth of �24 was deemed insufficient for calling intermediate
heterozygotes (simplex and triplex) with high enough accuracy
(Evans et al. 2015). Indeed, a sequencing depth of at least 60-80
was recommended by Uitdewilligen et al. (2013) for accurately
calling tetrasomic genotypes. Therefore, for all individuals, the
resulting marker-data matrix consisted of expected allelic dosages
(sums of alternate-allele counts weighted by their posterior proba-
bilities, for every individual and SNP) between 0 and 2.

The SNP data were filtered based on the following criteria: (i)
proportion of missing values strictly lower than 2%, a stringent thresh-
old given prior filtering of SNPs on read depth$ 5 (Evans et al. 2014,
2015); (ii) minor allele frequency strictly greater than 1

2n and variance of
allelic dosages strictly greater than 2

�
1
2n

��
12 1

2n

�
, with n ¼ 760 indi-

viduals; (iii) p-value for Hardy-Weinberg equilibrium strictly greater
than 1024 in each BP population; (iv) availability of genomic-location
information (as per v1.1 of the reference genome of P. virgatum).
Missing values at SNPs were imputed by their mode in the whole
sample. The resulting n ·m filtered and imputed marker-data matrix
X consisted of allelic dosages at m ¼ 717; 814 SNP markers.

Phenotypic data
Populations in BP were assayed each year between 2012 and 2014, in
Arlington,WI (USA), in a randomized complete block design, with four
replicates forWS4U-C2and three replicates for Liberty-C2.Populations
in AP were assayed each year between 2009 and 2011 in Ithaca, NY
(USA), in a sets-in-reps design, with two replicates per individual and
10 sets within each replicate, with each set comprising at most one
individual from each of the 66 accessions in AP (Lu et al. 2013, Evans
et al. 2015). In each panel, three phenotypic traits were considered:
plant height, heading date and standability. Plant height (PH) was
measured in centimeters as the height from the ground to the top of
the tallest panicle. Heading date (HD) was measured in growing de-
grees days as the cumulated sum of daily average temperatures
(in degreesCelsius; �) above 10 �, from January 1st to the day of heading,
defined as the emergence of at least half of the panicles from the boot
(Mitchell et al. 1997); daily average temperatures were estimated by the
average of the minimum and maximum daily temperatures. Standabil-
ity (St) was measured on a 0-10 scale to describe plants’ stature and
stiffness, with 0 qualifying plants that are prostrate and 10 qualifying
upright and rigid plants (Lipka et al. 2014).

Not all traits weremeasured every year in any given population: only
HD was measured in all three years in AP populations and Liberty-C2.
For allothercases,measurementswereavailable foronlya subsetofyears
(Table 1).

In BP, observational unitswere plants within half-sib families from a
given genotype (maternal parent) i. Half-sib families were arranged in a
randomized complete block design and assayed inmultiple years; so the
following mixed model was fitted to phenotypic measurements Pijlm, to
estimate half-sib family effects fi’s:

Pijlm ¼ mþ fi þ rj þ ð f · rÞij þ tl þ ðt · rÞjl þ ð f · tÞil
þ ð f · t · rÞijl þ eijlm

where m is the population mean; fi, rj and tl are the effects of half-sib
family i (fixed), block j (random) and year l (random) respectively; ·
indicates interactions (random); eijlm are residuals for plant m within
plot ij in year l. In AP, observational units were clones of a given
genotype i. Genotypes were arranged in a sets-in-reps design and
assayed in multiple years; so the following model was fitted to mea-
surements Pijkl to estimate genotype effects gi’s:

Pijkl ¼ mþ gi þ rj þ sjk þ ðg · rÞij þ tl þ ðt · rÞjl þ ðt · sÞjkl
þ ðg · tÞil þ eijl

where m is the panel mean; gi, rj, sjk and tl are the effects of genotype i
(fixed), replicate j (random), set k within replicate j (random) and
year l (random) respectively; · indicates interactions (random); eijl
are residuals for clone ij in year l.

Themodels described above conform to analyses of strip-plot (split-
block) designs (Steel et al. 1996), in which years and genotype classes
(half-sib families in BP, individual genotypes in AP) are whole-plot
factors in cross-classification and sub-plot factors are combinations
of years and genotype classes. For each random term, the correspond-
ing effects were modeled as independent and identically normally dis-
tributed. The linear mixed models described above were fitted using
ASREML-R (Butler et al. 2009).

Effects fi’s in BP are transmitting abilities of genotypes (the mean
of their half-sib progeny in their respective breeding population), so
fi ¼ BVi

2 , where BVi is the breeding value of genotype i. In compar-
ison, effects gi’s in AP are genotypic values, such that gi ¼ BVi þ Di,
where Di is the deviation from additivity due to dominance and/or
epistasis. Thus, outcomes of interest for genomic prediction were set
to be genotype means yi’s such that yi ¼ m̂þ 2f̂ i in BP and
yi ¼ m̂þ ĝ i in AP, with m̂ the estimated population mean in BP or
estimated panel mean in AP.

Population structure and relatedness

Admixture analysis: The soft clusteringmodel from the ADMIXTURE
software was fitted on the whole sample and the whole set of SNPs, i.e.,
without selection on individuals or markers (Alexander et al. 2009).
Based on the 10-fold cross-validation implemented in ADMIXTURE
(Alexander and Lange 2011), the number of population clusters in the
admixture model was set to K ¼ 7, as cross-validation error reached a
plateau at that value (Figure S1). The resulting n·K matrixA of admix-
ture coefficients comprised inferred membership probabilities at each
cluster (Figure 1a). For convenience (in prediction models), minimum
values in A (1025) were set to zero while ensuring that each row still
summed to one (by dividing each element in A by its row sum).

Principal component analysis: Principal component analysis (PCA)
wasperformedonthewholesampleandthewholesetofSNPs.Thenumber
ofprincipalcomponents (PCs) tochoose fordepictingpopulationstructure
waschosenbasedontheproportionofvarianceexplainedandthegrouping
patterns captured by PCs (Figure 1b). The resulting n· d PC matrix
P consisted of coordinates for each individual at the first d ¼ 4 PCs.

Recent relationships among individuals: Let G ¼ _X _X9=v be the ge-
nomic relationship matrix as defined by VanRaden (2008), where _X is

the centered marker-data matrix and v ¼ 2
Pm
l¼1

p̂lð12 p̂lÞ is a scaling
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factor depending on allele frequencies p̂l9s (estimated on the whole
sample), wherem ¼ 717; 814 is the number of SNPmarkers. Following
Fan et al. (2013), G was decomposed as G ¼ PP

0 þ GP , where P con-
sisted of the first d ¼ 4 PCs, as described above.Matrix PP

0
is the dense

part of the relationship matrix G, representing resemblance among
individuals through population structure, whereas matrix GP repre-
sents recent relationships conditional on population structure, similarly
to the adjusted relationships introduced by Thornton et al. (2012) and
Conomos et al. (2016), with the difference that here coefficients in GP

are not scaled for direct estimation of recent-kinship coefficients. Here
the graphical LASSO was applied to GP to infer a graph of recent
relationships among individuals, according to a regularization param-
eter l. Parameter l was chosen tomaximize the restricted likelihood in
a GBLUP model based on the regularized genomic relationship matrix
~G, fitted to the whole sample (see Appendix 1 for technical details and
discussion on graph inference). The GBLUP model depicting relation-
ships through ~G was fitted for each trait separately, so different optimal
values of l were inferred for different traits.

Genomic prediction models
All linearmixedmodels described belowwere fitted using the R package
rrBLUP (Endelman 2011).

For a given marker-data matrix X and vector y of outcomes, the
standard GBLUP model is described as follows:

y ¼ Qaþ uþ e;

�
u
e

�
� N

 �
0
0

�
;

"
XX9s2

b 0
0 Ins2

e

#!
(1)

where y is the n-vector of genotype means (yi9s, as described above);
X is the n ·m marker-data matrix (here consisting of allelic dos-
ages), and s2

b is the variance of marker effects;Q is the model matrix

for fixed effects a; Ins2
e is the covariance matrix for errors consid-

ered independent and identically distributed.
Hereafter, the testing set TS is defined as the set of individuals left out

formodel validation. The calibration set CS is the set of individuals used
to fit the prediction models, which excludes the TS but does not
necessarily consist of all remaining (available) individuals.

We defined themean structure in fittedmodels byQ being one of the
following: (Intercept) a n-vector of ones 1n, such that fixed effects con-
sisted of a single intercept; (PCA) the n · 5 matrix ½ 1n P� of column
vector of ones and first four PCs; (Panel) the n · 2 model matrix attrib-
uting observations to panel AP or BP, such that fixed effects reflected
differences in genetic compositions and environments across panels; or
(Group) the n · 7 matrix model matrix attributing individuals to the
following putative population groups: WS4U-C2, Liberty-C2, U4X-N,
U8X-W+U8X-S, U8X-E, L4X-NE and L4X-S. Genotypes from U8X-S
were grouped with U8X-W on the basis of their proximity according to
the first 4 PCs, to avoid having one group with too few observations.

In this study, we first compared mean structures with respect to
prediction accuracy under the standard prediction procedure (GBLUP,
as described below). Then, we focused onQ ¼ 1n and compared predic-
tion procedures for accommodating population heterogeneity (see below;
GBLUP,GBLUP-Target,MPM-Mixture,MPM-Matérn). Prediction accu-
racy of models (differing either by mean structure or prediction proce-
dure) was assessed by cross-validation as described in the next subsection
(Validations).

Whole-sample model: GBLUP: In the whole-sample model (GBLUP),
we fitted model (1) to all available individuals, thereby assuming that the
whole sample consists of only one population. This method consists of
ignoring population heterogeneity and relying on robustness of standard
GBLUP to interactions between markers and population backgrounds.

n Table 1 Description of populations and trait measurements

Pop. Size Loc. Trait Years Mean Range

L4X-NE 106 NY PH 2009 2011 142.9 95.8 - 205.2
HD 2009 2010 2011 547.1 422.9 - 810.4
St 2010 2011 5.6 1.0 - 8.9

L4X-S 37 NY PH 2009 2011 209.7 130.7 - 240.1
HD 2009 2010 2011 841.3 711.2 - 1075.6
St 2010 2011 7.1 5.0 - 9.7

Liberty-C2 110 WI PH 2012 2013 185.6 133.9 - 239.9
HD 2012 2013 2014 806.3 652.1 - 979.7
St 2013 6.2 2.7 - 8.9

U4X-N 135 NY PH 2009 2011 155.5 93.7 - 207.7
HD 2009 2010 2011 534.3 345.4 - 904.0
St 2010 2011 5.4 1.6 - 8.2

WS4U-C2 136 WI PH 2012 2013 163.8 127.9 - 204.6
HD 2013 2014 527.6 405.7 - 692.4
St 2013 5.7 2.0 - 8.2

U8X-E 97 NY PH 2009 2011 168.2 101.0 - 225.2
HD 2009 2010 2011 530.4 408.5 - 734.7
St 2010 2011 5.6 1.7 - 8.0

U8X-W 129 NY PH 2009 2011 165.2 124.7 - 224.7
HD 2009 2010 2011 608.0 429.2 - 823.1
St 2010 2011 3.5 0.7 - 7.2

U8X-S 10 NY PH 2009 2011 175.4 138.7 - 190.8
HD 2009 2010 2011 716.6 569.9 - 859.1
St 2010 2011 5.8 4.0 - 7.5

Population (Pop.): WS4U-C2 is a collection of upland ecotypes; Liberty-C2 is a cross between upland and lowland ecotypes; other populations are designated by
ecotype (U: upland; L: lowland), ploidy level (4X: tetraploid; 8X: octoploid) and geographical origin (S: South; W: West; N: North; E: East). Location (Loc.): location
of phenotypic trials, Arlington (WI, USA) or Ithaca (NY, USA). Trait: plant height (PH), heading date (HD) or standability (St). Mean and range refer to the means yi’s
as described in Material and Methods. Units for mean and range are centimeter, growing degree days and scores on a 0-10 scale, for PH, HD and St, respectively.
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Target-population model: GBLUP-Target: In the target-population
model (GBLUP-Target), we fitted model (1) to individuals belonging to
the same population as the TS, when possible (see below). This method
corresponds to a typical choice of reducing population heterogeneity
and basing predictions only on individuals that have genetic back-
grounds that are a priori similar to those in the TS.

Multi-population models: MPM-Mixture, MPM-Matérn: Multi-
population models (MPM) were extensions of model (1) intended to
accommodate population heterogeneity. The following general model
was fitted:

y ¼ Qaþ uþ e;

�
u
e

�
� N

 �
0
0

�
;

"�
VnsXX9

�
s2
b 0

0 Ins2
e

#!

(2)

wheres is the element-wise (Hadamard) product, andVn is a n · n
covariance matrix depicting population differentiation among indi-
viduals (see Appendix 2 for derivations and technical details). To
parsimoniously estimate Vn, we used two different procedures:
MPM-Mixture (based on A) andMPM-Matérn (based on P). In both
procedures, we did not model any heteroscedasticity for additive ge-
netic effects u.

In MPM-Mixture (the reference MPM procedure), Vn ¼
rAQKA

0 þ ð12 rÞJn, where Jn is the n · n matrix of ones and
QK is a K · K matrix depicting relationships among population
clusters as inferred inA. Here, we simply setQK ¼ IK (IK is the K · K
identity matrix), so Vn ¼ rAA

0 þ ð12 rÞJn. Therefore in this pro-
cedure, r 2 ½0; 1� set a trade-off between the case where relationships
were cluster-specific (r ¼ 1) and the case where relationships as-
sumed one single homogeneous population for all individuals

(r ¼ 0). This approach is similar (but not exactly equivalent) to
the K-kernel method of Heslot and Jannink (2015), which set a
similar balance between cluster-specific and overall relationships,
but usingG for relationships (VanRaden 2008), instead of XX9, and
considering only discrete population clusters (in which case values
in A would then be only 0 or 1). Alternatively, MPM-Mixture may
be viewed as a multi-kernel model where rs2

b and ð12 rÞs2
b are the

variance components respectively associated to cluster-specific and
main marker effects.

In MPM-Matérn (the proposed MPM procedure), Vn ¼
ðkn;hðpi; pjÞÞn·n, where kn;h is a Matérn kernel function of pi and pj:

kn;hðpi; pjÞ ¼ 212n

GðnÞ

 ffiffiffiffiffi
2n

p kpi2pjk2
h

!n

Rn

( ffiffiffiffiffi
2n

p kpi 2 pjk2
h

)
,
			pi 2 pj

			
2

is the Euclidean distance between the d-vectors of PC coordinates
for any pair (i, j) of individuals, n  .   0 is a shape parameter, h  .   0
is a scale parameter, and Rnf�g is the modified Bessel function of the
second kind, of order n (Abramowitz and Stegun 1984, Ober et al.
2011). Matérn functions have been used in various contexts, including
in genomic prediction for depicting relationships among individuals
(Ober et al. 2011). Here, we used Matérn functions to depict relation-
ships among populations, with the input

			pi 2 pj

			
2
representing dif-

ferentiation with respect to population structure in d ¼ 4 orthogonal
directions. We used Matérn functions instead of more typical kernel
functions (e.g., an exponential or Gaussian kernel function) to allow for
some flexibility in the shape of the correlation in Vn: n ¼ 0:5 and
n ¼ N correspond respectively to the exponential and Gaussian
kernels as special cases, while different shapes can also be fitted
(Ober et al. 2011).

The parameter r in MPM-Mixture was estimated by maximizing
the restricted likelihood of model (2) using the optimization algorithm
implemented in the R function optimize. The parameters n and h in

Figure 1 Population structure in the
sample (A) Admixture plot of the
whole sample, with colors designating
the seven inferred population clusters,
which roughly matched populations,
with the exception of U8X-S which
displayed strong admixture; (B) Princi-
pal component analysis (PCA) plot
of the whole sample of 760 individu-
als, with colors designating the eight
populations.
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MPM-Matérn were estimated by maximizing the restricted likelihood
of model (2) using the Nelder-Mead algorithm implemented in the
R function constrOptim, with constraints for positivity. In order to
control (to some extent) for the possible presence of local maxima in
the restricted likelihood surface inMPM-Matérn, we used four different
starting points ðn0; h0Þ: ð0:5;Dmax=2Þ, ð0:5;DmaxÞ, ð10;Dmax=2Þ and
ð10;DmaxÞ, withDmax the maximumdistance

			pi 2 pj

			
2
observed over

pairs of individuals (i, j). In cross-validation (see next section), param-
eters r, n and h were estimated in each CS separately.

Validations
We assessed the accuracy of our prediction procedures by cross-
validation (CV) under two schemes: whole-sample calibration,
where all individuals except the TS are included in the CS,
and cross-population calibration, where the target population (the
population to which the TS belongs) is excluded from the CS. The
target-population model GBLUP-Target was only assayed in whole-
sample calibration, since this model could only rely on individuals
from the target population for calibration (in GBLUP-Target, the CS
could only consist of individuals in the target population, which was
not possible in cross-population calibration).

For each target population (L4X-NE, U4X-N, Liberty-C2 orWS4U-
C2), we used as the TS a random subset of the target sample. The size of
the TS was one fifth of the target sample size. All remaining individuals
were used as input to the prediction procedures. Such validations were
replicated nrep ¼ 20 times for each target.

Prediction procedures were evaluated for accuracy by
cTS ¼ CorðyTS; ŷTSÞ, i.e., the correlation between actual and predicted
outcomes in a given TS. To assess the significance of differences in
prediction accuracy between two procedures, we performed a t-test
on T ¼ �d

SDð�dÞ, where
�d is the average of d ¼ zðctÞ2 zðc0Þ; ct (c0) is the

vector of prediction accuracies over testing sets for the tested pro-
cedure (baseline procedure); and z is the Fisher transformation.
The standard error of the mean difference in prediction accuracy,
SDð�dÞ, was estimated in two different ways: (liberal t-test)
SDð�dÞ ¼ SDðdTSÞ

ffiffiffiffiffiffi
1

nrep

q
where SDðdTSÞ is the standard deviation of

d, with all testing sets assumed to be independent datasets; (conser-
vative t-test) based on the first method of Nadeau and Bengio (2003),

SDð�dÞ ¼ SDðdTSÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nrep
þ o

12 o

q
, where redundancy over testing sets is

accounted for by the additional term o
12 o, with o being the expected

fraction of overlap among testing sets; here o ¼ 1
5 and

o
12 o ¼ 1

4 because
testing sets were random subsets consisting of a fifth of any given target
sample. We considered that this method for estimating SDð�dÞ was
conservative in whole-sample calibration because Nadeau and Bengio
(2003) derived it by assuming that the CV criterion (the “loss function”,
analog here to zðcTS;tÞ2 zðcTS;0Þ, for a given TS) did not depend on the
CS instances, given a particular CS size. Therefore the adjustment from
Nadeau and Bengio (2003) may have overestimated the correlation
among values of the CV criterion across replicates, in whole-sample
calibration, since prediction procedures are probably quite sensitive to
differences in the composition of the CS. In all comparisons between
procedures, we reported the results from both tests in order to charac-
terize the significance of differences in prediction accuracy.

Data availability
Population information (population assignment and geographical or-
igin of genotypes, when available), raw phenotypic data (trait measure-
ments at individual plants) and estimated genotypemeans (formaternal
parents in BP and individuals in AP) are available in Files S1, S2 and S3,

respectively. These supplementaryfiles aswell as themarker data (allelic
dosages at the 717,814 selected SNP markers; in .rds format readable
in R) are available from figShare. Supplemental material available at
Figshare: https://doi.org/10.25387/g3.7464863.

RESULTS

Population structure in the sample

Population-level differentiation: Seven population clusters were
inferred from the ADMIXTURE software (Figure S1; Alexander et al.
2009). These clusters corresponded roughly to populations L4X-NE,
L4X-S, Liberty-C2 and U4X-N, WS4U-C2, U8X-E, U8X-W. One pop-
ulation with little representation in our sample, U8X-S, appeared to be
ofmixed origin (Figure 1a). The other populations generally displayed a
low level of admixture, with relatively few individuals having interme-
diate admixture coefficients. There seemed to be some admixture in-
volving upland populations (WS4U-C2 and U4X-N, WS4U-C2 and
U8X-W,U8X-E andU8X-W), with even some shared ancestry between
WS4U-C2 and U4X-N. The PCA confirmed that population structure
was relatively discrete (Figure 1b). Expectedly, the first PC separated
genotypes by ecotype while the second PC reflected geographical origin
within the lowland ecotype (Lu et al. 2013, Evans et al. 2015). The third
and four PCs discriminated upland genotypes by geographical origin
and ploidy level, and distinguished L4X-S from the two other lowland
populations (L4X-NE and Liberty-C2).

Differences inmeanand rangeamongpopulationswere quite typical
of previously reported differences between ecotypes (Table 1; Casler
2012). Indeed, L4X-S and Liberty-C2 (populations of lowland origin)
had highmean values and range values for PH,HDand St, compared to
upland populations (excludingU8X-S). However, L4X-NE stood out as
a lowland population for being relatively short, early-flowering, and
prone to lodging, with corresponding values for PH, HD, and St more
similar to those of the upland populations.

Recent relationships in the sample: Here, marginal genomic relation-
ships were defined as the elements ofG ¼ _X _X9=n, with _X consisting of
centered marker variables, and n being some scaling factor. The strong
and quite discrete population structure in the sample translated into
multimodal marginal genomic relationship coefficients, with the mul-
tiple peaks in off-diagonal elements of G reflecting differentiation of
population with respect to allele frequencies (Figure S2a). Conditioning
relationships on population structure (as depicted by the first four PCs
of _X) yielded the matrix GP , with GP ¼ G2PP

0
and P reflecting

structure in G due to population-level variation (Fan et al. 2013).
The conditional genomic relationships seemed sparser, in the sense
that they appeared to cluster around zero, so most individuals could
be assumed to be unrelated after accounting for population struc-
ture in the sample (Figure S2b). Conditional relationships in GP

were particularly relevant in this study, since among-population
variation, captured by PP

0
, contributed little to variation within

any given TS. Indeed, any TS generally consisted of selection can-
didates from a relatively homogeneous target sample (made of in-
dividuals from WS4U-C2, Liberty-C2, U4X-N or L4X-NE), where
variation with respect to P was minimal. Graphs of recent relation-
ships, inferred by the graphical LASSO, were rather dense, with average
degrees (number of neighbors by node/individual in the graph) ranging
from 217 to 458 (Figure 2). However, some noticeable features of
populations emerged from the inferred graphs (Figure 2): WS4U-C2,
U4X-N and U8X-E appeared quite connected to one another; U8X-W
also showed some connection with other upland populations but
seemed more distinct, as reflected by a relatively lower average degree
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(Figure S3); Liberty-C2 and L4X-S were somewhat connected to both
upland and lowland populations, which certainly explains why their
individual degrees were generally high (Figure S3); most notably,
L4X-NE displayed an outstandingly low level of connection with the
other populations, which translated in a clear separation of this pop-
ulation in the graph, after placing the nodes based on a force-directed
algorithm (Fruchterman and Reingold 1991). These features exemplify
the usefulness of conditional relationships and their associated graphs
for describing relationships among individuals.

Impact of mean structure on prediction accuracy
Prior to assessing different prediction procedures accommodating
population heterogeneity, models were compared for different
fixed-effect specifications used to characterize population struc-
ture (mean structures of models). Mean structures were tested for
prediction accuracy under GBLUP, in which the whole sample, ex-
cluding the TS, was used to fit a standard GBLUP model. In whole-
sample calibration (where the target population was included in the
CS), the various mean structures assayed differed marginally with
respect to their prediction accuracy. There were improvements over
Intercept (only intercept as fixed effect) by mean structures which
explicitly captured population structure, i.e., PCA (intercept and
effects of PCs), Panel (effects of panels AP and BP) and Group
(effects of putative population groups). However, those were small,
inconsistent and moderately significant (hereafter “moderately
significant” refers to P # 0:05 based on the liberal “naïve” t-test)
(Table 2a). Conversely, in cross-population calibration (where the
target population was excluded from the CS), fixed effects explic-
itly depicting population structure resulted in highly significant
decreases in prediction accuracy compared to Intercept (hereafter
“highly significant” refers to P # 0:05 based on the conservative
t-test adapted from Nadeau and Bengio 2003; see Material and
methods for details). In particular, prediction accuracy was sub-
stantially lower with PCA for L4X-NE (HD, St), as well as with
Group for U4X-N (PH, HD), L4X-NE (PH, HD) and Liberty-C2.
Mean structure Panel was not as sensitive to cross-population
calibration compared to PCA and Group, and even showed one
highly significant increase in prediction accuracy compared to
Intercept, for Liberty-C2 (PH). But it also showed decreases in
prediction accuracy, with U4X-N (PH) and L4X-NE (HD), which
were stronger and highly significant (Table 2b). Interestingly, the

deterioration of prediction accuracy in cross-population calibra-
tion by PCA and Group may be due to different factors. Indeed,
while PCA may fail to properly extrapolate effects of PCs outside
the set of populations represented in the CS, Group would fail to
capture any difference due to population differentiation in the TS
(since all individuals in the TS belong to the same unobserved
population group). Due to the relative stability in performance
of Intercept, hereafter we chose to focus on this mean structure
when comparing prediction procedures.

Impact of prediction procedures on prediction accuracy

Target-population model: For prediction in a given TS, the target-
populationmodel (GBLUP-Target) consisted in restricting the CS to the
subset of the sample belonging to the same population as the TS.
Compared to GBLUP, the target-population model yielded decreases
in prediction accuracy which appeared moderately significant for PH
(WS4U-C2, U4X-N) and St (Liberty-C2) (Table 3a, Table S1). How-
ever, prediction accuracy for St (WS4U-C2) was higher, with a mod-
erately significant difference. More intriguing is the consistent increase
in prediction accuracy with L4X-NE, with differences being small yet
highly significant for PHandHD, andmoderately significant for St. It is
unclear whether these differences are due to the consistently higher
accuracies achieved with L4X-NE (in GBLUP-Target) compared to
other populations, or a result of L4X-NE being relatively under-
connected to the other populations in the sample (Figure 2, Figure
S3). Both factors could very well contribute to the observed decreases
in accuracy when incorporating information from the whole sample.

Multi-population models and marker-by-population interactions:
The inferred mixing parameter r from the MPM-Mixture model was
null (or close to null), low and intermediate, for PH, St and HD re-
spectively, with estimations being quite consistent over CV replicates
(Table 4). The improvement in fit, relatively to GBLUP, was non-
significant for PH, rather significant (P , 0.05) for St, and strongly
significant (P , 0.001) for HD (Table 4). In MPM-Matérn, the
inferred correlation functions differed substantially across traits (Table
4), while being quite consistent over CV replicates in whole-sample
calibration and across validation schemes, with similar shapes of the
correlation function kn;h in whole-sample calibration and cross-
population calibration (Figure 3): kn;h roughly resembled an expo-
nential kernel with PH and HD, and was more similar to a Gaussian

Figure 2 Inferred graphs of relationships, conditional on population structure Each graph represents the relationships as depicted by the
graphical LASSO applied to the whole sample of individuals. The parameter l represents the degree of regularization on conditional relation-
ships, fitted by maximum restricted likelihood for each trait, in a GBLUP model based on regularized relationships (Appendix 1). Nodes
(individuals) were positioned using the force-directed placement algorithm of Fruchterman and Reingold (1991), as implemented in function
ggnet (R package GGally), so aggregation of nodes reflects connectedness.
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kernel with St, for which a “shoulder” maintained high correlation
in marker effects for individuals that were relatively close to each
other, based on their PCs. Remarkably, the shapes of inferred cor-
relation functions were quite consistent in cross-population calibra-
tion, despite entire populations being left out from one CS to
another (Figure 3b). Inferences regarding among-population corre-
lations (Vn) inMPM-Matérn were weakly significant for PH and St,
with p-values close to 0.05; in contrast, inferences regarding Vn for
HD were strongly significant, with P , 0.001 (Table 4). Interest-
ingly, distances based on PCs may be equivalent to distances based

on allele frequencies. Specifically,
			pi 2 pj

			
2
¼ 2
		pP i 2pPj

		
2,

wherepP i (pPj) is them-vector of individual-specific allele frequen-
cies of individual i (j) as described by Conomos et al. (2016), with
population structure described by ½ 1n P� (Appendix 3). Therefore,
the significant relationship between PC-based distances and corre-
lations in marker effects (depicted by Vn) for HD in MPM-Matérn
indicates that marker effects for this trait were highly sensitive to
variation in allele frequencies across genetic backgrounds.

In whole-sample calibration, the performance of MPM-Mixture
was very similar to that of GBLUP, with differences in accuracy
ranging from -0.018 to +0.009 (Table 3a). Quite surprisingly,
MPM-Mixture displayed slightly deteriorated accuracies for HD
(with the exception of U4X-N), despite the strongly significant im-
provement in fit for this trait. In contrast, MPM-Matérn yielded
larger differences in accuracy, ranging from -0.019 to +0.060 in
whole-sample calibration (Table 3a). With the two upland target
populations (WS4U-C2 and U4X-N), noteworthy increases in pre-
diction accuracy (+0.060 and +0.030 respectively) were observed for
HD. But with the two other target populations (Liberty-C2 and L4X-
NE), smaller differences in accuracy (-0.008 and +0.007 respec-
tively) were observed for HD.

In cross-population calibration, MPM-Mixture showed more
differences in accuracy compared to GBLUP, with differences in
accuracy ranging from -0.150 to 0.032 (Table 3b). Again, MPM-
Mixture displayed deteriorated accuracy for HD despite a strong
improvement in fit, with a dramatic decrease by 0.15 for U4X-N.
Such decrease in accuracy may be due to the lack of flexibility of
MPM-Mixture in depicting among-population resemblance, as it
only fits one correlation coefficient for all pairs of populations. In
cross-population calibration, MPM-Matérn also resulted in large
differences in accuracy compared to GBLUP, ranging from -0.304
to 0.147. The dramatic decreases in prediction accuracy with PH
(-0.304 and -0.250 for WS4U-C2 and L4X-NE, respectively) could
be explained by the relatively weak improvement in model fit from
GBLUP to MPM-Matérn (Table 4). Interestingly, large and signifi-
cant improvements in prediction accuracy were observed with HD,
similarly to the results from whole-sample calibration, with none-
theless more dramatic increases in accuracy. While MPM-Mixture
simply estimates a general coefficient for among-population resem-
blance, based on the CS, MPM-Matérn may be more suitable for
extrapolation to unobserved population backgrounds, as it esti-
mates the resemblance between any two populations as a function
of their specific properties (here, PC coordinates). Consistently, the
relative improvement in accuracy from GBLUP to MPM-Matérn
seemed more predictable based on the relative improvement in
model fit. Specifically, a decrease in Bayesian information criterion
(BIC) seemed to discriminate cases where an improvement in
accuracy could be achieved by MPM-Matérn, especially in cross-
population calibration where a correct depiction of population het-
erogeneity seemed more critical (Figure S4).
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DISCUSSION

Conclusions
The present study assessed different mean structures to represent
population differentiation and evaluated various procedures to accom-
modate population heterogeneity in diverse samples, with an applica-
tion in switchgrass. We considered different approaches to reflect
population structure, i.e., characterizing it implicitly by randommarker
effects, using only an intercept as fixed effect (Intercept), or characterize
it explicitly, by continuous differentiation (PCA) or discrete effects at
the level of panels (Panel) or putative population groups (Group).
Furthermore, we employed three typical strategies for dealing with
marker-by-population interactions, i.e., ignoring (GBLUP), reducing
(GBLUP-Target), or modeling (MPM) the source of heterogeneity in
the data.

Our assessment of mean structures points to a simple fixed-effect
specification being preferable in genomic prediction analyses, since
accuracies from Intercept were relatively high across populations and
traits, and relatively stable across validation schemes (whole-sample cal-
ibration or cross-population calibration). These conclusions are consis-
tent with those of Phocas and Laloë (2004), who showed larger prediction
errors in cattle when including putative genetic groups as fixed effects
(comparable to Group and Panel). Notably, deteriorations of prediction
accuracies fromPCA andGroupwere especially large in cross-population
calibration in which entire populations were excluded from the CS.
Moreover, these were often noted for L4X-NE which was under-
connected to other populations in the sample (Figure 2). Decreases
in accuracy with PCA suggest that linear fixed effects capturing
population structure may fail to properly extrapolate on unobserved
populations whose genetics may differ markedly from other popu-
lations in the sample (Figure 1b). However, it is worth noting that
the switchgrass sample under study was highly structured. Samples
in other species, e.g., in maize or rice, may not display such discrete
population differentiation and therefore may not suffer as much
from fixed effects at population level (Guo et al. 2014).

In whole-sample calibration, GBLUP often seemed robust to pop-
ulation heterogeneity, regarding prediction accuracy (Table 3a). This
robustness was certainly due to the ability of GBLUP models to

combine information from individuals according to the specified
relationship matrix, by transferring information preferentially from
the more related individuals (Searle et al. 2009, Habier et al. 2013).
Furthermore, GBLUP models were probably all the more robust as
marker density was high, such that genomic relationships were ac-
curately estimated (Casella and Berger 2002, Endelman and Jannink
2012). However, some decreases in prediction accuracy compared to
GBLUP-Target suggest that robustness of GBLUP may have been
affected by other factors. Such factors may be related to relationships
within the sample, i.e., under-connectedness of some populations with
others (Figure 2), or differences in accuracy of the prediction model
across populations, as reflected by GBLUP-Target being more accurate
in certain populations (Table 3a).

In whole-sample calibration, prediction was mostly determined by
individuals in the CS belonging to the same population as the TS.
Consistently, MPM procedures, which shrink relationships involving
individuals from distantly-related populations, did not dramatically
affect prediction accuracy (Table 3a). However, in cross-population
calibration, decreasing the contribution of individuals from dis-
tantly-related populations must have been more pertinent, so that
there were more opportunities for improvement of prediction ac-
curacy by MPM procedures. In this context, MPM-Matérn proved
more useful than MPM-Mixture, especially with HD for which
MPM-Matérn resulted in a dramatic improvement of fit (Table
3b). Importantly, this relative superiority may be due to the fact
that MPM-Matérn extrapolated correlations between populations,
through leading PCs, whileMPM-Mixturemerely interpolated such
correlations, by estimating a common coefficient of correlation
across populations. This lack of flexibility, and the subsequent in-
ability to extrapolate to unobserved populations, must have resulted
in high sensitivity of MPM-Mixture to the composition of the CS,
making it particularly inappropriate in a cross-population context.

Marker-by-population interactions captured by MPM-Mixture
and MPM-Matérn were presumably not confounded by marker-by-
environment interactions, since interactions between panel and markers
were not significant (P . 0.25 in a model, similar to MPM-Mixture,
which depicted correlation in marker effects between BP, assayed in

n Table 3 Average prediction accuracy by prediction procedure

a) Target included in CS b) Target population omitted from CS

Trait Population GBLUP GBLUP-Target MPM-Mixture MPM-Matérn GBLUP MPM-Mixture MPM-Matérn

PH WS4U-C2 0.163 (0.121) 0.115 (0.123) • 0.163 (0.121) 0.133 (0.124) 0.230 (0.144) 0.213 (0.137) • 20.074 (0.214) �

Liberty-C2 0.476 (0.189) 0.467 (0.186) 0.476 (0.189) 0.470 (0.186) 0.025 (0.208) 0.025 (0.209) 0.122 (0.216) •
U4X-N 0.526 (0.149) 0.486 (0.160) • 0.525 (0.149) 0.540 (0.130) 0.271 (0.162) 0.253 (0.160) • 0.265 (0.168)
L4X-NE 0.767 (0.074) 0.782 (0.068) � 0.767 (0.074) • 0.762 (0.076) • 0.403 (0.179) 0.403 (0.179) 0.153 (0.188) �

HD WS4U-C2 0.272 (0.185) 0.273 (0.159) 0.254 (0.178) 0.332 (0.145) 0.122 (0.166) 0.094 (0.150) 0.269 (0.151) •
Liberty-C2 0.532 (0.145) 0.533 (0.152) 0.516 (0.152) 0.524 (0.153) 0.125 (0.185) 0.137 (0.191) 0.171 (0.181)
U4X-N 0.694 (0.103) 0.693 (0.110) 0.703 (0.100) � 0.724 (0.090) • 0.447 (0.179) 0.297 (0.163) � 0.514 (0.136) •
L4X-NE 0.828 (0.074) 0.841 (0.072) � 0.832 (0.073) � 0.835 (0.068) 0.400 (0.212) 0.352 (0.212) � 0.527 (0.177) �

St WS4U-C2 0.070 (0.208) 0.115 (0.187) • 0.067 (0.213) 0.075 (0.198) 20.046 (0.193) 20.015 (0.201) • 0.031 (0.177) •
Liberty-C2 0.116 (0.248) 0.055 (0.234) • 0.105 (0.251) • 0.102 (0.252) 0.164 (0.185) 0.161 (0.190) 0.172 (0.224)
U4X-N 0.265 (0.169) 0.255 (0.174) 0.269 (0.172) 0.266 (0.166) 0.048 (0.218) 0.042 (0.211) 20.040 (0.204) •
L4X-NE 0.589 (0.127) 0.604 (0.120) • 0.590 (0.127) 0.591 (0.129) 0.090 (0.219) 0.122 (0.219) • 0.174 (0.203) �

In parentheses: standard deviation across cross-validation replicates. Validation scheme: (a) whole-sample calibration, where individuals in the target population,
except the selection candidates, are included in the calibration set; (b) cross-population calibration, where all individuals from the target population are omitted
from the calibration set. Trait: plant height (PH), heading date (HD) or standability (St). Population: population used as target for prediction. Prediction accuracies
are averaged over 20 cross-validation replicates. Models differ by prediction procedure, under the same mean structure (Intercept: intercept-only model). GBLUP:
whole-sample model; GBLUP-Target: GBLUP model where the CS includes only the individuals from the same population as the TS; MPM: multi-population
model with among-population correlations based on admixture coefficients (MPM-Mixture) or PC distances (MPM-Matérn). Comparisons to GBLUP: •: P # 0.05 in
unadjusted (naïve) t-test (liberal); �: P # 0.05 in t-test corrected for overlap in testing sets as in Nadeau and Bengio (2003) (conservative). Underlined values
correspond to the highest prediction accuracy for each validation scheme, trait and population.
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WI, and AP, assayed in NY; Figure S5). Therefore, models analyzed in
this study would reflect actual differences in genetic bases across popu-
lations. Moreover, for every trait, genomic variability (variance of marker
effects) would be similar across panels. Indeed, the non-significant im-
provement in fit from an extension of a GBLUP model where genomic
variance can vary by panel (P $ 0.18), suggested limited differences in
variance of marker effects by panel (Figure S6). This result further im-
plied that estimation of genotype effects and half-sib family effects (in AP
and BP, respectively) and scaling of half-sib family effects (multiplied by
two, so they corresponded to breeding values) were effective to ensure
concordance in genomic variability across panels.

Here, we modeled interactions between markers and population
structure through products of relationships at markers, which were
linear (XX9), and relationships about population structure, which
were linear in MPM-Mixture and nonlinear in MPM-Matérn (Vn;
Appendix 3). Using kernel functions to estimate relationships dis-
pensed us from fitting effects of many variables, by estimating in-
stead n breeding values directly from relationships. A similar
strategy was adopted quite recently by Jarquín et al. (2014),
who modeled genotype-by-environment interactions for genomic
prediction, through products of linear kernels at markers and linear
kernels at environmental covariates. As noted by these authors, such
decomposition with respect to interactions had been introduced in
quantitative genetics much earlier, by Kempthorne (1954) and
Cockerham (1954) for depicting epistatic effects, based on expected

relationships under an infinitesimal model. Importantly, relation-
ships about population structure not only allowed us to efficiently
specify a genome-wide marker-by-population interaction model,
but they also enabled the use of nonlinear kernels at the population
level (with Vn produced by nonlinear functions in MPM-Matérn).
Matérn kernels, introduced to genomic prediction research by Ober
et al. (2011), were used here to estimate covariance among individ-
uals in a flexible yet parsimonious way (Figure 3), while still using
simple linear kernels for depicting within-population variability (by
XX9). Our results exemplify the potential usefulness of parsimoni-
ous multi-populationmodels, which are all the more interesting that
they can be applied on samples comprising many populations. In
contrast, typical multi-trait models would be computationally in-
tractable or statistically inefficient here, since those would rely on
one parameter for each population pair to model correlations
among populations inVn (e.g., 21 parameters for K ¼ 7 population
clusters). As a matter of fact, multivariate genomic BLUP models
fitted by ASREML-R to estimate such correlations among putative
population groups (WS4U-C2, Liberty-C2, U4X-N, U8X-W
+U8X-S, U8X-E, L4X-NE and L4X-S) failed to converge.

Improvement of procedures
Our results suggest that a very high increase in quality of fit, as was
observed for HD with MPM-Matérn, may allow for an increase in
accuracy, especially in a cross-population context. In the analysis of

Figure 3 Shape of the inferred corre-
lation functions in MPM-Matérn Valida-
tion scheme: (A) whole-sample calibration,
where individuals in the target popula-
tion (except the selection candidates)
are included in the calibration set; (B)
cross-population calibration, where all
individuals from the target population
are omitted from the calibration set. In
(A), dashed curves depict correlation
functions inferred in cross-validation
replicates (where a part of the target
population is included in the testing
set), while solid curves depict correla-
tion functions inferred in the whole

sample. In (B), solid curves depict correlation functions inferred while omitting one of the four target populations in the calibration set. Correlations
are functions of D=Dmax , where D is the Euclidean distance between population-structure PCs for any pair of individual (i,j) and Dmax is the maximum of
D over the whole sample.

n Table 4 Multi-population model fit: parameter estimates, likelihood-ratio test statistic and p-value, by trait and procedure

Trait Procedure Parameter estimate LRT statistic LRT p-value

PH MPM-Mixture r: 0.000 (0.000-0.060) 0.00 (0.00-0.31) 1.0 (0.58-1.00)
MPM-Matérn h�: 0.525 (0.287-0.525) 7.39 (2.44-10.66) 0.025 (0.0049-0.29)

n: 0.625 (0.550-0.825)
HD MPM-Mixture r: 0.434 (0.299-0.550) 15.89 (9.22-20.15) 6.7·1025 (7.2·1026-0.0024)

MPM-Matérn h�: 0.325 (0.298-0.488) 42.76 (28.57-40.25) 5.2·10210 (1.8·1029-6.2·1027)
n: 0.619 (0.520-0.886)

St MPM-Mixture r: 0.138 (0.136-0.180) 5.72 (5.21-7.99) 0.017 (0.0047-0.023)
MPM-Matérn h�: 0.134 (0.125-1.100) 7.59 (7.72-9.94) 0.022 (0.0069-0.021)

n: 9.049 (0.600-10.014)

In parentheses: range of values for every one of the four target populations omitted, in cross-population calibration. Trait: plant height (PH), heading date (HD) or
standability (St). MPM: multi-population model with among-population correlations based on admixture coefficients (MPM-Mixture; r: mixture parameter) or PC
distances (MPM-Matérn; n: shape parameter; h� ¼ h=Dmax , with h the scale parameter and Dmax the maximum distance observed over pairs of individuals). LRT
(likelihood-ratio test) statistic: 22logðL0=L1Þ where L0 and L1 are the restricted maximum likelihoods of GBLUP and one of the MPM models, respectively; p-values
were obtained from a x2-ditribution with one (MPM-Mixture) or two (MPM-Matérn) degrees of freedom.
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Heslot and Jannink (2015) across various multi-population contexts,
there seemed to be a positive relationship between differences in quality
of fit, as measured by the Akaike information criterion (AIC), and
differences in prediction accuracy. Although this relationship was quite
loose, it could be noted that for very high increases in AIC ($ 30),
gains in accuracy were null to high, similarly to the situation ofMPM-
MatérnwithHD, for which increases in AIC varied from28.68 to 42.88,
across CV replicates in whole-sample calibration, and from 24.57 to
36.25 in cross-population calibration. Therefore, stringent thresholds
on AIC increases could probably be used in MPM to avoid relative
decreases in accuracy. In this study, one criterion more conservative
than the AIC, the BIC, could discriminate cases where prediction ac-
curacy was improved by MPM-Matérn, compared to GBLUP (Figure
S4). Therefore, a possible improvement of MPM procedures could
simply come from model selection as an integral part of the fitting
process, based for example on the BIC. The BIC differences relative
to GBLUP were almost always negative for PH and St in MPM. For
these two traits, differences in prediction accuracy from GBLUP to
MPM were quite inconsistent, especially withMPM-Matérn, so model
selection could probably have made MPM procedures more robust.
However, such conclusions are based on a restricted set of populations
and genetic architectures. So future studies on other datasets would
certainly be necessary to test this post hoc hypothesis and determine
whether criteria such as the BIC can indicate cases whereMPM-Matérn
should be used instead of GBLUP.

Anotherway of potentially improvingMPMprocedures would be to
use other types of kernels than those used here. For example, one may
use linear kernels based on population-level covariates (e.g., PCs) in
place of AA

0
in MPM-Mixture, hence taking an approach similar to

that of Jarquín et al. (2014). Besides, modeling resemblance among
population clusters in MPM-Mixture, by AQKA

0
in place of AA

0

(whereQK captures similarity based onmetrics at the population level),
could be useful to increase quality of fit, and possibly prediction
accuracy. Finally, an interesting way of extending the MPM proce-
dures described here would be to incorporate more information at
the population level. Here in MPM, population homogeneity
was captured through admixture coefficients (MPM-Mixture) or
differences in PC coordinates (MPM-Matérn), the latter reflecting
differences in allele frequencies (Appendix 3). However, marker-by-
population interactions may also be due to differences in LD
patterns (Wientjes et al. 2016). Therefore metrics depicting such
differences could be particularly appropriate for capturing popula-
tion heterogeneity. Further research would be necessary to deter-
mine the type of metrics to use for reflecting differences in LD
patterns, and the appropriate way to parsimoniously combine the
different types of information regarding population differentiation
in MPM. Interestingly, geographical distance may succinctly depict
population differentiation, due to differences in allele frequencies
and/or differences in LD patterns. Fitting population-level correla-
tions in Vn as a function of distance of origin would then be par-
ticularly useful in species under strong geographical structure,
which include switchgrass (Grabowski et al. 2014), but also human
(Coop et al. 2009), as was clearly shown in samples from Europe
(Novembre et al. 2008), Africa (Bryc et al. 2010) and Latin America
(Ruiz-Linares et al. 2014). Models such as MPM-Matérn, which are
parsimonious yet flexible in the shape of the fitted correlation func-
tion (Figure 3), are promising in various applications on diverse
samples, in prediction studies, but also in inferential studies aiming
at characterizing the basis for population differentiation.

In this study, marker data were based on exome capture sequencing,
which targets a selected subset of exons for sequencing and subsequent

SNP calling (Hirsch et al. 2014, Evans et al. 2014). The potential lack of
representation of causal variants by our assay may have resulted in loss
of prediction accuracy. While total lack of representation of some
genomic regions imposes a limit on prediction accuracy achievable
by our procedures, the relative overrepresentation of some genomic
regions could be, to some extent, alleviated by genomic relationships
which account for correlation among markers and differential degrees
of tagging of loci in the marker data (Speed et al. 2012, Ramstein et al.
2016, Wang et al. 2017).

Another limitation in our study is the assumed homogeneity of
genetic and residual variances across populations. Here we focused
on parsimonious models estimating genetic correlations (not co-
variances) between populations. ExtendingMPMmodels to capture
variance heterogeneity across populations and/or environments
would certainly deserve further investigation. Such models ought
to fit functions of variance over genetic and/or environmental var-
iables, similarly to Ou et al. (2015) who reported improvements in
fit and marginal gains in prediction accuracy in swine, by modeling
residual variance over sexes and slaughter dates. Indeed, a decisive
advantage of models likeMPM-Matérn (for correlations) and those
of Ou et al. (2015) (for variances) is their ability to extrapolate
population covariances to genotypes from unobserved population
backgrounds.

Applications and prospects
Based on our case study, we would recommend usingMPMwhenever a
strong improvement in model fit is achieved. Otherwise GBLUP would
be the method of choice, since it is often robust enough to perform at
least as well asGBLUP-Target. However, fitting aGBLUPmodel to a CS
restricted to the target population may be preferred when making
predictions on “outlier populations” such as L4X-NE, which are un-
der-connected to other populations and are characterized by relatively
high prediction accuracy in a single-population context. Nevertheless,
more empirical studies on population heterogeneity should follow to
support the conclusions from our specific application. Such studies
could apply to various contexts: in particular, predictions on diverse
samples and dynamic breeding programs. The former includes analyses
similar to our case study as well as analyses onmore complex data, such
as historical datasets, in which not only population heterogeneity but
also genotype-by-environment interactions must be taken into account
(Dawson et al. 2013, Rutkoski et al. 2015). The latter involves selection
across multiple breeding generations, which might not necessarily suf-
fer from strong population heterogeneity (Sallam et al. 2015, Auinger
et al. 2016) but could nonetheless benefit from robust multi-population
models for potential increase in persistency of accuracy over genera-
tions (Habier et al. 2007). In the context of diverse samples or dynamic
breeding, simulation studies could also be useful for assessing the suit-
ability of procedures to accommodate population heterogeneity. Dif-
ferences in allele frequencies and differential LD patterns could be
simulated by various genealogies, as was done for example by de Roos
et al. (2009). Additionally, dependency of marker effects on allele fre-
quencies could be simulated through underlying non-additive genetic
effects, as well as allele fixation in specific populations. Indeed, marginal
additive marker effects, as captured by linear models such as standard
GBLUP, depend on allele frequencies at the loci with which they in-
teract (Hill et al. 2008,Mäki-Tanila andHill 2014, Hill andMäki-Tanila
2015). Therefore, dominance and epistatic effects could be simulated to
generate dependency ofmarker effects on allele frequencies, whichmay
then be captured by methods such as MPM-Matérn (Appendix 3).
Though investigations based on simulations would be complex and,
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to some extent, arbitrary by their choice of genealogies and genetic
architectures, they would provide useful frameworks for assessing pro-
cedures, such as those presented in this study, in contexts of population
heterogeneity.
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APPENDIX 1

Inference of recent relationships by the graphical LASSO
Let ~GP be a regularized form of GP ¼ G2PP

0
, with G the genomic relationship matrix as defined by VanRaden (2008), and P the matrix of

d ¼ 4 PCs.We applied the graphical LASSO toGP to infer a sparse matrix ~GP
21, which yielded a graph of relationships among individuals. Indeed,

a zero ij-element in ~GP
21 indicates that individuals i and j are unrelated conditionally on all other individuals, which corresponds to no edge

between individuals i and j in the underlying graph of recent relationships.
For a given sample covariancematrixΣ, the graphical LASSO infers a sparse precisionmatrix Σ21 bymaximizing the Gaussian likelihood of the

data (as represented by Σ), penalized by a L1-norm penalty lkΣ21k1, where l is the regularization parameter and kΣ21k1 is the sum of absolute
values in Σ21 (Friedman et al. 2008).

In this study, regularization of GP was performed as follows:

1. Standardizing GP to obtain the corresponding correlation matrix GP : GP ¼ diagðGPÞ21=2GPdiagðGPÞ21=2

2. Applying the graphical LASSO algorithm to GP , to obtain the regularized correlation matrix ~GP

3. Rescaling GP to obtain ~GP ¼ diagðGPÞ1=2~GPdiagðGPÞ1=2

The graphical LASSO algorithmwas runusing theRpackagehuge (Zhao et al. 2012). The regularization parameterlwas chosen tomaximize the
restricted likelihood for the following model:

y ¼ 1nmþ uþ e;  

�
u
e

�
� N

 �
0
0

�
;

"
~Gs2

u 0
0 Ins2

e

#!

where y is the n-vector of genotype means at a given trait; ~G ¼ PP
0 þ ~GP , depending on l, consists of regularized relationships; s2

u is the
variance of breeding values (here not equal to the variance of marker effects due to scaling and regularization on ~G); 1nm is the n-vector of
intercept values; Ins2

e is the covariance matrix for errors considered independent and identically distributed. Here we chose the value of l for
which the corresponding matrix ~G resulted in the highest restricted likelihood for the aforementioned model fitted to the whole sample. Possible
values of lwere the q-quantiles of absolute values inGP , with q varying from 0.05 to 1 by step of 0.05. The restricted likelihood as a function of l
depended on y, so optimization of l was performed for each trait separately.

APPENDIX 2

Multi-population GBLUP models for heterogeneous calibration sets
In this section, 1t , It , and Jt refer to the vector of ones, identitymatrix, andmatrix of ones, respectively, of dimensions t, t   ·   t   and t   ·   t   (where t is

specified).
Consider the following model for population-specific marker effects with respect to K populations and n genotypes:

�y ¼ �Qaþ �X�bþ �e;

2
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b�
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CA;   �V ¼ �XðVK5ImÞ�X9s2

b þ �R

where5 indicates the Kronecker product; �Q ¼ ð1K5QÞ is theKn · p designmatrix for the p-vectora of fixed effects; �X ¼ ðIK5XÞ is theKn ·
Kmmarker-data matrix for the Km-vector �b of marker effects at each of the K populations, with variance ðVK5ImÞs2

b. The matrixVK reflects
covariances in marker effects between populations. The Kn-vector �y, containing the phenotypic values for the n genotypes at each of the K
populations, is hypothetical (and ill-defined from a practical standpoint), since genotypes typically do not belong to more than one population.
The Kn-vector of residuals �e, with unspecified variance �R ¼ ðIK5RÞ, is assumed to be uncorrelated to marker effects �b.

Let �u ¼ �X�b be the Kn-vector of additive genetic effects at each of the K populations, as a linear combination of a normally-distributed vector
(�b), �u follows a normal distribution with expectation and variance as follows (Lehermeier et al., 2015):

E


�u
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So a multi-population model for breeding values that is equivalent to the model described above, by identical mean and variance structures, is as
follows:

�y ¼ �Qaþ �uþ �e;
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Now assume that K ¼ n, and each population corresponds to the specific genetic background of each individual separately. By considering only
observations at every individual’s specific genetic background, the above model reduces to:

�
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wheres is the Hadamard product; y is the typical n-vector of observed phenotypic values; u and e are the corresponding additive genetic effects
and residuals, respectively. Individual-specific marker effects are therefore accounted for by multiplying each element of the relationship matrix
XX9 by the corresponding element of Vn, thereby reflecting correlations in marker effects among individuals’ genetic backgrounds.

In general, we propose to inferVn ¼ ðvijÞn·n byvij ¼ kðuðxiÞ;uðxjÞÞ, whereu is some function of them-vectors of marker variables xi and xj,
for any pair of individuals i and j, and k is a valid kernel function guaranteeing that Vn be positive semi-definite. In MPM-Mixture, uðxiÞ ¼ ai
(K-vector of admixture coefficients for i) for any individual i, and the kernel function is krðai; ajÞ ¼ rai9aj þ ð12 rÞ, so that Vn is a “mixture”
between amatrix of correlations restricted to population clusters and amatrix allowing full exchange of information across clusters, as in a standard
GBLUP model. More generally, one could define the kernel function as kr;Qðai; ajÞ ¼ rai9QKaj þ ð12 rÞ, whereQK is a K · Kmatrix depicting
relationships among clusters. Here, we simply set QK ¼ IK and adjusted the kernel function (by restricted maximum likelihood) for r only.

InMPM-Matérn, uðxiÞ ¼ pi (d-vector of PC coordinates for i) for any individual i, and the kernel function is a Matérn function kn;hðpi; pjÞ of			pi 2 pj

			
2
, where k:k2 is the Euclidean norm. Notably, it can be shown that

			pi 2 pj

			
2
is proportional to

		pP i 2pPj

		
2
, where pP i (pPj) is the

m-vector of individual-specific allele frequencies for individuals i (j), defined by projection of matrix X onto the column space of QP ¼ ½ 1n P �
(Appendix 3). So

			pi 2 pj

			
2
, which reflects differentiation with respect to coordinates at the leading PCs of X, also reflects differentiation with

respect to individual-specific allele frequencies, with an underlying population structure represented by the same PCs. The allele frequencies pPi

have been introduced by Conomos et al. (2016), in a study where they also recommended using principal components from a subset of unrelated
individuals in X. Here, we simply applied PCA on the whole matrix X.

APPENDIX 3

Relationship between Euclidean distance based on principal components and Euclidean distance based on individual-
specific allele frequencies

In this section, 1t , It , Jt and 0s·t refer to the vector of ones, identity matrix, matrix of ones and matrix of zeros, respectively, of dimensions t,
t · t, t · t and s · t (where s and t are specified).

We will consider the case where the PC matrix P consists of the first d PCs of X, and individual-specific allele frequencies are defined as
(Conomos et al. 2016):

PP ¼ 1
2
QP

�
QP9QP

�21
QP9X

whereQP ¼ ½ 1n P� represents population structure through an intercept and the effects of the first d PCs ofX. VectorpPi (pPj) then consists of
individual-specific allele frequencies (with respect to QP) for individual i (j), such that:

pPi ¼ 1
2
qi9
�
QP9QP

�21
QP9X

and similarly for pPj (qi refers to the ðd þ 1Þ-vector of population-structure variables from QP for individual i).
We will show that

			pi 2 pj

			
2
¼ 2
		pPi 2pP j

		
2 for any pair (i, j), i.e., Euclidean distances based on d PCs are equivalent, by proportionality, to

those based on m individual-specific allele frequencies, with such frequencies as defined above.			pi 2 pj

			
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
pi92 pj9

��
pi 2 pj

�r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pi9pi þ pj9pj 2 2pi9pj

q

		pPi 2pPj
		
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pPi9pPi þ pPj9pPj 2 2pP i9pPj

q
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qi9Mqi þ qj9Mqj 2 2qi9Mqj

q
where M ¼ ðQP9QPÞ21QP9XX

0
QPðQP9QPÞ21.

Below, we will specify M more explicitly, to subsequently show that
			pi 2 pj

			
2
¼ 2
		pP i 2pPj

		
2.

Let
�
In 2

Jn
n

�
X be thematrix ofmarker variables centered around their respective overall mean. Assumingm $ n, by eigenvalue decomposition�

In 2
Jn
n

�
XX

0�
In 2

Jn
n

� ¼ ULU
0
, withU the n · nmatrix of eigenvectors andL the n· n diagonal matrix of eigenvalues of

�
In 2

Jn
n

�
XX

0�
In 2

Jn
n

�
;

and P ¼ UdL
1=2
d , where Ud is the n· d matrix of leading eigenvectors and L

1=2
d is the d · d diagonal matrix of corresponding singular values,

assumed strictly positive.
Because Ud consist of left-eigenvectors of a column-centered matrix (associated with strictly positive eigenvalues), Ud91n ¼ 0d·1 so

P91n ¼ L
1=2
d Ud91n ¼ 0d·1.
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Besides, P9P ¼ Ld .
So: �

QP9QP

�21 ¼
�
1n91n 1n9P
P91n P9P

�21

¼
�
n21 01·d
0d·1 L21

d

�

Moreover QP9X ¼
�
1n9
P9

���
In 2

Jn
n


X þ Jn

n X


¼

2
64

1n9X

P9

�
In 2

Jn
n


X

3
75 because P9Jn ¼ ðP91nÞ1n9 ¼ 0d·n.

So

�
QP9QP

�21
QP9X ¼

2
64 m

0

L
21=2
d Ud9

�
In 2

Jn
n


X

3
75

where m
0 ¼ 1

n1n9X
Finally, M ¼ ððQP9QPÞ21QP9XÞðX0

QPðQP9QPÞ21Þ ¼
�
m

0
m a9
a Id

�
with:

L
21=2
d Ud9

�
In 2

Jn
n


XX

0
�
In 2

Jn
n


UdL

21=2
d ¼ L

21=2
d

�
Ud9ULU

0
Ud

�
L

21=2
d ¼ L

21=2
d LdL

21=2
d ¼ Id

a ¼ L
21=2
d Ud9

�
In 2

Jn
n


Xm

Therefore, for any pair of individuals (i, j):

qi9Mqj ¼


1 pi9

�
M

�
1
pj

�
¼ m

0
mþ pi9aþ a9pj þ pi9pj

So:

2
		pPi 2pP j

		
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qi9Mqi þ qj9Mqj 2 2qi9Mqj

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m

0
mþ 2pi9aþ pi9pi

�þ �m0
mþ 2pj9aþ pj9pj

�
2 2m0

m2 2pi9a2 2a9pj 2 2pi9pj

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pi9pi þ pj9pj 2 2pi9pj

q
¼
			pi 2 pj

			
2
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